CSE 220:
System Fundamentals I
Unit 9:
Digital Logic Design:
Combinational Building Blocks and Timing
Timing of Circuits

- Electricity does not flow through a circuit instantaneously.
- There are delays as signals travel down wires and through gates and combinational units.
- There is a delay between a change in the output to a gate and the subsequent change on the output.
- On the right we see a timing diagram.
- A transition from LOW to HIGH is called the rising edge.
Timing of Circuits

• Likewise, a transition from HIGH to LOW is a **falling edge**
• Delays are measured from the **50% point** of the input signal (A) to the 50% point of the output signal (Y)
• Such delays are ordinarily on the order of picoseconds (1 ps = 10^{-12} seconds) to nanoseconds (1 ns = 10^{-9} seconds)
Timing of Circuits

• Gates and combinational logic circuits have two kinds of delay: propagation delay and contamination delay
• Quite simply, the propagation (t_{pd}) delay is the maximum time from when an input changes until the output(s) reach their final value
• The contamination delay (t_{cd}) is the minimum time from when an input changes until any output starts to change its value

![Diagram of a simple circuit with time delays marked as t_{pd} and t_{cd}]
Critical Path Timing

• To determine the propagation delay of a circuit we must find its **critical path**, which is the path between the input values and the output value which has the longest delay

• To do so, assume that each input value was available at time 0

• For each gate which the input values propagate through, calculate the time when the output will be available

• For each internal gate, take the input value with the largest delay and add the gate delay to produce the output time

• Continue for all gates, until the output is reached
Critical Path Timing

• The critical path delay time (i.e., a circuit’s propagation delay) is the length of time for the output value to be generated
• The critical path is the set of gates which dictate this longest time
• If there is a tie between inputs for the longest time, both inputs are required in the critical path
• Assuming all gates in this figure have the same propagation delays, then the blue path is the critical path
Critical Path Timing

Critical Path

Short Path
Critical Path Timing

- Suppose $t_{pd_{AND}}$ and $t_{pd_{OR}}$ are the respective propagation delays of the AND and OR gates in this example.
- Then the circuit’s critical path is $t_{pd} = 2t_{pd_{AND}} + t_{pd_{OR}}$.
Example #1: Critical Paths

- Calculate the critical path delay where the gates have the propagation delays indicated in the table

<table>
<thead>
<tr>
<th>Gate</th>
<th>Propagation Delay (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT gate</td>
<td>30</td>
</tr>
<tr>
<td>3-input AND gate</td>
<td>80</td>
</tr>
<tr>
<td>4-input OR gate</td>
<td>90</td>
</tr>
</tbody>
</table>

critical path delay = 30 ps + 80 ps + 90 ps = 200 ps
Example #2: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND gate</td>
<td>3</td>
</tr>
<tr>
<td>OR gate</td>
<td>4</td>
</tr>
<tr>
<td>NAND gate</td>
<td>2</td>
</tr>
</tbody>
</table>
Example #2: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND gate</td>
<td>3</td>
</tr>
<tr>
<td>OR gate</td>
<td>4</td>
</tr>
<tr>
<td>NAND gate</td>
<td>2</td>
</tr>
</tbody>
</table>
Example #2: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND gate</td>
<td>3</td>
</tr>
<tr>
<td>OR gate</td>
<td>4</td>
</tr>
<tr>
<td>NAND gate</td>
<td>2</td>
</tr>
</tbody>
</table>
Example #3: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-input AND gate</td>
<td>4</td>
</tr>
<tr>
<td>3-input AND gate</td>
<td>2</td>
</tr>
<tr>
<td>OR gate</td>
<td>3</td>
</tr>
<tr>
<td>NAND gate</td>
<td>5</td>
</tr>
</tbody>
</table>
Example #3: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-input AND gate</td>
<td>4</td>
</tr>
<tr>
<td>3-input AND gate</td>
<td>2</td>
</tr>
<tr>
<td>OR gate</td>
<td>3</td>
</tr>
<tr>
<td>NAND gate</td>
<td>5</td>
</tr>
</tbody>
</table>

![Diagram of the circuit with timing delays]
Example #3: Critical Paths

- Highlight the critical path and calculate the critical path timing where the gates have the propagation delays indicated in the table.

