CSE 505 – Computing with Logic
Course Information

Fall 2017
Stony Brook University
Instructor: Dr. Paul Fodor

http://www.cs.stonybrook.edu/~cse505
Course Description

“The course explores logic-based computing and logic programming. It includes an introduction to programming in logic, covering basic techniques for solving problems in a logic programming system. Particular attention will be paid to user interface issues and how a logic system can provide a useful computing environment. The course covers implementation issues, emphasizing how a logic programming system generalizes both traditional programming language systems and traditional database systems.”

(https://www.cs.stonybrook.edu/students/Graduate-Studies/courses/CSE505)
General Information

• Meeting Information:
 • Lectures: Mo We 2:30PM - 3:50PM, Harriman Hall 116.
 • Course Web page:
 http://www.cs.stonybrook.edu/~cse505

• Blackboard will be used for assignments, grades and course material
Instructor Information

- Dr. Paul Fodor
 214 New Computer Science Building
- Office hours: Mondays and Wednesdays 5:30PM-7:00PM.
- I am also available by appointment
- Email: paul(dot)fodor(at)stonybrook (dot) edu
 - Please include “CSE 505” in the email subject and your name in your email correspondence
Course Outcomes

- Develop a fundamental understanding of logic as a programming language.
- Explore the computable fragments of first-order logic.
- Study the use of logic for specifying and programming complex systems.
What will you learn in CSE505?

- Logic Programming:
 - Programming in Prolog
 - Computational Basis
 - Resolution, Unication, Memoization
 - Extensions and Applications
 - Non-monotonic reasoning
 - Knowledge Representation
 - Probabilistic Logic Programming
 - Satisfiability (SAT) and descendants
 - Constraint Programming
 - Abduction and Inductive Logic Programming
Logic Programming

• A framework for unambiguously specifying knowledge and computation
Textbooks

- Foundations: Ulf Nilsson, Jan Maluszynski, Logic, Programming and Prolog, Wiley. Online (PDF); linked from Blackboard.
- Additional References:
Grading Schema

- Grades will be based on homework and exams according to the following formula:
 - Homework assignments = 15%
 - Project phase 1 = 2.5%
 - Project phase 2 = 2.5%
 - Project phase 3 (final) = 10%
 - Quizzes = 10%
 - Midterm exam 1 = 20%
 - Midterm exam 2 = 20%
 - Final exam = 20%
Examinations

- Midterm exam 1: Monday 10/16, during class time, in classroom.
- Midterm exam 2: Monday 11/13, during class time, in classroom.
- Final exam: Tuesday, December 12, 2017, 5:30-8:00 PM, in classroom (see the Stony Brook University Final Exam Schedule Calendar in http://www.stonybrook.edu/registrar/finals.shtml)
Grading Schema

- **Grade Cutoffs**
 - A [95-100], A- [90-95], B+ [87-90], B [83-87], B- [80-83], C+ [77-80], C [73-77], C- [70-73], D+ [65-70], D [60-65], F [0-60]
 - **SPECIAL RULE:** If all your grades, including homework assignments, quizzes, recitation and your three exam grades are above the respective class averages, you're guaranteed to receive a grade of C or higher for this class.

- There will be extra credit problems as a part of quizzes and homework assignments which values to an increase of less than 4% in the final grade.

- There will be in-class quizzes / brief assessments used to practice the class material and measure growth in knowledge, abilities, and skills. They will be solved in class and they are valued 2 points each.
Grading

• The final grade you receive in this class will reflect, as far as possible, the extent to which you have mastered the concepts and their applications.

• How much someone needs a grade, or how close they are to the next higher grade, will have no effect on grade.

• As the instructor, I want everyone to do well in this course, and will make every reasonable effort to help you understand the material taught.

• However, the grades provided at the end of the semester are final, except for rare situations involving grading errors.

• They will not be altered for any reason, so please do not ask me to do so.
Assignments

- Homework assignments due on fixed dates and times.
 - no late submission is permitted
- All assignments should be submitted electronically
 - Blackboard
Regrading of Homework/Exams

• Please meet with a TA or the instructor and arrange for regrading.

• You have one week from the day grades are posted or mailed or announced

• Late requests will not be entertained
The following rules are posted in every course syllabus: "Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. **Any suspected instance of academic dishonesty will be reported to the Academic Judiciary.** For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/"
Academic Integrity

• You can discuss general assignment concepts with other students: explaining how to use systems or tools and helping others with high-level design issues

• You **MAY NOT share** assignments, source code or other answers by copying, retyping, looking at, or supplying a file

 • Assignments are subject to manual and automated similarity checking (We do check! and our tools for doing this are much better than cheaters think)

• If you cheat, you will be brought up on academic dishonesty charges - we follow the university policy:
 • http://www.stonybrook.edu/uaa/academicjudiciary
Examples of Academic Dishonesty

- Using source code or pieces of a paper from the internet without properly citing the source.
- Buying or selling source code.
- Representing someone else's source code as one's own. If another person's code is being used, it must be properly cited.
- Unpermitted collaboration (on a paper, homework, lab reports, etc.). Unless an instructor has explicitly approved working together, students should assume, for their own protection, that it is not permitted.
- Helping someone else to plagiarize from one's own homework (for example, by giving them a copy of yours, or doing it for them).
Disability

• If you have a physical, psychological, medical or learning disability, contact the DSS office at Room 128 ECC. Phone 632-6748/TDD

• If you are planning to take an exam at DSS office, you need to tell me ahead of time for every exam.

• All documentation of disability is confidential.
Course Software and Facilities

• SWI-Prolog, XSB Prolog, Flora-2, clingo: freely available for Unix-based systems (Linux, Solaris, BSD, …) and Windows.
• Work from home or use CS Graduate Lab.
• You can also use the SINC sites, but you have to download a binary version of the software
Course Support

• Course web pages are partly hosted by the Blackboard system.
• Course Material: handouts, homeworks, notes, etc will be available directly from the course web site.
• Course Announcements: available from the blackboard system.
 • Check these regularly!
• Piazza
 • Use this to discuss any course-related material: lectures, homework problems, exams, etc.
• All homework assignments will be submitted via the Blackboard system.
Questions

• How to contact course staff:
 • Post your question on Piazza.
 • Come to my office during my office hours:
 • Send me email. (Post on discussion board unless the question is personal).
Catastrophic events

• Major illness, death in family, …
• Formulate a plan (with your CEAS academic advisor) to get back on track
• Advice
 • Once you start running late, it’s really hard to catch up
Please

• Please be on time
• Please show respect for your classmates
• Please turn off (or use vibrate for) your cellphones

...

• On-topic questions are welcome
Welcome and Enjoy!