Relational Normalization Theory

Chapter 6

Limitations of E-R Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design
Redundancy

- Dependencies between attributes cause redundancy
 - Ex. All addresses in the same town have the same zip code

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Town</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Joe</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>4321</td>
<td>Mary</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>5454</td>
<td>Tom</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
</tbody>
</table>

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
 - A person entity with multiple hobbies yields multiple rows in table Person
 - Hence, the association between Name and Address for the same person is stored redundantly
 - SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
 - The relation Person can’t describe people without hobbies
Example

ER Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>{biking, hiking}</td>
</tr>
</tbody>
</table>

Relational Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>

Anomalies

- Redundancy leads to anomalies:
 - **Update anomaly**: A change in Address must be made in several places
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? **No**, since Hobby is part of key
 - Delete the entire row? **No**, since we lose other information in the row
 - **Insertion anomaly**: Hobby value must be supplied for any inserted row since Hobby is part of key
Decomposition

- **Solution:** use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)
Functional Dependencies

- **Definition**: A *functional dependency* (FD) on a relation schema R is a constraint $X \rightarrow Y$, where X and Y are subsets of attributes of R.

- **Definition**: An FD $X \rightarrow Y$ is *satisfied* in an instance r of R if for every pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
 - Key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - $SSN \rightarrow SSN, Name, Address$

Functional Dependencies

- $Address \rightarrow ZipCode$
 - Stony Brook’s ZIP is 11733
- $ArtistName \rightarrow BirthYear$
 - Picasso was born in 1881
- $Autobrand \rightarrow Manufacturer, Engine type$
 - Pontiac is built by General Motors with gasoline engine
- $Author, Title \rightarrow PublDate$
 - Shakespeare’s Hamlet published in 1600
Functional Dependency - Example

- Consider a brokerage firm that allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
 - HasAccount (AcctNum, ClientId, OfficeId)
 - keys are (ClientId, OfficeId), (AcctNum, ClientId)
 - Client, OfficeId → AcctNum
 - AcctNum → OfficeId
 - Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- **Definition:** If \(F \) is a set of FDs on schema \(R \) and \(f \) is another FD on \(R \), then \(F \) entails \(f \) if every instance \(r \) of \(R \) that satisfies every FD in \(F \) also satisfies \(f \)
 - Ex: \(F = \{ A \rightarrow B, B \rightarrow C \} \) and \(f \) is \(A \rightarrow C \)
 - If Town → Zip and Zip → AreaCode then Town → AreaCode

- **Definition:** The closure of \(F \), denoted \(F^+ \), is the set of all FDs entailed by \(F \)

- **Definition:** \(F \) and \(G \) are equivalent if \(F \) entails \(G \) and \(G \) entails \(F \)
Entailment (cont’d)

- Satisfaction, entailment, and equivalence are *semantic* concepts – defined in terms of the actual relations in the “real world.”
 - They define *what these notions are*, not how to compute them
- How to check if F entails f or if F and G are equivalent?
 - Apply the respective definitions for all possible relations?
 - *Bad idea*: might be infinite number for infinite domains
 - Even for finite domains, we have to look at relations of all arities
 - **Solution**: find algorithmic, *syntactic* ways to compute these notions
 - *Important*: The syntactic solution must be “correct” with respect to the semantic definitions
 - Correctness has two aspects: *soundness* and *completeness* – see later

Armstrong’s Axioms for FDs

- This is the *syntactic* way of computing/testing the various properties of FDs

 - **Reflexivity**: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
 - *Name, Address* \rightarrow *Name*
 - **Augmentation**: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - If *Town* \rightarrow *Zip* then *Town, Name* \rightarrow *Zip, Name*
 - **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
Soundness

• Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.

• Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

$$
X \rightarrow XY \quad \text{Augmentation by } X
$$

$$
YX \rightarrow YZ \quad \text{Augmentation by } Y
$$

$$
X \rightarrow YZ \quad \text{Transitivity}
$$

– Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied

• Therefore, we have derived the union rule for FDs: we can take the union of the RHSs of FDs that have the same LHS

Completeness

• Axioms are complete: If F entails f, then f can be derived from F using the axioms

• A consequence of completeness is the following (naïve) algorithm to determining if F entails f:

 – Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD’s is finite so this can be done) and see if f is in F^+
Correctness

- The notions of soundness and completeness link the syntax (Armstrong’s axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is “correct” with respect to the definitions

Generating F^+

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of F^+
Attribute Closure

• Calculating attribute closure leads to a more efficient way of checking entailment

• The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \rightarrow A$

 $X^+_{F_1}$ is not necessarily the same as $X^+_{F_2}$ if $F_1 \neq F_2$

• Attribute closure and entailment:

 – Algorithm: Given a set of FDs, F, then $X \rightarrow Y$ if and only if $X^+_F \supseteq Y$

Example - Computing Attribute Closure

<table>
<thead>
<tr>
<th>F: $AB \rightarrow C$</th>
<th>$A \rightarrow D$</th>
<th>$D \rightarrow E$</th>
<th>$AC \rightarrow B$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>X_F^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>${A, D, E}$</td>
</tr>
<tr>
<td>AB</td>
<td>${A, B, C, D, E}$ (Hence AB is a key)</td>
</tr>
<tr>
<td>B</td>
<td>${B}$</td>
</tr>
<tr>
<td>D</td>
<td>${D, E}$</td>
</tr>
</tbody>
</table>

Is $AB \rightarrow E$ entailed by F? Yes
Is $D \rightarrow C$ entailed by F? No

Result: X_F^+ allows us to determine FDs of the form $X \rightarrow Y$ entailed by F
Computation of Attribute Closure \(X^+_F \)

\[
\text{closure} := X; \quad \text{// since } X \subseteq X^+_F
\]

\textbf{repeat}

\textit{old} := \text{closure};

\textbf{if} there is an FD \(Z \rightarrow V \) in \(F \) such that

\(Z \subseteq \text{closure and } V \notin \text{closure} \)

\textbf{then} \(\text{closure} := \text{closure} \cup V \)

\textbf{until} \(\text{old} = \text{closure} \)

- If \(T \subseteq \text{closure} \) then \(X \rightarrow T \) is entailed by \(F \)

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of \(AB \) with respect to the set of FDs:

- \(AB \rightarrow C \) \((a) \)
- \(A \rightarrow D \) \((b) \)
- \(D \rightarrow E \) \((c) \)
- \(AC \rightarrow B \) \((d) \)

Solution:

Initially \(\text{closure} = \{AB\} \)

Using (a) \(\text{closure} = \{ABC\} \)

Using (b) \(\text{closure} = \{ABCD\} \)

Using (c) \(\text{closure} = \{ABCDE\} \)
Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF) – a research lab accident; has no practical or theoretical value – won’t discuss
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)

BCNF

- **Definition:** A relation schema R is in BCNF if for every FD $X \rightarrow Y$ associated with R either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of R
- **Example:** Person1(SSN, Name, Address)
 - The only FD is $SSN \rightarrow Name, Address$
 - Since SSN is a key, Person1 is in BCNF
(non) BCNF Examples

- **Person** \((SSN, Name, Address, Hobby)\)
 - The FD \(SSN \rightarrow Name, Address\) does **not** satisfy requirements of BCNF
 - since the key is \((SSN, Hobby)\)
- **HasAccount** \((AcctNum, ClientId, OfficeId)\)
 - The FD \(AcctNum \rightarrow OfficeId\) does **not** satisfy BCNF requirements
 - since keys are \((ClientId, OfficeId)\) and \((AcctNum, ClientId)\); **not** \(AcctNum\).

Redundancy

- Suppose \(R\) has a FD \(A \rightarrow B\), and \(A\) is **not** a superkey. If an instance has 2 rows with same value in \(A\), they must also have same value in \(B\) (\(\Rightarrow\) redundancy, if the \(A\)-value repeats twice)

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>stamps</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>coins</td>
</tr>
</tbody>
</table>

- If \(A\) is a superkey, there cannot be two rows with same value of \(A\)
 - Hence, BCNF eliminates redundancy
Third Normal Form

- A relational schema R is in 3NF if for every FD $X \rightarrow Y$ associated with R either:
 - $Y \subseteq X$ (i.e., the FD is trivial); or
 - X is a superkey of R; or
 - Every $A \in Y$ is part of some key of R
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

