cse541
LOGIC FOR COMPUTER SCIENCE

Professor Anita Wasilewska

Spring 2015
LECTURE 13
Chapter 13
Predicate Logic Proof System QRS

Part 1: Predicate Languages
Part 2: Proof System QRS
Chapter 13
Part 1: Predicate Languages
Predicate Languages

Predicate Languages are also called First Order Languages. The same applies to the use of terms for Propositional and Predicate Logic.

Propositional and Predicate Logics are called Zero Order and First Order Logics, respectively and we will use both terms equally.

We usually work with different predicate languages, depending on what applications we have in mind.

All predicate languages have some common features, and we begin with these.
Predicate Languages Components

Propositional Connectives

Predicate Languages extend a notion of the propositional languages so we define the set CON of their propositional connectives as follows.

The set CON of propositional connectives is a finite and non-empty and

$$\text{CON} = C_1 \cup C_2$$

where C_1, C_2 are the sets of one and two arguments connectives, respectively.

Parenthesis

As in the propositional case, we adopt the signs (and) for our parenthesis., i.e. we define a set PAR as

$$\text{PAR} = \{ (,) \}$$
Quantifiers
We adopt two quantifiers; the universal quantifier denoted by \forall and the existential quantifier denoted by \exists, i.e. we have the following set Q of quantifiers

$$Q = \{\forall, \exists\}$$

In a case of the classical logic and the logics that extend it, it is possible to adopt only one quantifier and to define the other in terms of it and propositional connectives

Such definability is impossible in a case of some non-classical logics, for example the intuitionistic logic

But even in the case of classical logic the two quantifiers express better the common intuition, so we adopt the both of them
Variables

We assume that we always have a **countably infinite** set VAR of variables, i.e. we assume that

$$\text{card}\mathit{VAR} = \aleph_0$$

We denote variables by x, y, z, \ldots, with indices, if necessary. We often express it by writing

$$\mathit{VAR} = \{x_1, x_2, \ldots\}$$

Note
Predicate Languages Components

The set CON of propositional connectives defines a propositional part of the predicate logic language. Observe that what really differ one predicate language from the other is the choice of additional symbols added to the symbols just described.

These additional symbols are: predicate symbols, function symbols, and constant symbols.

A particular predicate language is determined by specifying these additional sets of symbols. They are defined as follows.
Predicate Languages Components

Predicate symbols
Predicate symbols represent relations
Any predicate language must have at least one predicate symbol
Hence we assume that any predicate language contains a non empty, finite or countably infinite set \(P \) of predicate symbols, i.e. we assume that

\[0 < \text{card} P \leq \aleph_0 \]

We denote predicate symbols by \(P, Q, R, \ldots \), with indices, if necessary
Each predicate symbol \(P \in P \) has a positive integer \(#P\) assigned to it; when \(#P = n\) we call \(P \) an \(n \)-ary (\(n \) - place) predicate (relation) symbol
Predicate Languages Components

Function symbols
We assume that any predicate language contains a finite (may be empty) or countably infinite set F of function symbols
i.e. we assume that

$$0 \leq \text{card} F \leq \aleph_0$$

When the set F is empty we say that we deal with a language without functional symbols

We denote functional symbols by $f, g, h, ...$ with indices, if necessary

Similarly, as in the case of predicate symbols, each function symbol $f \in F$ has a positive integer $\#f$ assigned to it; if $\#f = n$ then f is called an n-ary (n-place) function symbol
Predicate Languages Components

Constant symbols
We also assume that we have a finite (may be empty) or countably infinite set
\[\mathbb{C} \]
of constant symbols
I.e. we assume that
\[0 \leq \text{card}\mathbb{C} \leq \aleph_0 \]
The elements of \(\mathbb{C} \) are denoted by \(c, d, e, \ldots \), with indices, if necessary
We often express it by putting
\[\mathbb{C} = \{c_1, c_2, \ldots\} \]
When the set \(\mathbb{C} \) is empty we say that we deal with a language without constant symbols
Alphabet of Predicate Languages

Sometimes the constant symbols are defined as 0-ary function symbols, i.e. we have that

\[C \subseteq F \]

We single them out as a separate set for our convenience. We assume that all of the above sets of symbols are disjoint.

