An Overview of Query Optimization

Chapter 11

Query Evaluation

- **Problem**: An SQL query is declarative – does not specify a query execution plan.
- A relational algebra expression is procedural – there is an associated query execution plan.
- **Solution**: Convert SQL query to an equivalent relational algebra and evaluate it using the associated query execution plan.
 – *But which equivalent expression is best?*
Naive Conversion

SELECT DISTINCT TargetList
FROM R1, R2, ..., RN
WHERE Condition

is equivalent to

\[\pi_{\text{TargetList}} (\sigma_{\text{Condition}} (R1 \times R2 \times ... \times RN)) \]

but this may imply a very inefficient query execution plan.

Example: \[\pi_{\text{Name}} (\sigma_{\text{Id}=\text{ProfId} \land \text{CrsCode}=\text{CS532}} (\text{Professor} \times \text{Teaching})) \]

- Result can be < 100 bytes
- But if each relation is 50K then we end up computing an intermediate result Professor \times Teaching of size 500M before shrinking it down to just a few bytes.

Problem: Find an equivalent relational algebra expression that can be evaluated “efficiently”.

Query Processing Architecture
Query Optimizer

- Uses heuristic algorithms to evaluate relational algebra expressions. This involves:
 - estimating the cost of a relational algebra expression
 - transforming one relational algebra expression to an equivalent one
 - choosing access paths for evaluating the subexpressions
- Query optimizers do not “optimize” – just try to find “reasonably good” evaluation strategies

Equivalence Preserving Transformations

- To transform a relational expression into another equivalent expression we need transformation rules that preserve equivalence
- Each transformation rule
 - Is provably correct (ie, does preserve equivalence)
 - Has a heuristic associated with it
Selection and Projection Rules

- Break complex selection into simpler ones:
 \[\sigma_{\text{Cond}_1 \land \text{Cond}_2}(R) \equiv \sigma_{\text{Cond}_1}(\sigma_{\text{Cond}_2}(R)) \]

- Break projection into stages:
 \[\pi_{\text{attr}}(R) \equiv \pi_{\text{attr}}(\pi_{\text{attr}'}(R)), \text{ if } \text{attr} \subseteq \text{attr}' \]

- Commute projection and selection:
 \[\pi_{\text{attr}}(\sigma_{\text{Cond}}(R)) \equiv \sigma_{\text{Cond}}(\pi_{\text{attr}}(R)), \]
 \[\text{if } \text{attr} \supseteq \text{all attributes in } \text{Cond} \]

Commutativity and Associativity of Join
(and Cartesian Product as Special Case)

- Join commutativity: \(R \Join S \equiv S \Join R \)
 - used to reduce cost of nested loop evaluation strategies (smaller relation should be in outer loop)

- Join associativity: \(R \Join (S \Join T) \equiv (R \Join S) \Join T \)
 - used to reduce the size of intermediate relations in computation of multi-relational join – first compute the join that yields smaller intermediate result

- N-way join has \(T(N) \times N! \) different evaluation plans
 - \(T(N) \) is the number of parenthesized expressions
 - \(N! \) is the number of permutations

- Query optimizer cannot look at all plans (might take longer to find an optimal plan than to compute query brute-force). Hence it does not necessarily produce optimal plan
Pushing Selections and Projections

- \(\sigma_{\text{Cond}}(R \times S) \equiv R \bowtie_{\text{Cond}} S \)
 - \(\text{Cond} \) relates attributes of both \(R \) and \(S \)
 - Reduces size of intermediate relation since rows can be discarded sooner

- \(\sigma_{\text{Cond}}(R \times S) \equiv \sigma_{\text{Cond}}(R) \times S \)
 - \(\text{Cond} \) involves only the attributes of \(R \)
 - Reduces size of intermediate relation since rows of \(R \) are discarded sooner

- \(\pi_{\text{attr}}(R \times S) \equiv \pi_{\text{attr}}(\pi_{\text{attr}'}(R) \times S) \),
 if \(\text{attributes}(R) \supseteq \text{attr}' \supseteq \text{attr} \cap \text{attributes}(R) \)
 - reduces the size of an operand of product

Equivalence Example

- \(\sigma_{C1 \land C2 \land C3}(R \times S) \equiv \sigma_{C1}(\sigma_{C2}(\sigma_{C3}(R \times S))) \)
 \(\equiv \sigma_{C1}(\sigma_{C2}(R) \times \sigma_{C3}(S)) \)
 \(\equiv \sigma_{C2}(R) \bowtie_{C1} \sigma_{C3}(S) \)

assuming \(C2 \) involves only attributes of \(R \),
\(C3 \) involves only attributes of \(S \),
and \(C1 \) relates attributes of \(R \) and \(S \)
Cost - Example 1

```
SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId -- join condition
    AND P.DeptId = 'CS' AND T.Semester = 'F1994'
```

\[\pi_{Name}(\sigma_{DeptId='CS' \land Semester='F1994'}(Professor \times_{Id=ProfId} Teaching)) \]

Metadata on Tables (in system catalogue)

