Introduction to Deep Learning
Back Propagation, Neural Networks

Dimitris Samaras
Most uncredited slides by I. Kokkinos
Last time: Image Classification

assume given set of discrete labels
{dog, cat, truck, plane, ...}

→
cat
k-Nearest Neighbor

training set

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck
test images
Linear Classification

1. define a score function

Slide credit: Fei-Fei Li
Linear Classification

1. define a **score function**

\[f(x_i, W, b) = Wx_i + b \]

- data (image)
- class scores
- "weights"
- "bias vector"
- "parameters"
Interpreting a Linear Classifier

$$f(x_i, W, b) = W x_i + b$$
Loss

2. Define a **loss function** (or cost function, or objective)

\[f(x_i, W) \rightarrow y_i \rightarrow L_i \]

Example:

\[f(x_i, W) = [13, -7, 11] \]

\[y_i = 0 \]

Question: if you were to assign a single number to how “unhappy” you are with these scores, what would you do?
2. Define a **loss function** (or cost function, or objective). One (of many ways) to do it: **Multiclass SVM Loss**

\[
L_i = \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta)
\]

- **loss due to example** i
- **sum over all incorrect labels**
- **difference between the correct class score and incorrect class score**
\[L_i = \sum_{j \neq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta) \]

- loss due to example i
- sum over all incorrect labels
- difference between the correct class score and incorrect class score

- scores for other classes
- score for correct class

Slide credit: Fei-Fei Li
L2 Regularization

\[R(W) = \sum_k \sum_l W_{k,l}^2 \]

\[L = \frac{1}{N} \sum_i \sum_{j \neq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) \right] + \lambda R(W) \]

Regularization strength
Putting it all together:

Linear Classification

SVM:

\[
L = \frac{1}{N} \sum \sum \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) \right] + \lambda \sum \sum W_{k,l}^2
\]

Softmax:

\[
L = \frac{1}{N} \sum -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right) + \lambda \sum \sum W_{k,l}^2
\]

Slide credit: Fei-Fei Li
Gradient Descent

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient
A Single Neuron

Activation Functions

Slide credit: Fei-Fei Li
Neural Network Structure

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs. Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.
Activation functions

Step
\[g(a) = \begin{cases}
0 & a < 0 \\
1 & a \geq 0
\end{cases} \]

Sigmoidal
\[g(a) = \frac{1}{1 + \exp(-a)} \]

Hyperbolic tangent
\[g(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} \]

Rectified Linear Unit (RELU)
\[g(a) = \max(0, a) \]
Perceptron, ‘60s

Step function, single layer

Fixed mapping

output units
e.g. class labels

non-adaptive
hand-coded features

input units
e.g. pixels

Slide credits: G. Hinton
Multi-Layer Perceptrons (~1985)

\[u_i = g \left(\sum_{k \in \mathcal{N}(i)} w_{k,i} g \left(\sum_{m \in \mathcal{N}(k)} w_{m,k} u_m + b_k \right) + b_i \right) \]
Expressiveness of perceptrons

Single layer perceptron:
Linear classifier

`soft threshold function`

Two opposite `soft threshold’ functions: a ridge

Two ridges: a bump
A network for a single bump

Any function: sum of bumps
From flat to deep

1 layer of trainable weights

separating hyperplane
From flat to deep

2 layers of trainable weights

convex polygon region
From flat to deep

3 layers of trainable weights

Composition of polygons: convex regions
Multi-Layer Perceptrons (~1985)

\[u_i = g \left(\sum_{k \in \mathcal{N}(i)} w_{k,i} g \left(\sum_{m \in \mathcal{N}(k)} w_{m,k} u_m + b_k \right) + b_i \right) \]
Training Multi-Layer Perceptrons

- Compare outputs with correct answer to get error signal
- Back-propagate error signal to get derivatives for learning
A neural network for multi-way classification

\[x_n \xrightarrow{V} a_n \xrightarrow{g} z_n \xrightarrow{W} b_n \xrightarrow{h} \hat{y}_n \]
A neural network:

\[z = g(a) \]

\[a = Vx \]

\[z_k = \frac{1}{1 + \exp(-a_k)} \]
A neural network:

\[b = Wz \]

\[\hat{y} = h(b) \]

\[\hat{y}_k = \frac{\exp(b_k)}{\sum_{c=1}^{C} \exp(b_c)} \]