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-input AND gate</td>
<td>4</td>
</tr>
<tr>
<td>3-input AND gate</td>
<td>2</td>
</tr>
<tr>
<td>OR gate</td>
<td>3</td>
</tr>
<tr>
<td>NAND gate</td>
<td>5</td>
</tr>
</tbody>
</table>
Multiplexers

- A **multiplexer** (mux for short) is a combinational unit with N data inputs and 1 output bit.
- It takes another $\lceil \log_2 N \rceil$ input bits which together form a **control signal** (specifically, a **select signal**) that selects which of the N inputs to connect to the output.
- For example, a 2:1 (“2-to-1”) multiplexer has two data inputs: a single select bit and a single output bit.
- When $S = 0$, the mux selects D_0. When $S = 1$, it selects D_1.

```
<table>
<thead>
<tr>
<th>S</th>
<th>D_1</th>
<th>D_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Alternative Mux Symbol

- You will also see muxes depicted in this manner, using a long oval shape. This is how they are drawn in the famous Hennessy & Patterson book on computer architecture.
- We will sometimes use this style in CSE 220 when drawing muxes, so be aware of that.
- The letters “mux” are optional
Multiplexer Implementation

\[Y = D_0 \overline{S} + D_1 S \]

- Thanks to abstraction, once we understand how the mux works internally, we can then treat it as a black box and use it in circuits
Wider Multiplexers

• To create multiplexers with more inputs we have a few options
• One is to simply implement a larger circuit from the sum-of-products equation
• Another is to combine multiple, smaller multiplexers together
• For example, a 4:1 multiplexer has 4 inputs and 2 select signals →
• An implementation based on the SOP form would suggest four 3-input AND gates (1 data bit, 2 select bits) and a single 4-way OR gate
Wider Multiplexers

- As you can imagine, as we increase the number of inputs to 8, 16, etc., the number of gates gets very large
Wider Multiplexers

- The other option is to connect smaller multiplexers together
- This is more scalable and simpler to work with
- However, if the target platform doesn’t have these smaller multiplexers available, we may have to use the other approach
- As with software designers, hardware designers have to contend with trade-offs and the availability of implementation technology (or lack thereof)
Muxes for Bus Selection

- Suppose we had two devices connected to a shared 32-bit bus
- We want to select one device to transmit data over the bus
- We can use 32 1-bit multiplexers
- The same select bit is used as the select bit for all 32 2:1 muxes
- The circuit on the right takes two 32-bit input data signals and sends only one of the 32-bit data inputs on the output (F)
- This will be really useful later when we see how to implement an ALU
Example #1: Mux as Lookup Table

- A mux can be used to implement a **lookup table**
- That is, we can use a mux to simply map every combination of the input signals to a desired output (0 or 1)
- The mux on the right shows how we could implement $A \text{ AND } B$ using a 4:1 mux
- The input values are in fact used as the control signals
- Connect *ground* (triangle) to those mux inputs that should be mapped to 0, and connect high voltage (flat bar) to those mux inputs that should be mapped to 1
Example #2: Mux as Lookup Table

• With some analysis and careful thought, we can use a multiplexer with 2^{N-1} inputs to implement an N-input logic function

• The idea is to use one of the literals (as well as 0s and 1s) to the mux data inputs

• The basic procedure is this: start with the truth table you want to implement (both the inputs and the output)

• Combine pairs of rows to eliminate the rightmost input variable by expressing the output in terms of either (a) this variable, or (b) 0, or (c) 1