- **Professor (Id, Name, DeptId)**
 - *size*: 200 pages, 1000 rows, 50 departments
 - *indexes*: clustered, 2-level B\(^t\)ree on DeptId, hash on Id

- **Teaching (ProfId, CrsCode, Semester)**
 - *size*: 1000 pages, 10,000 rows, 4 semesters
 - *indexes*: clustered, 2-level B\(^t\)ree on Semester; hash on ProfId

- **Definition**: Weight of an attribute – average number of rows that have a particular value
 - weight of Id = 1 (it is a key)
 - weight of ProfId = 10 (10,000 classes/1000 professors)
Estimating Cost - Example 1

- Join - block-nested loops with 52 page buffer (50 pages – input for Professor, 1 page – input for Teaching, 1 – output page
 - Scanning Professor (outer loop): 200 page transfers, (4 iterations, 50 transfers each)
 - Finding matching rows in Teaching (inner loop):
 1000 page transfers for each iteration of outer loop
 - Total cost = 200+4*1000 = 4200 page transfers

Estimating Cost - Example 1 (cont’d)

- Selection and projection – scan rows of intermediate file, discard those that don’t satisfy selection, project on those that do, write result when output buffer is full.
- Complete algorithm:
 – do join, write result to intermediate file on disk
 – read intermediate file, do select/project, write final result
 – Problem: unnecessary I/O
Pipining

- **Solution**: use *pipelining*:
 - `join` and `select/project` act as coroutines, operate as producer/consumer sharing a buffer in main memory.
 - When `join` fills buffer, `select/project` filters it and outputs result
 - Process is repeated until `select/project` has processed last output from `join`
 - Performing `select/project` adds no additional cost

Estimating Cost - Example 1 (cont’d)

- **Total cost**:

 \[4200 + (\text{cost of outputting final result})\]

 - We will *disregard the cost of outputting final result* in comparing with other query evaluation strategies, since this will be same for all
Cost Example 2

```
SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId AND
     P.DeptId = 'CS' AND T.Semester = 'F1994'
```

\[\pi_{\text{Name}} (\sigma_{\text{Semester} = 'F1994'} (\sigma_{\text{DeptId} = 'CS'} (\text{Professor}) \bowtie_{\text{Id} = \text{ProfId}} \text{Teaching}))) \]

Cost Example 2 -- selection

- Compute \(\sigma_{\text{DeptId} = 'CS'} (\text{Professor}) \) (to reduce size of one join table) using clustered, 2-level B+ tree on DeptId.
 - 50 departments and 1000 professors; hence weight of DeptId is 20 (roughly 20 CS professors). These rows are in ~4 consecutive pages in Professor.
 - Cost = 4 (to get rows) + 2 (to search index) = 6
- Keep resulting 4 pages in memory and pipe to next step
Cost Example 2 -- \textit{join}

- Index-nested loops join using hash index on ProflId of Teaching and looping on the selected professors (computed on previous slide)
 - Since selection on Semester was not pushed, hash index on ProflId of Teaching can be used
 - \textit{Note}: if selection on Semester were pushed, the index on ProflId would have been lost – an advantage of \textit{not} using a fully pushed query execution plan

Cost Example 2 – \textit{join} (cont’d)

- Each professor matches \textasciitilde10 Teaching rows. Since 20 CS professors, hence 200 teaching records.
- All index entries for a particular ProflId are in same bucket. Assume \textasciitilde1.2 I/Os to get a bucket.
 - Cost = 1.2 \times 20 (to fetch index entries for 20 CS professors) + 200 (to fetch Teaching rows, since hash index is unclustered) = 224
Cost Example 2 – *select/project*

- Pipe result of join to *select* (on *Semester*) and *project* (on *Name*) at no I/O cost
- Cost of output same as for Example 1
- Total cost:
 \[6 \text{ (select on Professor)} + 224 \text{ (join)} = 230\]
- Comparison:
 \[4200 \text{ (example 1)} \text{ vs. } 230 \text{ (example 2)} \]

Estimating Output Size

- It is important to estimate the size of the output of a relational expression – size serves as input to the next stage and affects the choice of how the next stage will be evaluated.
- Size estimation uses the following measures on a particular instance of R:
 - *Tuples*(R): number of tuples
 - *Blocks*(R): number of blocks
 - *Values*(R,A): number of distinct values of A
 - *MaxVal*(R,A): maximum value of A
 - *MinVal*(R,A): minimum value of A
Estimating Output Size

• For the query:

 \[
 \text{SELECT } \text{TargetList} \\
 \text{FROM } R_1, R_2, \ldots, R_n \\
 \text{WHERE } \text{Condition}
 \]

 – Reduction factor is \[
 \frac{\text{Blocks (result set)}}{\text{Blocks}(R_1) \times \cdots \times \text{Blocks}(R_n)}
 \]

• Estimates by how much query result is smaller than input

Estimation of Reduction Factor

• Assume that reduction factors due to target list and query condition are independent

• Thus:
 \[
 reduction(\text{Query}) = \\
 reduction(\text{TargetList}) \times reduction(\text{Condition})
 \]
Reduction Due to Simple Condition