3NF Example

- **HasAccount** ($AcctNum$, $ClientId$, $OfficeId$)
 - $ClientId$, $OfficeId \rightarrow AcctNum$
 - OK since LHS contains a key
 - $AcctNum \rightarrow OfficeId$
 - OK since RHS is part of a key
- **HasAccount** is in 3NF but it might still contain redundant information due to $AcctNum \rightarrow OfficeId$
 (which is not allowed by BCNF)
3NF (Non) Example

- Person \((SSN, \text{Name}, \text{Address}, \text{Hobby})\)
 - \((SSN, \text{Hobby})\) is the only key.
 - \(SSN \rightarrow \text{Name}\) violates 3NF conditions since \text{Name}\ is not part of a key and \text{SSN}\ is not a superkey.

Decompositions

- **Goal**: Eliminate redundancy by decomposing a relation into several relations in a higher normal form.
- Decomposition must be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition.
 - We will see why.
Decomposition

• Schema $R = (R, F)$
 – R is a set of attributes
 – F is a set of functional dependencies over R
 • Each key is described by a FD
• The decomposition of schema R is a collection of schemas $R_i = (R_i, F_i)$ where
 – $R = \bigcup_i R_i$ for all i (no new attributes)
 – F_i is a set of functional dependencies involving only attributes of R_i
 – F entails F_i for all i (no new FDs)
• The decomposition of an instance, r, of R is a set of relations $r_i = \pi_{R_i}(r)$ for all i

Example Decomposition

 Schema (R, F) where
 $R = \{SSN, Name, Address, Hobby\}$
 $F = \{SSN \rightarrow Name, Address\}$
can be decomposed into
 $R_1 = \{SSN, Name, Address\}$
 $F_1 = \{SSN \rightarrow Name, Address\}$
and
 $R_2 = \{SSN, Hobby\}$
 $F_2 = \{\}$
Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition \((R_1, \ldots, R_n)\) of a schema, \(R\), is lossless if every valid instance, \(r\), of \(R\) can be reconstructed from its components:
 \[r = r_1 \Join r_2 \Join \ldots \Join r_n \]
- where each \(r_i = \pi_{R_i}(r) \)

Lossy Decomposition

The following is always the case (Think why?):

\[r \subseteq r_1 \Join r_2 \Join \ldots \Join r_n \]

But the following is not always true:

\[r \supseteq r_1 \Join r_2 \Join \ldots \Join r_n \]

Example:

\[
\begin{array}{ccc}
\text{SSN} & \text{Name} & \text{Address} \\
1111 & Joe & 1 Pine \\
2222 & Alice & 2 Oak \\
3333 & Alice & 3 Pine \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{SSN} & \text{Name} & \text{Address} \\
1111 & Joe & 1 Pine \\
2222 & Alice & 2 Oak \\
3333 & Alice & 3 Pine \\
\end{array}
\]

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) *are in the join, but not in the original*
Lossy Decompositions:
What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
 – Why do we say that the decomposition was lossy?

• What was lost is information:
 – That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 – That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

• A (binary) decomposition of $R = (R, F)$ into $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$ is lossless if and only if:
 – either the FD
 • $(R_1 \cap R_2) \rightarrow R_1$ is in F^+
 – or the FD
 • $(R_1 \cap R_2) \rightarrow R_2$ is in F^+
Example

Schema \((R, F)\) where
\[
R = \{\text{SSN, Name, Address, Hobby}\}
\]
\[
F = \{\text{SSN} \rightarrow \text{Name, Address}\}
\]
can be decomposed into
\[
R_1 = \{\text{SSN, Name, Address}\}
\]
\[
F_1 = \{\text{SSN} \rightarrow \text{Name, Address}\}
\]
and
\[
R_2 = \{\text{SSN, Hobby}\}
\]
\[
F_2 = \{}
\]
Since \(R_1 \cap R_2 = \text{SSN}\) and \(\text{SSN} \rightarrow R_1\) the
decomposition is lossless.