• Let’s go back to the AND lookup table to see how this works
Example #2: Mux as Lookup Table

- Take a close look at the first two rows
- What is the relationship between the values of Y and B when A is 0?
- In a sense there isn’t one. Y is 0 regardless of the value of B (when A is 0)
- What about the bottom two rows? How are Y and B related?
- Actually, Y is just the value of B
- Use A as the select signal, connect 0 to input #0 and B to input #1
Example #3: Mux as Lookup Table

• Let’s try this process again with another function: XOR

\[Y = A \oplus B \]

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[A \]

\[\overline{B} \]

\[Y \]

\[0 \]

\[1 \]
Example #4: Mux as Lookup Table

- Suppose we want to implement this function:
 \[Y = A\bar{B} + \bar{B}\bar{C} + \bar{A}BC \]
- How would we implement this using an 8:1 mux?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example #5: Mux as Lookup Table

- \(Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC \)
- How would we implement this using a 4:1 mux?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Example #5: Mux as Lookup Table

\[Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC \]

• How would we implement this using a 4:1 mux?
Example #6: Mux as Lookup Table

- $Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$
- How would we implement this using only 2:1 muxes?
- First we need to choose two variables that will be used as selector bits and connect muxes in series.
- Let's take A again as the first selector bit and then B. You can use whichever ones you want, really, but then you would have to rewrite the truth table to reorder the var’s.
- For the A mux, the expression for the 0 input is $\overline{B}\overline{C} + BC$
- For the 1 input it is $\overline{B}\overline{C} + \overline{B}C = \overline{B}$
Example #6: Mux as Lookup Table

- We need to replace the expression on the mux’s 1 input with a 2:1 multiplexer

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[B'C' + BC \]
Example #6: Mux as Lookup Table

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>$\overline{B} \overline{C} + BC$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

When $B = 0$, output is C'
When $B = 1$, output is C
Aside: Minimal Complete Sets

• A set of gates is called a **complete** or **universal set** if you can implement *any* logical function using only the types of gates in the set
 • You can use as many gates as you like
• A **minimal complete set** is a complete set with no redundant elements
• For example, \{AND, OR, NOT\} is a (non-minimal) complete set because any other gate can be implemented using them
• \{AND, NOT\} is a minimal complete set. By De Morgan’s law we can implement OR using just AND and NOT gates
• \{MUX\} is a minimal complete set
• \{NAND\} and \{NOR\} are also minimal complete sets
Aside: Minimal Complete Sets

• For example, here is how AND, NOT and OR gates can be implemented using only NAND gates:

AND gate

NOT gate

OR gate
Implementing Circuits with Muxes

• The truth table-based way is not the only way to build a circuit using multiplexers
• An alternate approach relies on Boolean algebra and is a more general way of proceeding
• First, we need an expression written in SOP form or something close to it. If the expression is not in SOP form, we might rewrite it using rules of Boolean algebra.
• Then, we choose which input variable(s) will be used as input(s) to the multiplexer(s). Pick variables that appear frequently and in both complemented and true forms.
• Next, factor out these variables from all terms
• The remaining terms are then inputted into the mux at the corresponding inputs
Example #1: Mux w/ Algebra

