Comparing Sets by Size

- A mapping, or function, from a set A to a set B is said to be a *one-to-one correspondence* if it is one-to-one and onto.

- A one-to-one correspondence associates with each element of A a unique element of B, and vice versa.

- Two sets A and B are said to be *equinumerous* (or of the same size) if, and only if, there is a one-to-one correspondence from A to B.

- For example, the two sets $\{0,1\}$ and $\{a,b\}$ are of the same size, but $\{0,1\}$ and $\{0,1,2\}$ are not.

- The set of natural numbers is equinumerous with the set of positive integers. The function f, defined by $f(n) = n + 1$, is a one-to-one correspondence.
Finite and Infinite Sets

• Finite sets are equinumerous with some initial segment, \{0, 1, \ldots, n\}, of the natural numbers.

• If a set \(A \) is equinumerous with the set \(\mathbb{N} \) of all natural numbers it is said to be *countably infinite*.

• Examples of countably infinite sets are the natural numbers, the positive integers, the negative integers, and the set of all integers.

• A set is called *countable* if it is finite or countably infinite; and *uncountable* otherwise.

• Informally, a set is countable if its elements can be listed in a (finite or infinite) sequence,

\[a_0, a_1, a_2, \ldots \]
Subsets

• **Theorem**

Every subset of a countable set is countable.

• **Proof.** Let A be a countable set and B be a subset of A.

 – If B is finite, it is countable by definition.

 – If B is infinite, so is A.

 – Since A is countable its elements can be listed in some sequence,
 \[a_0, a_1, a_2, \ldots \]

 – The elements of B can be listed using the same sequence, but skipping elements not in B.
Cartesian Products

• **Theorem**

 The Cartesian product of two countable sets is countable.

• **Proof.** We sketch the basic idea for pairs of natural numbers, which can be listed in sequence as follows:

 – Begin the list with the pair \((0, 0)\) and set \(k\) to be 0.
 – Repeat the following step.
 – Increase \(k\) by one and list all pairs where the two components add up to \(k\). There are only finitely many such pairs, and they can be listed in any order, e.g., according to the first component.

• This list is obtained by traversing the following table diagonal by diagonal:

 \[
 \begin{array}{cccccc}
 (0, 0) & (0, 1) & (0, 2) & (0, 3) & (0, 4) & \ldots \\
 (1, 0) & (1, 1) & (1, 2) & (1, 3) & (1, 4) & \ldots \\
 (2, 0) & (2, 1) & (2, 2) & (2, 3) & (2, 4) & \ldots \\
 (3, 0) & (3, 1) & (3, 2) & (3, 3) & (3, 4) & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
 \end{array}
 \]
Examples

- The set of integers \mathbb{Z} is countable. Here is a one-to-one correspondence:
 $$f(n) = \begin{cases}
2n + 1 & \text{if } n \geq 0 \\
-2n & \text{if } n < 0
\end{cases}$$

- Surprisingly, the set of rational numbers \mathbb{Q} is also countable:
 - The set of integers \mathbb{Z} is countable.
 - Hence by the above theorem, the set $\mathbb{Z} \times \mathbb{Z}$ is countable.
 - The set of rational numbers \mathbb{Q} corresponds to a subset of $\mathbb{Z} \times \mathbb{Z}$, and therefore is also countable.
Theorem

The set Σ^* of all strings over an alphabet Σ is countable.

Proof. We use the fact that

$$\Sigma^* = \bigcup_{k \in \mathbb{N}} \Sigma^k,$$

where Σ^k denotes the set of all strings of length k, to list strings in sequence as follows:

- Begin with the empty string ϵ and set k to be 0.
- Repeat the following step.
- Increase k by one and list all strings in Σ^k. There are only finitely many such strings, and they can be listed in any order, e.g., lexicographically.
Diagonalization

• Diagonalization is a proof technique with applications in the theory of computation.

• **The Diagonalization Principle**

 Let R be a binary relation on a set A, and let D, the diagonal set for R, be \(\{ a \in A : (a, a) \not\in R \} \). Furthermore, for each $a \in A$, let R_a be the set $\{ b \in A : (a, b) \in R \}$.

 Then the set D is distinct from each set R_a.