Intuition Behind the Test for Losslessness

- Suppose \(R_1 \cap R_2 \rightarrow R_2\). Then a row of \(r_1\)
can combine with exactly one row of \(r_2\) in
the natural join (since in \(r_2\) a particular set
of values for the attributes in \(R_1 \cap R_2\)
defines a unique row).
Proof of Lossless Condition

- $r \subseteq r_1 \bowtie r_2$ — this is true for any decomposition
- $r \supseteq r_1 \bowtie r_2$

If $R_1 \cap R_2 \rightarrow R_2$ then
\[\text{card} \ (r_1 \bowtie r_2) = \text{card} \ (r_1)\]
(since each row of r_1 joins with exactly one row of r_2)

But $\text{card} \ (r) \geq \text{card} \ (r_1)$ (since r_1 is a projection of r)
and therefore $\text{card} \ (r) \geq \text{card} \ (r_1 \bowtie r_2)$

Hence $r = r_1 \bowtie r_2$

Dependency Preservation

- Consider a decomposition of $R = (R, F)$ into $R_1 = (R_1, F_1)$ and $R_2 = (R_2, F_2)$
 - An FD $X \rightarrow Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$
 - An FD, $f \in F^+$ may be in neither F_1, nor F_2, nor even $(F_1 \cup F_2)^+$
 - Checking that f is true in r_1 or r_2 is (relatively) easy
 - Checking f in $r_1 \bowtie r_2$ is harder — requires a join
 - Ideally: want to check FDs locally, in r_1 and r_2, and have a guarantee that every $f \in F$ holds in $r_1 \bowtie r_2$
- The decomposition is dependency preserving iff the sets F and $F_1 \cup F_2$ are equivalent: $F^+ = (F_1 \cup F_2)^+$
 - Then checking all FDs in F, as r_1 and r_2 are updated, can be done by checking F_1 in r_1 and F_2 in r_2
Dependency Preservation

• If \(f \) is an FD in \(F \), but \(f \) is not in \(F_1 \cup F_2 \), there are two possibilities:

 \(- f \in (F_1 \cup F_2)^+ \)

 • If the constraints in \(F_1 \) and \(F_2 \) are maintained, \(f \) will be maintained automatically.

 \(- f \notin (F_1 \cup F_2)^+ \)

 • \(f \) can be checked only by first taking the join of \(r_1 \) and \(r_2 \). This is costly.

Example

Schema \((R, F)\) where
\[
R = \{ \text{SSN, Name, Address, Hobby} \}
\]
\[
F = \{ \text{SSN} \rightarrow \text{Name, Address} \}
\]
can be decomposed into
\[
R_1 = \{ \text{SSN, Name, Address} \}
\]
\[
F_1 = \{ \text{SSN} \rightarrow \text{Name, Address} \}
\]
and
\[
R_2 = \{ \text{SSN, Hobby} \}
\]
\[
F_2 = \{ \} \]

Since \(F = F_1 \cup F_2 \) the decomposition is dependency preserving
Example

- Schema: \((ABC; F) \), \(F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
 - \((AC, F_1), \ F_1 = \{A \rightarrow C\}\)
 - Note: \(A \rightarrow C \notin F\), but in \(F^+\)
 - \((BC, F_2), \ F_2 = \{B \rightarrow C, C \rightarrow B\}\)

- \(A \rightarrow B \notin (F_1 \cup F_2)\), **but** \(A \rightarrow B \in (F_1 \cup F_2)^+\).
 - So \(F^+ = (F_1 \cup F_2)^+\) and thus the decompositions is still dependency preserving

Example

- **HasAccount** *(AcctNum, ClientId, OfficeId)*
 - \(f_1: AcctNum \rightarrow OfficeId\)
 - \(f_2: ClientId, OfficeId \rightarrow AcctNum\)
- Decomposition:
 - \(R_1 = (AcctNum, OfficeId; \ {AcctNum \rightarrow OfficeId})\)
 - \(R_2 = (AcctNum, ClientId; \ {}))\)
- Decomposition is lossless:
 - \(R_1 \cap R_2 = \{AcctNum\}\) and \(AcctNum \rightarrow OfficeId\)
- In BCNF
- Not dependency preserving: \(f_2 \notin (F_1 \cup F_2)^+\)
- **HasAccount** *does not* have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!
BCNF Decomposition Algorithm