- \(\text{reduction} \left(R_i.A = \text{val} \right) = \frac{1}{\text{Values}(R.A)} \)
- \(\text{reduction} \left(R_i.A = R_j.B \right) = \frac{1}{\max(\text{Values}(R_i.A), \text{Values}(R_j.B))} \)

- Assume that values are uniformly distributed, \(\text{Tuples}(R_i) < \text{Tuples}(R_j) \), and every row of \(R_j \) matches a row of \(R_i \). Then the number of tuples that satisfy Condition is:
 \[
 \text{Values}(R_i.A) \times \left(\frac{\text{Tuples}(R_i)}{\text{Values}(R_i.A)} \right) \times \left(\frac{\text{Tuples}(R_j)}{\text{Values}(R_j.B)} \right)
 \]
- \(\text{reduction} \left(R_i.A > \text{val} \right) = \frac{\max(\text{Values}(R_i.A)) - \text{val}}{\max(\text{Values}(R_i.A)) - \min(\text{Values}(R_i.A))} \)

Reduction Due to Complex Condition

- \(\text{reduction} (\text{Cond}_1 \ \text{AND} \ \text{Cond}_2) = \text{reduction(Cond}_1) \times \text{reduction(Cond}_2) \)
- \(\text{reduction} (\text{Cond}_1 \ \text{OR} \ \text{Cond}_2) = \min(1, \text{reduction(Cond}_1) + \text{reduction(Cond}_2)) \)
Reduction Due to TargetList

- \(\text{reduction(TargetList)} = \frac{\text{number-of-attributes (TargetList)}}{\sum_{i} \text{number-of-attributes (R}_i)} \)

Estimating Weight of Attribute

- \(\text{weight(R.A)} = \frac{\text{Tuples(R)}}{\text{reduction(R.A=value)}} \)
Choosing Query Execution Plan

- Step 1: Choose a *logical* plan
- Step 2: Reduce search space
- Step 3: Use a heuristic search to further reduce complexity

Step 1: Choosing a Logical Plan

- Involves choosing a query tree, which indicates the order in which algebraic operations are applied
- *Heuristic*: Pushed trees are good, but sometimes “nearly fully pushed” trees are better due to indexing (as we saw in the example)
- **So**: Take the initial “master plan” tree and produce a *fully pushed* tree plus several *nearly fully pushed* trees.
Step 2: Reduce Search Space

• Deal with *associativity* of binary operators (join, union, …)

![Logical query execution plan](image1)

![Equivalent query tree](image2)

Step 2 (cont’d)

• Two issues:
 – Choose a particular *shape* of a tree (like in the previous slide)
 • Equals the number of ways to parenthesize N-way join – grows very rapidly
 – Choose a particular permutation of the leaves
 • E.g., 4! permutations of the leaves A, B, C, D
Step 2: Dealing With Associativity

• Too many trees to evaluate: settle on a particular shape: *left-deep tree.*
 – Used because it allows *pipelining:*

```
    P1    P2    P3
   A —— B —— X —— C —— Y —— D
```

– *Property:* once a row of X has been output by P₁, it need not be output again (but C may have to be processed several times in P₂ for successive portions of X)
– *Advantage:* none of the intermediate relations (X, Y) have to be completely materialized and saved on disk.
 • Important if one such relation is very large, but the final result is small

Step 2: Dealing with Associativity

• consider the alternative: if we use the association ((A ⊗ B) ⊗ (C ⊗ D))

```
P1: A ⊗ B
P2: C ⊗ D
P3: X ⊗ Y
```

Each row of X must be processed against all of Y. Hence all of Y (can be very large) must be stored in P₃, or P₂ has to recompute it several times.
Step 3: Heuristic Search

- The choice of left-deep trees still leaves open too many options ($N!$ permutations):
 - $(((A \Join B) \Join C) \Join D)$,
 - $(((C \Join A) \Join D) \Join B)$,
- A heuristic (often dynamic programming based) algorithm is used to get a ‘good’ plan

Step 3: Dynamic Programming Algorithm

- Just an idea – see book for details
- To compute a join of E_1, E_2, \ldots, E_N in a left-deep manner:
 - Start with 1-relation expressions (can involve σ, π)
 - Choose the best and “nearly best” plans for each (a plan is considered nearly best if its output has some “interesting” form, e.g., is sorted)
 - Combine these 1-relation plans into 2-relation expressions. Retain only the best and nearly best 2-relation plans
 - Do same for 3-relation expressions, etc.
Index-Only Queries

- A B⁺ tree index with search key attributes A_1, A_2, \ldots, A_n has stored in it the values of these attributes for each row in the table.
 - Queries involving a prefix of the attribute list A_1, A_2, \ldots, A_n can be satisfied using *only the index* – no access to the actual table is required.

- **Example**: Transcript has a clustered B⁺ tree index on StudId. A frequently asked query is one that requests all grades for a given *CrsCode*.
 - **Problem**: Already have a clustered index on StudId – cannot create another one (on *CrsCode*)
 - **Solution**: Create an unclustered index on (*CrsCode*, *Grade*)
 - Keep in mind, however, the overhead in maintaining extra indices