Alphabet

The union of all of above disjoint sets of symbols is called the alphabet \(\mathcal{A} \) of the predicate language, i.e. we define

\[\mathcal{A} = \text{VAR} \cup \text{CON} \cup \text{PAR} \cup \text{Q} \cup \text{P} \cup \text{F} \cup \text{C} \]
Predicate Languages Notation

Observe, that once the set of propositional connectives is fixed, the predicate language is determined by the sets P, F and C

We use the notation

$$\mathcal{L}(P, F, C)$$

for the predicate language \mathcal{L} determined by P, F, C

If there is no danger of confusion, we may abbreviate $\mathcal{L}(P, F, C)$ to just \mathcal{L}

If the set of propositional connectives involved is not fixed, we also use the notation

$$\mathcal{L}_{\text{CON}}(P, F, C)$$

to denote the predicate language \mathcal{L} determined by P, F, C and the set of propositional connectives CON
Predicate Languages Notation

We sometimes allow the same symbol to be used as an n-place relation symbol, and also as an m-place one; no confusion should arise because the different uses can be told apart easily.

Example

If we write $P(x, y)$, the symbol P denotes 2-argument predicate symbol.

If we write $P(x, y, z)$, the symbol P denotes 3-argument predicate symbol.

Similarly for function symbols.
Two more Predicate Language Components

Having defined the alphabet we now complete the formal definition of the predicate language by defining two more components:

the set T of all terms and
the set F of all well formed formulas
of the language $\mathcal{L}(P, F, C)$
Set of Terms

Terms

The set T of terms of the predicate language $L(P, F, C)$ is the smallest set

$$T \subseteq A^*$$

meeting the conditions:

1. any variable is a term, i.e. $\text{VAR} \subseteq T$
2. any constant symbol is a term, i.e. $\text{C} \subseteq T$
3. if f is an n-place function symbol, i.e. $f \in F$ and $\#f = n$ and $t_1, t_2, ..., t_n \in T$, then $f(t_1, t_2, ..., t_n) \in T$
Terms Examples

Example 1
Let \(f \in F, \#f = 1 \), i.e. \(f \) is a 1-place function symbol
Let \(x, y \) be variables, \(c, d \) be constants, i.e.
\(x, y \in VAR, c, d \in C \)
Then the following expressions are **terms**:

\[
x, y, f(x), f(y), f(c), f(d), ff(x), ff(y), ff(c), ff(d), ...
\]

Example 2
Let \(F = \emptyset, C = \emptyset \)
In this case terms consists of **variables only**, i.e.
\[
T = VAR = \{x_1, x_2, ... \}
\]
Terms Examples

Directly from the Example 2 we get the following

REMARK
For any predicate language $\mathcal{L}(P, F, C)$, the set T of its terms is always **non-empty**

Example 3
Let $f \in F, \#f = 1$, $g \in F, \#g = 2$, $x, y \in \text{VAR}$, $c, d \in C$
Some of the **terms** are the following:

$$f(g(x, y)), f(g(c, x)), g(ff(c), g(x, y)),$$
$$g(c, g(x, f(c))), g(f(g(x, y)), g(x, f(c))))$$
Terms Notation

From time to time, the logicians are and we may be informal about how we write terms.

Example
If we denote a 2-place function symbol g by $+$, we may write $x + y$ instead of $+(x, y)$.

Because in this case we can think of $x + y$ as an unofficial way of designating the "real" term $+(x, y)$.
Atomic Formulas

Before we define the set of formulas, we need to define one more set; the set of atomic, or elementary formulas.

Atomic formulas are the simplest formulas as the propositional variables were in the case of propositional languages.
Atomic Formulas

Definition
An **atomic formula** of a **predicate language** $\mathcal{L}(\mathbf{P}, \mathbf{F}, \mathbf{C})$ is any element of \mathbb{A}^* of the form

$$R(t_1, t_2, ..., t_n)$$

where $R \in \mathbf{P}$, $\#R = n$ and $t_1, t_2, ..., t_n \in \mathbf{T}$

I.e. R is **n-ary relational symbol** and $t_1, t_2, ..., t_n$ are **any terms**

The set of all **atomic formulas** is denoted by \mathcal{AF} and is defined as

$$\mathcal{AF} = \{R(t_1, t_2, ..., t_n) \in \mathbb{A}^* : R \in \mathbf{P}, \ t_1, t_2, ..., t_n \in \mathbf{T}, \ n \geq 1\}$$
Atomic Formulas Examples