• Implement the function $F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC$ using only 2:1 muxes. Note: not in SOP form!
Example #1: Mux w/ Algebra
Example #1: Mux w/ Algebra

• Implement the function \(F = ABC + \overline{A}BC + \overline{A}\overline{B}C + BC \) using only 2:1 muxes. Note: not in SOP form!
• We factor out only one variable at a time because a 2-input mux has only 1 selector bit
 \[
 F = ABC + \overline{A}BC + \overline{A}\overline{B}C + (A + \overline{A})BC
 \]
 \[
 F = ABC + \overline{A}BC + \overline{A}\overline{B}C + ABC + \overline{A}BC
 \]
• Let’s choose \(A \) as the first selector bit
 \[
 F = A(BC + BC) + \overline{A}(BC + \overline{B}C + BC)
 \]
• Simplify the inner expressions
• Note: \(BC + BC = B \) and \(BC + \overline{B}C + BC = \overline{C} + BC \)
 \[
 F = A(B) + \overline{A}(\overline{C} + BC)
 \]
 \[
 F = A(B) + \overline{A}(\overline{C} + B)
 \]
Example #1: Mux w/ Algebra

- $F = A(B) + \bar{A}(\bar{C} + B)$
- So B is attached to the 1 input for the A mux and $\bar{C} + B$ is attached to the 0 input for the A mux
- But, we have only 2-input muxes, so we need to apply the procedure again to implement $\bar{C} + B$
- We will attach B to the 1 input for the C mux and 1 to the 0 input for the C mux
Example #2: Mux w/ Algebra

• Implement the function \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC \) using only 2:1 muxes. Use \(C \) and then \(B \) as the selector bits.

• Often we can avoid writing out the complete POS form, which is unwieldy for functions of four or more variables!

• Pick variables that occur most frequently in the expression
Example #2: Mux w/ Algebra

• Implement the function $F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC$ using only 2:1 muxes. Use C and then B as the selector bits.

• Often we can avoid writing out the complete POS form, which is unwieldy for functions of four or more variables!

• Pick variables that occur most frequently in the expression

• $F = C(B) + \bar{C}(AB + \bar{A}B + \bar{A}\bar{B})$

• $F = C(B) + \bar{C}(\bar{A} + AB)$

• $F = C(B) + \bar{C}(\bar{A} + B)$
Example #3: Mux w/ Algebra

• Implement the function $G = \overline{A}C + BC + AB\overline{C}$ using only 2:1 muxes. Use C and then B as the selector bits.
Example #3: Mux w/ Algebra

• Implement the function $G = \bar{A}C + BC + AB\bar{C}$ using only 2:1 muxes. Use C and then B as the selector bits.

 $G = C(\bar{A} + B) + \bar{C}(AB)$

 $G = C(B1 + \bar{B}\bar{A}) + \bar{C}(BA + \bar{B}0)$

• Using the “no name” identity twice here
Example #4: Mux w/ Algebra

• Implement the function $F = ABC + \overline{A}BC + \overline{A}\overline{B}C + BC$ using only 4:1 muxes

• $F = ABC + \overline{A}BC + \overline{A}\overline{B}C + ABC + \overline{A}BC$
Example #4: Mux w/ Algebra
Example #4: Mux w/ Algebra

• Implement the function \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC \) using only 4:1 muxes
• \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + ABC + \bar{A}BC \)
• We need to factor out two variables because a 4-input mux has two selector bits
• We need four 2-variable minterms. We will have this if we choose \(A \) and \(B \).
• But we are missing \(A\bar{B} \) from \(F \). So we add it: \(A\bar{B}0 \)
• \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + ABC + \bar{A}BC + A\bar{B}0 \)
• \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + ABC + \bar{A}BC + A\bar{B}0 \)
• \(F = AB(C + \bar{C}) + \bar{A}B(C + \bar{C}) + \bar{A}\bar{B}\bar{C} + A\bar{B}0 \)
• \(F = AB1 + \bar{A}B1 + \bar{A}\bar{B}\bar{C} + A\bar{B}0 \)
Example #4: Mux w/ Algebra

- \(F = AB1 + \bar{A}B1 + \bar{A}\bar{B}\bar{C} + A\bar{B}0 \)
Example #5: Mux w/ Algebra

• Implement the function $F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC$
 using only 4:1 muxes