• For example, let R be the binary relation

 \[\{(a, b), (a, d), (b, b), (b, c), (c, c), (d, b), (d, c), (d, e), (e, e)\} \]

• We have

 \[
 \begin{align*}
 R_a & = \{b, d\} \\
 R_b & = \{b, c\} \\
 R_c & = \{c\} \\
 R_d & = \{b, c, e\} \\
 R_e & = \{e\}
 \end{align*}
 \]

 and $D = \{a, d\}$.
Example

- The relation R above can be represented by a table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- The sets R_x correspond to the rows of the table.

- The set D represents the complement of the diagonal (from upper left to lower right):

 $\times \quad \times \quad \times$

- Evidently, the complement of the diagonal is different from each row.
Uncountable Sets

• **Theorem**
 The powerset of \mathbb{N} is uncountable.

• **Proof (by contradiction).**
 - Suppose $\mathcal{P}(\mathbb{N})$ is countable. Then there is a one-to-one correspondence f between \mathbb{N} and $\mathcal{P}(\mathbb{N})$.
 - Define a binary relation
 $$ R = \{(i, j) \in \mathbb{N} \times \mathbb{N} : j \in f(i)\}. $$
 - The set R_i, as defined in the statement of the Diagonalization Principle, is equal to the set $f(i)$. In other words, each subset of \mathbb{N} is equal to one of the sets R_i.
 - Now consider the diagonal set for R,
 $$ D = \{n \in \mathbb{N} : n \notin R_n\}. $$
 By the Diagonalization Principle, the set D is distinct from each set R_i.
 - But D is a subset of \mathbb{N}, and since f is a one-to-one correspondence between \mathbb{N} and $\mathcal{P}(\mathbb{N})$, we must have $D = R_k$ for some k.
 - In short, the assumption that $\mathcal{P}(\mathbb{N})$ is countable leads to a contradiction. Thus, $\mathcal{P}(\mathbb{N})$ is uncountable.
Formal Languages

- **Theorem**
 The set \(\mathcal{P}(\Sigma^*) \) of all formal languages is uncountable.

- **Proof.** The set \(\mathcal{P}(\Sigma^*) \) is equinumerous with the uncountable set \(\mathcal{P}(\mathbb{N}) \).

- **Theorem**
 The set of Turing-recognizable languages is countable.

- **Proof.** A language is Turing-recognizable if it is accepted by a Turing machine, but the set of all Turing machines is countable.

- **Corollary**
 The set of recursive languages is countable.
The Halting Problem

- The acceptance problem for Turing machines is represented by the following formal language:

\[A_{TM} = \{ \langle M, w \rangle : M \text{ is a TM that accepts } w \} \].

- The set \(A_{TM} \) is Turing-recognizable, or recursively enumerable: a universal Turing machine \(U \) accepts \(A_{TM} \).

- A closely related problem is the Halting Problem, which is represented by the following set:

\[\text{HALT}_{TM} = \{ \langle M, w \rangle : M \text{ is a TM that halts for } w \} \].

- The Halting Problem is also recursively enumerable.
An Undecidable Problem

- **Theorem**

 The set A_{TM} is not recursive.

- **Proof.** The proof uses diagonalization.

 - Suppose A_{TM} is recursive and let H be a decider for A_{TM}.

 - The TM H accepts $\langle M, w \rangle$ if M accepts w, and rejects $\langle M, w \rangle$ if M does not accept w.

 - Let D be a TM that, for input $\langle M \rangle$, runs H on input $\langle M, \langle M \rangle \rangle$ and outputs the opposite of what H outputs.

 - Thus, D accepts $\langle M \rangle$ if M does not accept $\langle M \rangle$; and D rejects $\langle M \rangle$ if M accepts $\langle M \rangle$.

 - Consequently, D accepts $\langle D \rangle$ if it does not accept $\langle D \rangle$; and rejects $\langle D \rangle$ if it accepts $\langle D \rangle$.

 - This is a contradiction. We conclude that A_{TM} is not recursive.
Recursive Enumerability

- **Theorem**

 The class of recursive languages is a proper subset of the class of recursively enumerable languages.

- **Proof.** The set A_{TM} is recursively enumerable, but not recursive.

- **Theorem**

 A set is recursive if, and only if, both the set and its complement are recursively enumerable.

- **Theorem**

 The class of recursively enumerable languages is not closed under complement.

- **Proof.** The set A_{TM} is recursively enumerable, but not recursive. Consequently, its complement cannot be recursively enumerable.