Input: \(R = (R; F) \)

\(Decomp := R \)

\textbf{while} there is \(S = (S; F') \in Decomp \) and \(S \) not in BCNF \textbf{do}

\hspace{1em} Find \(X \rightarrow Y \in F' \) that violates BCNF \hspace{1em} // \(X \) isn’t a superkey in \(S \)

\hspace{1em} Replace \(S \) in \(Decomp \) with \(S_1 = (XY; F_1), \ S_2 = (S - (Y - X); F_2) \)

\hspace{1em} // \(F_1 = \) all FDs of \(F' \) involving only attributes of \(XY \)

\hspace{1em} // \(F_2 = \) all FDs of \(F' \) involving only attributes of \(S - (Y - X) \)

\textbf{end}

\textbf{return} \(Decomp \)

Simple Example

- **HasAccount**:

 \[(ClientId, OfficeId, AcctNum) \]

 \(ClientId,OfficeId \rightarrow AcctNum \)

 \(AcctNum \rightarrow OfficeId \)

- **Decompose using** \(AcctNum \rightarrow OfficeId \):

 \[(OfficeId, AcctNum) \]

 \(BCNF: AcctNum \) is key

 \(FD: AcctNum \rightarrow OfficeId \)

 \(BCNF \) (only trivial FDs)
A Larger Example

Given: \(R = (R; F) \) where \(R = ABCDEGHK \) and

\(F = \{ ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE \} \)

step 1: Find a FD that violates BCNF

Not \(ABH \rightarrow C \) since \((ABH)^+ \) includes all attributes

(\(BH \) is a key)

\(A \rightarrow DE \) violates BCNF since \(A \) is not a superkey \((A^+ = ADE) \)

step 2: Split \(R \) into:

\(R_1 = (ADE, F_1 = \{ A \rightarrow DE \}) \)

\(R_2 = (ABCGHK; F_1 = \{ ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G \}) \)

Note 1: \(R_1 \) is in BCNF

Note 2: Decomposition is *lossless* since \(A \) is a key of \(R_1 \).

Note 3: FDs \(K \rightarrow D \) and \(BH \rightarrow E \) are not in \(F_1 \) or \(F_2 \). But both can be derived from \(F_1 \cup F_2 \)

(E.g., \(K \rightarrow A \) and \(A \rightarrow D \) implies \(K \rightarrow D \))

Hence, decomposition is *dependency preserving.*

Example (con’t)

Given: \(R_2 = (ABCGHK; \{ ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G \}) \)

step 1: Find a FD that violates BCNF.

Not \(ABH \rightarrow C \) or \(BGH \rightarrow K \), since \(BH \) is a key of \(R_2 \)

\(K \rightarrow AH \) violates BCNF since \(K \) is not a superkey \((K^+ = AH) \)

step 2: Split \(R_2 \) into:

\(R_{21} = (KAH, F_{21} = \{ K \rightarrow AH \}) \)

\(R_{22} = (BCGK; F_{22} = \{ \}) \)

Note 1: Both \(R_{21} \) and \(R_{22} \) are in BCNF.

Note 2: The decomposition is *lossless* (since \(K \) is a key of \(R_{21} \))

Note 3: FDs \(ABH \rightarrow C, BGH \rightarrow K, BH \rightarrow G \) are not in \(F_{21} \) or \(F_{22} \), and they can’t be derived from \(F_1 \cup F_{21} \cup F_{22} \).

Hence the decomposition is *not* dependency-preserving.
Properties of BCNF Decomposition Algorithm

Let $X \rightarrow Y$ violate BCNF in $R = (R,F)$ and $R_1 = (R,F_1)$, $R_2 = (R,F_2)$ is the resulting decomposition. Then:

- There are fewer violations of BCNF in R_1 and R_2 than there were in R
 - $X \rightarrow Y$ implies X is a key of R_1
 - Hence $X \rightarrow Y \in F_1$ does not violate BCNF in R_1 and, since $X \rightarrow Y \notin F_2$, does not violate BCNF in R_2 either
 - Suppose f is $X' \rightarrow Y'$ and $f \in F$ doesn’t violate BCNF in R. If $f \in F_1$ or F_2 it does not violate BCNF in R_1 or R_2 either since X' is a superkey of R and hence also of R_1 and R_2.