Example 1
Consider a language $\mathcal{L}(\emptyset, \{P\}, \emptyset)$, for $\#P = 1$
Our language $\mathcal{L} = \mathcal{L}(\emptyset, \{P\}, \emptyset)$
is a language without neither functional, nor constant symbols, and with one, 1-place predicate symbol P
The set of atomic formulas contains all formulas of the form $P(x)$, for x any variable, i.e.

$$\mathcal{AF} = \{P(x) : x \in VAR\}$$
Atomic Formulas Examples

Example 2
Let now consider a **predicate language**

\[\mathcal{L} = \mathcal{L}({f, g}, \{R\}, \{c, d\}) \]

for \(\#f = 1, \#g = 2, \#R = 2 \)

The language \(\mathcal{L} \) has **two functional symbols**: 1-place symbol \(f \) and 2-place symbol \(g \), one 1-place **predicate symbol** \(R \), and two **constants**: \(c, d \)

Some of the **atomic formulas** in this case are the following.

\[R(c, d), \ R(x, f(c)), \ R((g(x, y)), f(g(c, x))), \]

\[R(y, g(c, g(x, f(d)))) \]
Set of Formulas Definition

Now we are ready to define the set F of all well formed formulas of any predicate language $L(P, F, C)$

Definition

The set F of all well formed formulas, called shortly set of formulas, of the language $L(P, F, C)$ is the smallest set meeting the following four conditions:

1. Any atomic formula of $L(P, F, C)$ is a formula, i.e.

 $A \in F \subseteq F$

2. If A is a formula of $L(P, F, C)$, \n is an one argument propositional connective, then $\n A$ is a formula of $L(P, F, C)$, i.e. the following recursive condition holds

 if $A \in F$, $\n \in C_1$ then $\n A \in F$
Set of Formulas Definition

3. If A, B are formulas of $\mathcal{L}(P, F, C)$ and \circ is a two argument propositional connective, then $(A \circ B)$ is a formula of $\mathcal{L}(P, F, C)$, i.e. the following recursive condition holds

 If $A \in \mathcal{F}, \forall \in C_2$, then $(A \circ B) \in \mathcal{F}$

4. If A is a formula of $\mathcal{L}(P, F, C)$ and x is a variable, $\forall, \exists \in Q$, then $\forall_x A, \exists_x A$ are formulas of $\mathcal{L}(P, F, C)$, i.e. the following recursive condition holds

 If $A \in \mathcal{F}, x \in \text{VAR}, \forall, \exists \in Q$, then $\forall_x A, \exists_x A \in \mathcal{F}$
Another important notion of the **predicate language** is the notion of **scope of a quantifier**
It is defined as follows

Definition
Given formulas $\forall x A$, $\exists x A$, the formula A is said to be in the **scope of the quantifier** \forall, \exists, respectively.

Example 3
Let L be a language of the previous Example 2 with the set of connectives $\{\cap, \cup, \Rightarrow, \neg\}$, i.e. let’s consider

$$L = L_{\{\cap, \cup, \Rightarrow, \neg\}}\{\{f, g\}, \{R\}, \{c, d\}\}$$

for $\#f = 1$, $\#g = 2$, $\#R = 2$

Some of the formulas of L are the following.

$$R(c, d), \exists y R(y, f(c)), \neg R(x, y),$$

$$\left(\exists x R(x, f(c)) \Rightarrow \neg R(x, y) \right)$$

$$\left(R(c, d) \cap \forall z R(z, f(c)) \right)$$

$$\forall y R(y, g(c), f(f(c))), \forall y \forall z R(y, z)$$
Scope of Quantifiers

The formula $R(x, f(c))$ is in **scope of the quantifier** \exists in the formula

$$\exists_x R(x, f(c))$$

The formula $(\exists_x R(x, f(c)) \Rightarrow \neg R(x, y))$ is **not in scope of any quantifier**

The formula $(\exists x - R(x, f(c)) \Rightarrow \neg R(x, y))$ is in **scope of quantifier** \forall in the formula

$$\forall_y (\exists x R(x, f(c)) \Rightarrow \neg R(x, y))$$
Predicate Language Definition

Now we are ready to define formally a **predicate language**. Let $\mathcal{A}, \mathcal{T}, \mathcal{F}$ be the **alphabet**, the set of **terms** and the set of **formulas** as already defined.