Outputs

Hidden layer
Training a neural network

\[a = Vx \quad \text{and} \quad b = Wz \]

\[\hat{y} = h(b) \]

\[\hat{y}(\theta) = f(x; \theta) \]

\[z = g(a) \]

\[l(\theta) = l(y, \hat{y}(\theta)) \]

\[\theta' = \theta - c \nabla_\theta l(\theta) \]
Training a neural network

\[\hat{y}(\theta) = f(x; \theta) \]
\[l(\theta) = l(y, \hat{y}(\theta)) \]
\[\theta' = \theta - c\nabla_\theta l(\theta) \]
Training a neural network

\[\hat{y} \leftarrow y \]

\[\frac{\partial l(y, \hat{y})}{\partial \hat{y}_c} = \hat{y}_c - y_c \]

\[\mathbf{z} = g(\mathbf{a}) \]

\[\mathbf{b} = \mathbf{Wz} \]
Neuron model: Logistic unit

\[x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} \]

Sigmoid (logistic) activation function.
Neural Network

\[a_i^{(j)} = \text{“activation” of unit } i \text{ in layer } j \]

\[\Theta^{(j)} = \text{matrix of weights controlling function mapping from layer } j \text{ to layer } j + 1 \]

\[
\begin{align*}
 a_1^{(2)} &= g\left(\Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3 \right) \\
 a_2^{(2)} &= g\left(\Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3 \right) \\
 a_3^{(2)} &= g\left(\Theta_{30}^{(1)} x_0 + \Theta_{31}^{(1)} x_1 + \Theta_{32}^{(1)} x_2 + \Theta_{33}^{(1)} x_3 \right)
\end{align*}
\]

\[h_{\Theta}(x) = a_1^{(3)} = g\left(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)} \right) \]

If network has \(s_j \) units in layer \(j \), \(s_{j+1} \) units in layer \(j + 1 \), then \(\Theta^{(j)} \) will be of dimension \(s_{j+1} \times (s_j + 1) \).
Learned features

Layer 1

Layer 2

Layer 3

$h_\Theta(x)$
1. Diff. to desired values
2. Backprop output layer
3. Hidden error values
3. Hidden error values
4. and so on ...
1. Diff. to desired values
2. Backprop output layer
The Gradient: Definition in R^2

$f : R^2 \rightarrow R \quad \nabla f(x, y) := \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right)$
\[f := (x, y) \rightarrow \cos\left(\frac{1}{2} x\right) \cos\left(\frac{1}{2} y\right) x \]
The Gradient Properties

- The gradient defines (hyper) plane approximating the function infinitesimally

\[\Delta z = \frac{\partial f}{\partial x} \cdot \Delta x + \frac{\partial f}{\partial y} \cdot \Delta y \]
The Gradient properties

- By the chain rule: (important for later use)

\[\left\|v\right\| = 1 \quad \frac{\partial f}{\partial v}(p) = \langle \nabla f_p, v \rangle \]
The Gradient properties

- Proposition 1:
 - is maximal choosing
 \[\frac{\partial f}{\partial v} \]
 - is minimal choosing
 \[\frac{\partial f}{\partial v} \]

 (intuitive: the gradient points at the greatest change direction)
Steepest Descent

• What it mean?
• We now use what we have learned to implement the most basic minimization technique.
• First we introduce the algorithm, which is a version of the model algorithm.
• The problem:

$$\min_x f(x)$$
Steepest Descent

- Steepest descent algorithm:

Data: \(x_0 \in \mathbb{R}^n \)

Step 0: set \(i = 0 \)

Step 1: if \(\nabla f(x_i) = 0 \) stop,
else, compute search direction

Step 2: compute the step-size \(h_i = -\nabla f(x_i) \)

Step 3: set \(\lambda_i \in \arg\min_{\lambda \geq 0} f(x_i + \lambda \cdot h_i) \) go to step 1

\[x_{i+1} = x_i + \lambda_i \cdot h_i \]
Steepest Descent

• From the chain rule:

\[
\frac{d}{d\lambda} f(x_i + \lambda \cdot h_i) = \left\langle \nabla f(x_i + \lambda \cdot h_i), h_i \right\rangle = 0
\]