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is *not necessarily* dependency preserving
- But *always* lossless:

 $R_1 \cap R_2 = X$, $X \rightarrow Y$. and $R_1 = XY$

- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)
Third Normal Form

- Compromise – Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

Minimal Cover

- A minimal cover of a set of dependencies, F, is a set of dependencies, U, such that:
 - U is equivalent to F ($F^+ = U^+$)
 - All FDs in U have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called redundant
Computing Minimal Cover

- **Example:** \(F = \{ ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, \\
BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E \} \)

- **step 1:** Make RHS of each FD into a single attribute
 - **Algorithm:** Use the decomposition inference rule for FDs
 - Example: \(L \rightarrow AD \) replaced by \(L \rightarrow A, L \rightarrow D \); \(ABH \rightarrow CK \) by \(ABH \rightarrow C, ABH \rightarrow K \)

- **step 2:** Eliminate redundant attributes from LHS.
 - **Algorithm:** If FD \(XB \rightarrow A \in F \) (where \(B \) is a single attribute) and \(X \rightarrow A \) is entailed by \(F \), then \(B \) was unnecessary
 - Example: Can an attribute be deleted from \(ABH \rightarrow C \) ?
 - Compute \(AB^+_F, AH^+_F, BH^+_F \).
 - Since \(C \in (BH)^+_F \), \(BH \rightarrow C \) is entailed by \(F \) and \(A \) is redundant in \(ABH \rightarrow C \).

Note: The order of steps 2 and 3 cannot be interchanged!! See the textbook for a counterexample

Computing Minimal Cover (con’t)

- **step 3:** Delete redundant FDs from \(F \)
 - **Algorithm:** If \(F - \{ f \} \) entails \(f \), then \(f \) is redundant
 - If \(f \) is \(X \rightarrow A \) then check if \(A \in X^+_F - \{ f \} \)
 - Example: \(BGH \rightarrow L \) is entailed by \(E \rightarrow L, BH \rightarrow E \), so it is redundant

Note: The order of steps 2 and 3 cannot be interchanged!! See the textbook for a counterexample
Synthesizing a 3NF Schema

Starting with a schema \(R = (R, F) \)

- **step 1**: Compute a minimal cover, \(U \), of \(F \). The decomposition is based on \(U \), but since \(U^+ = F^+ \) the same functional dependencies will hold

 - A minimal cover for

 \[F = \{ ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, \]

 \[E \rightarrow L, BH \rightarrow E \} \]

 \[
 \]

 is

 \[
 \]

 \[U = \{ BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L \} \]

Synthesizing a 3NF schema (con’t)

- **step 2**: Partition \(U \) into sets \(U_1, U_2, \ldots, U_n \) such that the LHS of all elements of \(U_i \) are the same

 - \(U_1 = \{ BH \rightarrow C, BH \rightarrow K \}, U_2 = \{ A \rightarrow D \}, \)

 \[U_3 = \{ C \rightarrow E \}, U_4 = \{ L \rightarrow A \}, U_5 = \{ E \rightarrow L \} \]
Synthesizing a 3NF schema (con’t)

• **step 3**: For each U_i, form schema $R_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i

 – Each FD of U will be in some R_i. Hence the decomposition is *dependency preserving*

 – $R_1 = (BHCK; BH \rightarrow C, BH \rightarrow K)$, $R_2 = (AD; A \rightarrow D)$, $R_3 = (CE; C \rightarrow E)$, $R_4 = (AL; L \rightarrow A)$, $R_5 = (EL; E \rightarrow L)$

Synthesizing a 3NF schema (con’t)

• **step 4**: If no R_i is a superkey of R, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of R.

 – $R_0 = (BGH, \{\})$

 • R_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$

 – A missing attribute, A, must be part of all keys

 (since it’s not in any FD of U, deriving a key constraint from U

 involves the augmentation axiom)

 • R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$

 – Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$.