Definition

A **predicate language** \mathcal{L} is a triple

$$\mathcal{L} = (\mathcal{A}, \mathcal{T}, \mathcal{F})$$

As we have said before, the language \mathcal{L} is determined by the choice of the symbols of its **alphabet**, namely of the choice of connectives, predicates, functions, and constant symbols.

If we want specifically mention these **choices**, we write

$$\mathcal{L} = \mathcal{L}_{\text{CON}}(\mathcal{P}, \mathcal{F}, \mathcal{C}) \text{ or } \mathcal{L} = \mathcal{L}(\mathcal{P}, \mathcal{F}, \mathcal{C})$$
Chapter 13
Part 2: Gentzen Style Proof System for Classical Predicate Logic
The System QRS
The System **QRS**

Let F be a set of formulas of a **predicate language**

$$L(P, F, C) = L_{\{\cap, \cup, \Rightarrow, \neg\}}(P, F, C)$$

for P, F, C countably infinite sets of **predicate, functional, and constant symbols**, respectively.

The **rules of inference** of the system **QRS** operate, as in the propositional case, on **finite sequences of formulas**, i.e. on elements of F^*.

We will denote, as previously the sequences of formulas by Γ, Δ, Σ, with indices if necessary.
The system QRS consists of two **axiom schemas** and eleven rules of inference.

The **rules of inference** form **two groups**

First group is similar to the propositional case and contains propositional connectives rules:

\[(\cup), \ (\neg\cup), \ (\cap), \ (\neg\cap), \ (\Rightarrow), \ (\neg \Rightarrow), \ (\neg\neg)\]

Second group deals with the **quantifiers** and consists of four rules:

\[(\forall), \ (\exists), \ (\neg\forall), \ (\neg\exists)\]
Logical Axioms of RS

We adopt as logical axioms of QRS any sequence of formulas which contains a formula and its negation, i.e. any sequence

\[\Gamma_1, A, \Gamma_2, \neg A, \Gamma_3 \]

\[\Gamma_1, \neg A, \Gamma_2, A, \Gamma_3 \]

where \(A \in \mathcal{F} \) is any formula.

We denote by LA the set of all logical axioms of QRS.
Proof System \textbf{QRS}

Formally we define the system \textbf{QRS} as follows

\[
\text{QRS} = (\mathcal{L}\{\cap,\cup,\Rightarrow,\neg\}(P, F, C), \mathcal{F}^*, \ LA, \ \mathcal{R})
\]

where the set \(\mathcal{R}\) of inference rules contains the following rule

\((\cup), (\neg\cup), (\cap), (\neg\cap), (\Rightarrow), (\neg \Rightarrow), (\neg\neg), (\forall), (\exists), (\neg\forall), (\neg\exists)\)

and \(\mathcal{L}\) is the set of all logical axioms defined on previous slide
Literals in QRS

Definition
Any atomic formula, or a negation of atomic formula is called a literal.
We form, as in the propositional case, a special subset

$$LT \subseteq \mathcal{F}$$

of formulas, called a set of all literals defined now as follows

$$LT = \{A \in \mathcal{F} : A \in AF\} \cup \{\neg A \in \mathcal{F} : A \in AF\}$$

The elements of the set $$\{A \in \mathcal{F} : A \in AF\}$$ are called positive literals.
The elements of the set $$\{\neg A \in \mathcal{F} : A \in AF\}$$ are called negative literals.
Sequences of Literals

We denote by

\[\Gamma', \ \Delta', \ \Sigma' \ldots \]

finite sequences (empty included) formed out of literals i.e

\[\Gamma', \ \Delta', \ \Sigma' \in LT^* \]

We will denote by

\[\Gamma, \ \Delta, \ \Sigma \ldots \]

the elements of \(F^* \)
Connectives Inference Rules of **QRS**

Group 1

Disjunction rules

\[
\frac{\Gamma', \ A, \ B, \ \Delta}{\Gamma', \ (A \cup B), \ \Delta} \quad \text{(\(\cup\))}
\]

\[
\frac{\Gamma', \ \neg A, \ \Delta ; \ \Gamma', \ \neg B, \ \Delta}{\Gamma', \ \neg(A \cup B), \ \Delta} \quad \text{(\(\neg\cup\))}
\]

