Set operations provide a convenient way of specifying (certain) formal languages.

Let Σ be an alphabet not containing the symbols $(,)$, \emptyset, $+$, and \ast. Regular expressions are strings built from these special symbols and the symbols in Σ.

Formally, the set of all regular expression over Σ is defined recursively:

1. The string \emptyset is a regular expression.
2. If $a \in \Sigma$, then the string a is a regular expression.
3. If α and β are regular expressions, so are

 (a) $(\alpha \beta)$,

 (b) $(\alpha + \beta)$, and

 (c) α^*.
4. Only strings constructed according to these rules are regular expressions.

For example, \emptyset, a, b, (ab), $(a + b)$, b^*, and $((a + b)^*(ab))$ are all regular expressions over $\{a, b\}.$
Language Operations

- Regular expressions specify languages, an interpretation that requires the following operations on languages.

- **Union**

 If L_1 and L_2 are languages, then $L_1 \cup L_2$ denotes the (set) union of the two languages.

- **Concatenation**

 If L_1 and L_2 are languages, then

 $$L_1L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}.$$

- **Kleene Star**

 If L is a language, then

 $$L^* = \{x_1 \cdots x_k : k \geq 0 \text{ and } x_1, \ldots, x_k \in L\}.$$
Every regular expression defines a language, as specified by the following (recursive) rules:

1. $L(\emptyset) = \emptyset$.
2. If $a \in \Sigma$, then $L(a) = \{a\}$.
3. If α and β are regular expressions, then
 (a) $L((\alpha\beta)) = L(\alpha)L(\beta)$,
 (b) $L((\alpha + \beta)) = L(\alpha) \cup L(\beta)$, and
 (c) $L(\alpha^*) = L(\alpha)^*$.

For example,

\[
\begin{align*}
L(a) &= \{a\} \\
L(b) &= \{b\} \\
L((ab)) &= \{ab\} \\
L((a+b)) &= \{a, b\} \\
L((b^*)^*) &= \{\epsilon, b, bb, bbb, \ldots\} \\
L(((a+b)^*(ab))) &= \{wab : w \in \{a, b\}^*\}
\end{align*}
\]
Regular Languages

- A language L is called regular if $L = L(\alpha)$ for some regular expression α.

- **Examples**
 - The set $L_1 = \{wa : w \in \{a, b\}^*\}$ is regular:
 \[L_1 = L((((a + b)^*a)) \]
 - The set L_2 of all strings over $\{a, b, c\}$ that do not contain the substring ac is regular:
 \[L_2 = L((c^*(a + (bc^*))^*)) \]
 - The set L_3 of all binary strings that do not contain the substring 111 is regular:
 \[L_3 = L(0^* + (((0^*(1+(11)))(00^*)(1+(11)))^*)0^*)) \]
Closure Properties

• The class of regular languages is evidently closed under union, concatenation, and Kleene star.

• **Theorem**

 The class of regular languages over the alphabet Σ is the closure of the set

 $$\{\{\sigma\} : \sigma \in \Sigma\} \cup \{\emptyset\}$$

 with respect to union, concatenation, and Kleene star.

• It is also not difficult to prove that any *finite* set of strings is regular.
Finite Automata

• Regular expressions are *language generators*, i.e., a formalism for *generating* elements of a formal language.

• Finite automata are the corresponding *language recognizers*.

• **Theorem**

 A language is generated by a regular expression if, and only if, it is recognized by a finite automaton.

• **Proof sketch.**

 – It can easily be seen that every regular language is accepted by a finite automaton: (i) the empty set and all singletons \(\{ \sigma \} \) are accepted by finite automata and (ii) the class of languages accepted by finite automata is closed under union, concatenation, and Kleene star.

 – Suppose a language \(L \) is accepted by a finite automaton \(M = (Q, \Sigma, \Delta, s, T') \). Let us assume that the states are \(q_1, \ldots, q_n \).

 – For all integers \(i \) and \(j \) with \(1 \leq i, j \leq n \), and all integers \(k \) with \(0 \leq k \leq n \) we denote by \(R(i, j, k) \) the set of all strings that drive \(M \) from state \(q_i \) to state \(q_j \) without passing through any *intermediate* state numbered \(k + 1 \) or higher.
The sets $R(i,j,k)$ can be defined recursively:

- $R(i,i,0) = \{ \epsilon \} \cup \{ a \in \Sigma : (q_i, a, q_i) \in \Delta \}$;
- $R(i,j,0) = \{ a \in \Sigma \cup \{ \epsilon \} : (q_i, a, q_j) \in \Delta \}$ if $i \neq j$;
- $R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1) \ast R(k,j,k-1)$ if $k > 0$.

- Evidently, all sets $R(i,j,k)$ are regular.

- Furthermore,

$$L(M) = \bigcup \{ R(i,j,n) : s = q_i \text{ and } q_j \in T \},$$

which shows that $L = L(M)$ is a regular set.

- Regular expressions for the sets $R(i,j,k)$ can be computed via so-called generalized finite automata, which are represented by state diagrams where the edges are labeled by regular expressions.
Pumping Lemma

- Regular expressions that do not contain the symbol \(* \) define finite languages.

- Regular expressions that define infinite languages must contain the symbol \(* \) (though some expressions with \(* \) define a finite language).

- The interpretation of \(* \) implies a certain repetitive structure in corresponding languages.

- In finite automata this repetition manifests itself in cycles in the transition diagram.

Theorem [Pumping Lemma]

If \(L \) is a regular language then there is an integer \(n_L \geq 1 \) (the “pumping length”) such that any string \(w \in L \) with \(|w| \geq n_L \) can be written as \(w = xyz \), where

1. \(y \neq \epsilon \),
2. \(|xy| \leq n_L \), and
3. \(xy^iz \in L \) for all \(i \) with \(i \geq 0 \).
• **Proof sketch.**

 – If L is regular there is a *deterministic* finite automaton M such that $L = L(M)$.

 – Let n_L, or simply p, be the number of states of M and $w \in L$ be a string of length p at least.

 – There is a sequence of transitions,
 \[
 (s_0, a_1 a_2 \ldots a_p) \vdash_M (s_1, a_2 \ldots a_p) \vdash_M \cdots \vdash_M (s_p, \epsilon)
 \]
 where $a_1 a_2 \ldots a_p$ is a prefix of w and s_0 is the start state of M.

 – Since M contains only p states, there are indices i and j such that $s_i = s_j$.

 – Let x be the string $a_1 \ldots a_i$, y be the string $w a_{i+1} \ldots a_j$, and z be a suffix of w such that $w = xyz$. Then
 1. $y \neq \epsilon$,
 2. $|xy| \leq n_L$, and
 3. M accepts all strings xy^kz, where $k \geq 0$.

 – This completes the proof.
Nonregular Languages

• The Pumping Lemma can be used to prove that a variety of languages are nonregular.

• Examples
 – The set \(\{a^i b^i : i \geq 0\} \) is not regular.
 – The set of all strings over \(\{a, b\}^* \) that have an equal number of \(a \)'s and \(b \)'s is not regular.
 – The set of all palindromes (over a given alphabet) is not regular.