 Step 3 decomposition: $R_1 = (AB; \{A \rightarrow B\})$, $R_2 = (CD; \{C \rightarrow D\})$.

 Lossy! Need to add $(AC; \{\})$, for losslessness

 – Step 4 guarantees lossless decomposition.
BCNF Design Strategy

• The resulting decomposition, R_0, R_1, \ldots, R_n, is
 – Dependency preserving (since every FD in U is a FD of
 some schema)
 – Lossless (although this is not obvious)
 – In 3NF (although this is not obvious)

• Strategy for decomposing a relation
 – Use 3NF decomposition first to get lossless,
 dependency preserving decomposition
 – If any resulting schema is not in BCNF, split it using
 the BCNF algorithm (but this may yield a non-
 dependency preserving result)

Normalization Drawbacks

• By limiting redundancy, normalization helps
 maintain consistency and saves space
• But performance of querying can suffer because
 related information that was stored in a single
 relation is now distributed among several

• Example: A join is required to get the names and
 grades of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
 T.CrsCode = 'CS305' AND T.Semester = 'S2002'
Denormalization

- **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries
- **Example**: Add attribute *Name* to Transcript

```sql
SELECT T.Name, T.Grade
FROM Transcript T
WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is *(StudId, CrsCode, Semester)* and *StudId → Name*

Fourth Normal Form

<table>
<thead>
<tr>
<th>SSN</th>
<th>PhoneN</th>
<th>ChildSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111</td>
<td>123-4444</td>
<td>222222</td>
</tr>
<tr>
<td>111111</td>
<td>123-4444</td>
<td>333333</td>
</tr>
<tr>
<td>111111</td>
<td>321-5555</td>
<td>222222</td>
</tr>
<tr>
<td>111111</td>
<td>321-5555</td>
<td>333333</td>
</tr>
<tr>
<td>222222</td>
<td>987-6666</td>
<td>444444</td>
</tr>
<tr>
<td>222222</td>
<td>777-7777</td>
<td>444444</td>
</tr>
<tr>
<td>222222</td>
<td>987-6666</td>
<td>555555</td>
</tr>
<tr>
<td>222222</td>
<td>777-7777</td>
<td>555555</td>
</tr>
</tbody>
</table>

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs
Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema R can be (losslessly) decomposed using attribute sets (X, Y) such that:

 \[r = \pi_X(r) \bowtie \pi_Y(r) \]

 then a *multi-valued dependency* holds in \(r \)

 \[R = \pi_X(R) \bowtie \pi_Y(R) \]

 Ex: \(\text{Person} = \pi_{\text{SSN,PhoneN}}(\text{Person}) \bowtie \pi_{\text{SSN,ChildSSN}}(\text{Person}) \)

Fourth Normal Form (4NF)

- A schema is in *fourth normal form* (4NF) if for every multi-valued dependency

 \[R = X \bowtie Y \]

 in that schema, either:
 - \(X \subseteq Y \) or \(Y \subseteq X \) (trivial case); or
 - \(X \cap Y \) is a superkey of \(R \) (*i.e.*, \(X \cap Y \rightarrow R \))
Fourth Normal Form (Cont’d)

- **Intuition:** if \(X \cap Y \rightarrow R \), there is a unique row in relation \(r \) for each value of \(X \cap Y \) (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- **Solution:** Decompose \(R \) into \(X \) and \(Y \)
 - Decomposition is lossless – but not necessarily dependency preserving (since 4NF implies BCNF – next)

4NF Implies BCNF

- Suppose \(R \) is in 4NF and \(X \rightarrow Y \) is an FD.
 - \(R_1 = XY, \ R_2 = R - Y \) is a lossless decomposition of \(R \)
 - Thus \(R \) has the multi-valued dependency:

\[
R = R_1 \bowtie R_2
\]

- Since \(R \) is in 4NF, one of the following must hold:
 - \(XY \subseteq R - Y \) (an impossibility)
 - \(R - Y \subseteq XY \) (i.e., \(R = XY \) and \(X \) is a superkey)
 - \(XY \cap R - Y = X \) is a superkey
- Hence \(X \rightarrow Y \) satisfies BCNF condition