Conjunction rules

\[
\frac{\Gamma', \ A, \ \Delta ; \ \Gamma', \ B, \ \Delta}{\Gamma', \ (A \cap B), \ \Delta} \quad \text{(\(\cap\))}
\]

\[
\frac{\Gamma', \ \neg A, \ \neg B, \ \Delta}{\Gamma', \ \neg(A \cap B), \ \Delta} \quad \text{(\(\neg\cap\))}
\]

where $\Gamma' \in LT^*$, $\Delta \in \mathcal{F}^*$, $A, B \in \mathcal{F}$
Connectives Inference Rules of QRS

Group 1
Implication rules

\[
\begin{align*}
\Gamma', \neg A, B, \Delta & \quad \Rightarrow \quad \Gamma', (A \Rightarrow B), \Delta \\
\Gamma', A, \Delta & \quad : \quad \Gamma', \neg B, \Delta
\end{align*}
\]

Negation rule

\[
\begin{align*}
\Gamma', A, \Delta & \quad : \quad \Gamma', \neg A, \Delta
\end{align*}
\]

where \(\Gamma' \in LT^* \), \(\Delta \in \mathcal{F}^* \), \(A, B \in \mathcal{F} \)
Quantifiers Inference Rules of QRS

Group 2: Universal Quantifier rules

\[(\forall) \quad \frac{\Gamma', A(y), \Delta}{\Gamma', \forall x A(x), \Delta} \quad (\neg\forall) \quad \frac{\Gamma', \neg\forall x A(x), \Delta}{\Gamma', \exists x \neg A(x), \Delta}\]

where \(\Gamma' \in LT^*, \Delta \in F^*, A, B \in F\)

The variable \(y\) in rule \((\forall)\) is a free individual variable which does not appear in any formula in the conclusion, i.e. in any formula in the sequence \(\Gamma', \forall x A(x), \Delta\),

The variable \(y\) in the rule \((\forall)\) is called the eigenvariable

The condition: the variable \(y\) does not appear in any formula in the conclusion of \((\forall)\) is called the eigenvariable condition

All occurrences of \(y\) in \(A(y)\) of the rule \((\forall)\) are fully indicated
Quantifiers Inference Rules of QRS

Group 2: Existential Quantifier rules

\[
\begin{align*}
(\exists) & \quad \Gamma', \ A(t), \ \Delta, \ \exists_x A(x) \quad \Rightarrow \quad \Gamma', \ \exists_x A(x), \ \Delta \\
(\neg \exists) & \quad \Gamma', \ \neg\exists_x A(x), \ \Delta \quad \Rightarrow \quad \Gamma', \ \forall_x \neg A(x), \ \Delta
\end{align*}
\]

where \(t \in T \) is an arbitrary term, \(\Gamma' \in LT^*, \ \Delta \in \mathcal{F}^*, \ A, B \in \mathcal{F} \)

Note that \(A(t), A(y) \) denotes a formula obtained from \(A(x) \) by writing the term \(t \) or \(y \), respectively, in place of all occurrences of \(x \) in \(A \).
QRS Decomposition Trees

Given a formula $A \in \mathcal{F}$, we define its decomposition tree \mathcal{T}_A in a similar way as in the propositional case.

Observe that the inference rules of QRS can be divided into two groups: propositional connectives rules

$$(\cup), (\neg \cup), (\cap), (\neg \cap), (\Rightarrow), (\neg \Rightarrow)$$

and quantifiers rules

$$(\forall), (\exists), (\neg \forall), (\neg \exists)$$

We define the decomposition tree in the case of the propositional rules and the rules $(\neg \forall), (\neg \exists)$ in the exactly the same way as in the propositional case.
The case of the rules \((\forall)\) and \((\exists)\) is more complicated, as the rules contain the **specific conditions** under which they are applicable.