• $F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + ABC + \bar{A}BC$

• Once again we need to factor out two variables because a 4-input mux has two selector bits

• We need four 2-variable minterms. This time let’s pick B and C as the selector bits.
Example #5: Mux w/ Algebra
Example #5: Mux w/ Algebra

- Implement the function $F = ABC + \overline{A}BC + \overline{A}\overline{B}C + BC$ using only 4:1 muxes

$F = ABC + \overline{A}BC + \overline{A}\overline{B}C + ABC + \overline{A}BC$

- Once again we need to factor out two variables because a 4-input mux has two selector bits

- We need four 2-variable minterms. This time let’s pick B and C as the selector bits.

- But we are missing $\overline{B}C$ from F. So we add it: $\overline{B}C0$

$F = ABC + \overline{A}BC + \overline{A}\overline{B}C + ABC + \overline{A}BC + \overline{B}C0$

$F = ABC + \overline{A}BC + \overline{A}\overline{B}C + ABC + \overline{A}BC + \overline{B}C0$

$F = B\overline{C}(A + \overline{A}) + BC(A + \overline{A}) + \overline{A}\overline{B}C + \overline{B}C0$

$F = B\overline{C}1 + BC1 + \overline{A}\overline{B}C + \overline{B}C0$
Example #5: Mux w/ Algebra

\[F = B\bar{C}1 + BC1 + \bar{A}\bar{B}\bar{C} + \bar{B}C0 \]
Tips on using Muxes

• Selecting different variables as the selector bits will result in different networks and possibly different numbers of required gates

• By selecting a variable which appears in most terms first and also variables which appear in a roughly equal number of times in complemented and uncomplemented forms you will obtain a smaller implementation and possibly a shorter critical path

• If only the uncomplemented value of an input variable is available (e.g., A but not \bar{A}), then the input signal must be split and an inverter be used to generate the complemented variable
Decoders

- A decoder is a combinational unit with N inputs and 2^N outputs. Only one of the outputs is asserted (i.e., has a value 1) at a given point in time. All other outputs are 0.
- In general, a circuit can provide an N-bit “code” to an $N:2^N$ decoder to select one of the 2^N outputs.
- So for example, a decoder could be used to select from among a set of 2^N devices.

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Decoder Implementation

• How can we implement the logic of a decoder?
• Consider this: the particular combination of input signals determines which output is 1
• For instance, if \(A_1 = 0 \) and \(A_0 = 1 \), that indicates the circuit is selecting output line #1. So if \(\overline{A}_1A_0 = 1 \), we select #1.
• So we need to combine the inputs with an AND gate to determine which output line to select
• In other words, each output is a minterm
2:4 Decoder Implementation

Compare with multiplexer:

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3:8 Decoder

\[A_2A_1A_0 \rightarrow \text{3:8 Decoder} \]

\(O_0 \)	\(A_2'A_1'A_0' \)
\(O_1 \)	\(A_2'A_1'A_0 \)
\(O_2 \)	\(A_2'A_1A_0' \)
\(O_3 \)	\(A_2'A_1A_0 \)
\(O_4 \)	\(A_2A_1'A_0' \)
\(O_5 \)	\(A_2A_1'A_0 \)
\(O_6 \)	\(A_2A_1A_0' \)
\(O_7 \)	\(A_2A_1A_0 \)
3:8 Decoder

<table>
<thead>
<tr>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>O_0</th>
<th>O_1</th>
<th>O_2</th>
<th>O_3</th>
<th>O_4</th>
<th>O_5</th>
<th>O_6</th>
<th>O_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Decoder Implementation

- Decoders provide a very convenient means of implementing Boolean functions written in SOP form.
- Consider XNOR: \(Y = \overline{A \oplus B} = \overline{A} \overline{B} + AB \)
- The idea is to combine the outputs of the decoder that correspond to the minterms of this equation with an OR gate.

- An \(N \)-input function with \(M \) 1s in the truth table can be built with an \(N: 2^N \) decoder and an \(M \)-input OR gate.