• Therefore the method of steepest descent looks like this:
Steepest Descent
Steepest Descent

- The steepest descent find critical point and local minimum.
- Implicit step-size rule
- Actually we reduced the problem to finding minimum:

- There are extensions that gives the step size rule in discrete sense. (Armijo)

$$f : \mathbb{R} \rightarrow \mathbb{R}$$
Steepest Descent

- Back with our connectivity shapes: the authors solve the 1-dimension problem analytically.

$$\lambda_i \in \arg \min_{\lambda \geq 0} f(x_i + \lambda \cdot h_i)$$

- They change the spring energy and get a quartic polynomial in x

$$E_s(x \in \square^{n \times 3}) = \sum_{(i,j) \in E} \left(\|x_i - x_j\|^2 - 1 \right)^2$$
Convolutional models & deep networks

Honglak Lee & Andrew Ng, ICML 2010
Network connectivity

Fully Connected Layer

Example: 200x200 image
40K hidden units

~2B parameters!!

- Spatial correlation is local
- Waste of resources + we have not enough training samples anyway..

Slide credits: M. A. Ranzatto
Network connectivity

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).

Slide credits: M. A. Ranzatto
Network connectivity

Locally Connected Layer

STATIONARITY? Statistics is similar at different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).

Slide credits: M. A. Ranzatto
Network connectivity

Convolutional Layer

Share the same parameters across different locations (assuming input is stationary):
Convolutions with learned kernels

Slide credits: M. A. Ranzatto
Network connectivity

Convolutional Layer

\[h_j^n = \max(0, \sum_{k=1}^{K} h_{k}^{n-1} * w_{kj}^n) \]

output feature map

input feature map

kernel

Conv. layer

Slide credits: M. A. Ranzatto
Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to the exact location of the eye?
Pooling Layer

By “pooling” (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.
Pooling Layer: Examples

Max-pooling:

\[h_j^n(x, y) = \max_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y}) \]

Average-pooling:

\[h_j^n(x, y) = \frac{1}{K} \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y}) \]

L2-pooling:

\[h_j^n(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y})^2} \]

L2-pooling over features:

\[h_j^n(x, y) = \sqrt{\sum_{k \in N(j)} h_k^{n-1}(x, y)^2} \]

Slide credits: M. A. Ranzatto
Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Slide credits: M. A. Ranzatto
Pooling Layer: Receptive Field Size

If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$
If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $$(P+K-1) \times (P+K-1)$$
Local Contrast Normalization

\[h^{i+1}(x, y) = \frac{h^i(x, y) - m^i(N(x, y))}{\max(\epsilon, \sigma^i(N(x, y)))} \]

Performed also across features and in the higher layers.

Effects:
- improves invariance
- improves optimization
- increases sparsity

Note: computational cost is negligible w.r.t. conv. layer.
Local Contrast Normalization

\[h^{i+1}(x, y) = \frac{h^i(x, y) - m^i(N(x, y))}{\text{max} (\epsilon, \sigma^i(N(x, y)))} \]
CNN components

linear 3D filters

\(x \rightarrow (F, b) \rightarrow y = F \ast x + b \rightarrow y \)

downsampling

ReLU

\(x \rightarrow y = \max\{0, x\} \rightarrow y \)

normalization

sliding \(l^2 \)

spatial pooling

\(x \rightarrow \max \rightarrow y_{ijk} = \max_{pq \in \Omega_{ij}} x_{pqk} \rightarrow y \)
Note: after one stage the number of feature maps is usually increased (conv. layer) and the spatial resolution is usually decreased (stride in conv. and pooling layers). Receptive field gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- increase specificity of features (approaching object specific units)
ConvNets: Typical Architecture

Whole system

Input Image → 1st stage → 2nd stage → 3rd stage → Fully Conn. Layers → Class Labels

Conceptually similar to:

SIFT → K-Means → Pyramid Pooling → SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT → Fisher Vect. → Pooling → SVM

Slide: M-A Ranzatto