To define the way of **decomposing** the sequences of the form \(\Gamma', \forall xA(x), \Delta\) or \(\Gamma', \exists xA(x), \Delta\), i.e. to deal with the rules \((\forall)\) and \((\exists)\), we assume that all terms form a one-to-one sequence

\[
ST \quad t_1, t_2, ..., t_n,
\]

Observe, that by the definition, all free variables are terms, hence all free variables **appear** in the sequence \(ST\) of all terms.
QRS Decomposition Trees

Let Γ be a sequence on the tree in which the first indecomposable formula has \forall as its main connective. It means that Γ is of the form

$$\Gamma', \forall x A(x), \Delta$$

We write a sequence

$$\Gamma', A(y), \Delta$$

below it on the tree, i.e. as its child, where the variable y fulfills the following condition

$\textbf{C1:}$ y is the first free variable in the sequence ST of terms such that y does not appear in any formula in $\Gamma', \forall x A(x), \Delta$

\textbf{Observe,} that the condition $\textbf{C1}$ corresponds to the restriction put on the application of the rule (\forall)
QRS Decomposition Trees

Let now first indecomposable formula in Γ has \exists as its main connective.
It means that Γ is of the form

$$\Gamma', \exists x A(x), \Delta$$

We write a sequence

$$\Gamma', A(t), \Delta$$

as its child,
where the term t fulfills the following conditions

C2: t is the first term in the sequence ST of all terms such that the formula $A(t)$ does not appear in any sequence on the tree which is placed above $\Gamma', A(t), \Delta$
Observe that the sequence ST of all terms is one-to-one and by the conditions $C1$ and $C1$ we always chose the first appropriate term (variable) from the sequence ST. Hence the decomposition tree definition guarantees that the decomposition process is also unique in the case of the quantifier rules (\forall) and (\exists).

From all above, and we conclude the following.

Uniqueness Theorem

For any formula $A \in F$, its decomposition tree T_A is unique.

Moreover, by definition we have that

If T_A is finite and all its leaves are axioms, then T_A is a proof of A in QRS, i.e. $\vdash A$

If T_A is finite and contains a non-axiom leaf or is infinite, then $\not\vdash A$
Examples of Decomposition Trees

In all the examples below, the formulas $A(x), B(x)$ represent any formulas. But as there is no indication about their particular components, so they are treated as indecomposable formulas.

The decomposition tree of the formula A representing the de Morgan Law

$$(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$$

is constructed as follows.
Examples of Decomposition Trees

Here is the \mathcal{T}_A

$$(\neg \forall x A(x) \Rightarrow \exists x \neg A(x))$$

$| (\Rightarrow)$

$\neg \neg \forall x A(x), \exists x \neg A(x)$

$| (\neg \neg)$

$\forall x A(x), \exists x \neg A(x)$

$| (\forall)$

$A(x_1), \exists x \neg A(x)$

where x_1 is a first free variable in the sequence ST such that x_1 does not appear in $\forall x A(x), \exists x \neg A(x)$

$| (\exists)$

$A(x_1), \neg A(x_1), \exists x \neg A(x)$

where x_1 is the first term (variables are terms) in the sequence ST such that $\neg A(x_1)$

does not appear on a tree above $A(x_1), \neg A(x_1), \exists x \neg A(x)$

Axiom
Examples of Decomposition Trees

The above tree \mathcal{T}_A ended with one leaf being axiom, so it represents a proof in QRS of the de Morgan Law

$$(-\forall x A(x) \Rightarrow \exists x \neg A(x))$$

i.e. we have proved that

$$\vdash (-\forall x A(x) \Rightarrow \exists x \neg A(x))$$

The decomposition tree \mathcal{T}_A for a formula

$$A = (\forall x A(x) \Rightarrow \exists x A(x))$$

is constructed as follows
Examples of Decomposition Trees

\[(\forall x A(x) \Rightarrow \exists x A(x))\]

\[\mid (\Rightarrow)\]

\[\neg \forall x A(x), \exists x A(x)\]

\[\mid (\neg \forall)\]

\[\neg \forall x A(x), \exists x A(x)\]

\[\exists x \neg A(x), \exists x A(x)\]

\[\mid (\exists)\]

\[\neg A(t_1), \exists x A(x), \exists x \neg A(x)\]

where \(t_1\) is the first term in the sequence \(ST\), such that \(\neg A(t_1)\) does not appear on the tree above \(\neg A(t_1), \exists x A(x), \exists x \neg A(x)\)

\[\mid (\exists)\]

\[\neg A(t_1), A(t_1), \exists x \neg A(x), \exists x A(x)\]

where \(t_1\) is the first term in the sequence \(ST\), such that \(A(t_1)\) does not appear on the tree above \(\neg A(t_1), A(t_1), \exists x \neg A(x), \exists x A(x)\)

Axiom
Examples of Decomposition Trees

The above tree also ended with the only leaf being the axiom, hence we have proved that

$$\vdash (\forall x A(x) \Rightarrow \exists x A(x))$$

We know that the inverse implication

$$(\exists x A(x) \Rightarrow \forall x A(x))$$

in not a tautology of predicate language (with formal semantics yet to come!)

