Exercise 2.1.1

A deterministic finite automaton M accepts the empty string (i.e., $e \in L(M)$) if and only if its initial state is a final state.

Exercise 2.1.3

(a) The following state diagram represents an automaton that accepts those strings $w \in \{a, b\}^*$ in which each a is immediately preceded by $a\ b$.

(c) The following automaton accepts those strings $w \in \{a, b\}^*$ that contain neither aa nor bb as a substring.
Exercise 2.1.5

(a) (iii) The following 2-tape finite automaton accepts the set \{ (a^n b, a^n b^m) : n, m \geq 0 \}.

(a) (iv) The following 2-tape finite automaton accepts the set \{ (a^n b, a^m b^n) : n, m \geq 0 \}. (Not all transitions to a dead state are shown.)
Exercise 2.2.3

(a) A possible automaton for accepting the language $(ab)^*(ba)^* \cup aa^*$ is:

Exercise 2.3.3

Let $M_1 = (K_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (K_2, \Sigma, \delta_2, s_2, F_2)$ be deterministic finite automata. We construct a finite automaton M that accepts the intersection $L(M_1) \cap L(M_2)$ of the languages accepted by M_1 and M_2, respectively.

The automaton M is designed to simulate the operation of both M_1 and M_2. More specifically, its states are pairs, where the first component reflects M_1 and the second component M_2.

Formally, let K be $K_1 \times K_2$; let Δ be the set of all triples $((q_1, q_2), \sigma, (q'_1, q'_2))$ in $K \times \Sigma \times K$, such that $\delta_1(q_1, \sigma) = q'_1$ and $\delta_2(q_2, \sigma) = q'_2$; and let F be the set $F_1 \times F_2$. The finite automaton $M = (K, \Sigma, \Delta, (s_1, s_2), F)$ accepts $L(M_1) \cap L(M_2)$.
Exercise 2.3.6

Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton that accepts the language L.

(a) Let M' be the finite automaton $(K, \Sigma, \delta, s, F')$, where

$$ F' = \{ p \in K : (p, w) \vdash_M^* (f, e) \text{ for some } f \in F \text{ and } w \in \Sigma^* \}. $$

That is, M' differs from M only in that its final states are all those states from which a final state of M can be reached. The automaton M' accepts the set of prefixes of (strings in) L.

(b) Let M' be the finite automaton $(K, \Sigma, \Delta, s, F)$, where

$$ \Delta = \{ (p, \sigma, q) : \delta(p, \sigma) = q \} \cup \{ (s, e, q) : q \in K \text{ and } (s, w) \vdash_M^* (q, e) \text{ for some } w \in \Sigma^* \}. $$

Intuitively, M' works as M, but computations may begin at any state that can be reached from s by M. The automaton M' accepts the set of suffixes of (strings in) L.

(d,e) Let M' be the finite automaton $(K, \Sigma, \delta, s, F')$, where

$$ F' = \{ q : (q, w) \vdash_M^* (q', e) \text{ for some } w \in L' \text{ and some } q' \in F \}. $$

The automaton M' accepts the right quotient L/L' of L by L'.

Note that this definition is not effective. A suitable set F' exists, but it may not be possible to actually compute it. The difference between parts (d) and (e) is that for part (d) one can show how to construct F'.

(g) Let M' be the finite automaton $(K \cup \{ s_0 \}, \Sigma, \Delta, s_0, \{ s \})$, where s_0 is a new state not contained in K and

$$ \Delta = \{ (q, \sigma, p) : \delta(p, \sigma) = q \} \cup \{ (s_0, e, q) : q \in F \}. $$

Informally, we obtain M' from M by reversing all transitions and switching initial and final states. (We need to introduce a new initial state for M' as M may have more than one final state.) The automaton M' accepts the set of all reverse strings of L.

Exercise 2.4.5

(b) We use the Pumping Theorem to prove that the language $L = \{ ww : w \in \{ a, b \}^* \}$ is not regular.
The proof is by contradiction. Suppose \(L \) is regular. Then by the Pumping Theorem there exists an integer \(n \geq 1 \) such that every string \(ww \in L \), with \(|ww| \geq n \), can be written as \(ww = xyz \), where \(|xy| \leq n \), \(y \neq e \), and \(xy^iz \in L \), for each \(i \geq 0 \).

Take the string \(w = a^n b \). Since \(|ww| \geq n \), the string \(ww \) can be written as \(xyz \), for suitable strings \(x \), \(y \), and \(z \) as described above. Since \(|xy| \leq n \), the string \(xy \) consists of \(a \)'s only. Therefore \(xy^yz \) is a string of the form \(a^{k+i} b a^k b \), where \(m > 0 \). This string is clearly not of the form \(uu \), for any string \(u \), which contradicts that it is an element of \(L \). We conclude that \(L \) is not a regular language.

Exercise 2.4.7

Let \(M = (K, \Sigma, \delta, s, F) \) be a deterministic finite automaton and let \(n \) be the number of states of \(M \).

First observe that if a string \(w \) is accepted by \(M \) and \(n \leq |w| \), then, by the same arguments as in the proof of Theorem 2.4.1, \(w \) can be written as \(xyz \), for suitable strings \(x \), \(y \), and \(z \) as described above. Consequently, the automaton \(M \) accepts \(xy^iz \), for each \(i \geq 0 \).

An immediate consequence of this observation is that if \(M \) accepts any string of length greater than or equal to \(|K| \), then it accepts infinitely many strings.

On the other hand, if \(M \) accepts infinitely many strings, then it must accept some strings of length greater than or equal to \(|K| \). Let \(w \) be any shortest such string. By the above observation \(w \) can be written as \(xyz \), for suitable strings \(x \), \(y \), and \(z \), such that \(1 \leq |y| \leq |K| \) and \(M \) accepts \(xz \). Since the string \(xz \) is shorter than \(w \) we may infer that \(|xz| < |K| \) (for otherwise \(w = xyz \) could not be a shortest string of length greater than or equal to \(|K| \) that is accepted by \(M \)) and hence \(|K| \leq |w| < 2|K| \).

Exercise 2.4.8

(a) A subset of a regular language need not be regular. For example, the set \(\{a, b\}^* \) is regular, but its subset \(\{a^ib^i : i \geq 0\} \) is nonregular.

(c) If \(L \) is regular, so is its complement \(\Sigma^*-L \). Thus, the concatenation of the two sets, \(L(\Sigma^*-L) = \{xy : x \in L \text{ and } y \notin L\} \), is regular as well.
(d) The Pumping Theorem can be used to show that the set \(\{w : w = w^R\} \) is not regular.

(e) If \(L \) is regular, so is the set \(L^R \); see Problem 2.3.6 (g). Since \(w^R \in L \) if and only if \(w \in L^R \), we may infer that the set

\[
L \cap L^R = \{w : w \in L \text{ and } w \in L^R\} = \{w : w \in L \text{ and } w^R \in L\}
\]

is regular.

(g) Note that \(\Sigma^* = \{y : y \in \Sigma^*\} \) is a subset of \(\{xyx^R : x, y \in \Sigma^*\} \) (as the former set is obtained from the latter by taking \(x \) to be the empty string. This of course implies that the two sets are equal (and regular).