Multiplexer from Decoder

• We can even implement a multiplexer using a decoder
Use 2:4 Decoder for 3-var Function

- To implement: $F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC$
- Suppose we use a 2:4 decoder with A and B as inputs

2:4 Decoder

$O_0 = A'B'$
$O_1 = A'B$
$O_2 = AB'$
$O_3 = AB$
Use 2:4 Decoder for 3-var Function

• To implement: \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + BC \)

• Suppose we use a 2:4 decoder with \(A \) and \(B \) as inputs

• \(F = AB\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C} + ABC + \bar{A}BC \)

• \(F = O_3\bar{C} + O_1\bar{C} + O_0\bar{C} + O_3C + O_1C \)

• \(F = O_3 + O_1 + O_0\bar{C} \)
Supplementary Material
Encoders

- An encoder performs the opposite function of a decoder
- It has 2^N inputs and N outputs
- For a **simple encoder**, whichever (single) line is selected on the input (has a signal of 1), the corresponding binary number is presented on the output
- For unspecified input combinations (e.g., 0011, 0110), the outputs are don’t cares
- As its name suggests, an encoder is used to encode data – change it from one format to another

<table>
<thead>
<tr>
<th>I_3</th>
<th>I_2</th>
<th>I_1</th>
<th>I_0</th>
<th>O_1</th>
<th>O_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Priority Encoders

• Suppose we relax the constraint that only one input line is selected

• Which output should be selected in that case?

• For a priority encoder, the input line with the highest priority will be selected

• A priority encoder has a variety of applications

• Consider several computer components that wish to use the system bus at the same time. A priority encoder will pick the device with highest priority.

\[
\begin{array}{cccccc}
I_3 & I_2 & I_1 & I_0 & O_1 & O_0 \\
0 & 0 & 0 & 0 & X & X \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & X & 0 & 1 \\
0 & 1 & X & X & 1 & 0 \\
1 & X & X & X & 1 & 1 \\
\end{array}
\]
Example: 3-bit SM to 1’s Comp.

- Design a circuit that converts from 3-bit sign/magnitude to 3-bit 1’s complement

<table>
<thead>
<tr>
<th>Base 10 Value</th>
<th>Sign/magnitude Representation (X)</th>
<th>1’s Complement Representation (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>111 (7)</td>
<td>100 (4)</td>
</tr>
<tr>
<td>-2</td>
<td>110 (6)</td>
<td>101 (5)</td>
</tr>
<tr>
<td>-1</td>
<td>101 (5)</td>
<td>110 (6)</td>
</tr>
<tr>
<td>-0</td>
<td>100 (4)</td>
<td>111 (7)</td>
</tr>
<tr>
<td>0</td>
<td>000 (0)</td>
<td>000 (0)</td>
</tr>
<tr>
<td>1</td>
<td>001 (1)</td>
<td>001 (1)</td>
</tr>
<tr>
<td>2</td>
<td>010 (2)</td>
<td>010 (2)</td>
</tr>
<tr>
<td>3</td>
<td>011 (3)</td>
<td>011 (3)</td>
</tr>
</tbody>
</table>
Example: 3-bit SM to 1’s Comp.
Example: 3-bit SM to 1’s Comp.

- **Decoder**: $X_2X_1X_0 \rightarrow 3:8$ Decoder
 - Outputs: $0, 1, 2, 3, 4, 5, 6, 7$

- **Encoder**: $0, 1, 2, 3, 4, 5, 6, 7 \rightarrow Y_2Y_1Y_0$

- **Connection**: $X_2X_1X_0$ to $3:8$ Decoder, $3:8$ Decoder to $8:3$ Encoder, $8:3$ Encoder to $Y_2Y_1Y_0$
Demultiplexers

- A demultiplexer (demux) performs the opposite function of a multiplexer.
- It connects or routes its single input to one of 2^N outputs depending on the value of the selector/control bits.
- If the binary value of the control bits is k, then the input is connected to the k^{th} output.
- If the input value is always 1, then a demux behaves exactly like a decoder.
- Basically, a demux is a decoder plus some extra AND gates. Control bits select exactly which AND gate to let the input value through to.
- Used, for example, to send an incoming communications signal to the correct recipient on a network.
Demultiplexers

\[
\begin{array}{c|c|c|c|c|c|c|c}
S_1 & S_0 & I_0 & F_3 & F_2 & F_1 & F_0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]