Let’s now look at its decomposition tree
Examples of Decomposition Trees

\[\exists x A(x) \]

\[\mid (\exists) \]

\[A(t_1), \exists x A(x) \]

where \(t_1 \) is the first term in the sequence \(?? \), such that \(A(t_1) \) does not appear on the tree above \(A(t_1), \exists x A(x) \)

\[\mid (\exists) \]

\[A(t_1), A(t_2), \exists x A(x) \]

where \(t_2 \) is the first term in the sequence \(ST \), such that \(A(t_2) \) does not appear on the tree above \(A(t_1), A(t_2), \exists x A(x) \), i.e. \(t_2 \neq t_1 \)

\[\mid (\exists) \]

\[A(t_1), A(t_2), A(t_3), \exists x A(x) \]

where \(t_3 \) is the first term in the sequence \(ST \), such that \(A(t_3) \) does not appear on the tree above \(A(t_1), A(t_2), A(t_3), \exists x A(x) \), i.e. \(t_3 \neq t_2 \neq t_1 \)

\[\mid (\exists) \]
Examples of Decomposition Trees

We repeat the procedure

\[
| (\exists)
\]

\[A(t_1), A(t_2), A(t_3), A(t_4), \exists x A(x)\]

where \(t_4\) is the first term in the sequence \(ST\), such that \(A(t_4)\) does not appear on the tree above \(A(t_1), A(t_2), A(t_3), A(t_4), \exists x A(x)\), i.e. \(t_4 \neq t_3 \neq t_2 \neq t_1\)

\[
| (\exists)
\]

.....

\[
| (\exists)
\]

.....

Obviously, the above decomposition tree is infinite, what proves that

\[\not\models \exists x A(x)\]
Examples of Decomposition Trees

We construct now a proof in QRS of the quantifiers distributivity law

$$(\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x)))$$

and show that the proof in QRS of the inverse implication

$$(\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x))$$

does not exist, i.e. that

$$\not\!
\Rightarrow\!
((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$$

The decomposition tree of the first formula is the following
Examples of Decomposition Trees

$$(\exists x (A(x) \cap B(x)) \Rightarrow (\exists x A(x) \cap \exists x B(x)))$$

$$(\Rightarrow)$$

$$\neg \exists x (A(x) \cap B(x)), (\exists x A(x) \cap \exists x B(x))$$

$$(\neg \exists)$$

$$(\forall x \neg (A(x) \cap B(x)), (\exists x A(x) \cap \exists x B(x)))$$

$$(\forall)$$

$$\neg (A(x_1) \cap B(x_1)), (\exists x A(x) \cap \exists x B(x))$$

$$\neg \neg A(x_1), \neg B(x_1), (\exists x A(x) \cap \exists x B(x))$$

where x_1 is a first free variable in the sequence ST such that x_1 does not appear in

$$\forall x \neg (A(x) \cap B(x)), (\exists x A(x) \cap \exists x B(x))$$

$$(\neg \exists)$$

$$\neg A(x_1), \neg B(x_1), (\exists x A(x) \cap \exists x B(x))$$

$$\bigwedge (\neg)$$
Examples of Decomposition Trees

\[\bigwedge (\cap) \]

\[\neg A(x_1), \neg B(x_1), \exists x A(x) \]

where \(t_1 \) is the first term in the sequence \(ST \), such that \(A(t_1) \) does not appear on the tree above \(\neg A(x_1), \neg B(x_1), A(t_1), \exists x A(x) \)

\[| (\exists) \]

\[\neg A(x_1), \neg B(x_1), A(t_1), \exists x A(x) \]

\[| (\exists) \]

\[\neg A(x_1), \neg B(x_1), B(t_1), \exists x B(x) \]

\[| (\exists) \]

...

\[| (\exists) \]

\[\neg A(x_1), \neg B(x_1), \ldots B(x_1), \exists x B(x) \]

axiom

\[\neg A(x_1), \neg B(x_1), \ldots A(x_1), \exists x A(x) \]

axiom
Examples of Decomposition Trees

Observe, that it is possible to choose eventually a term $t_i = x_1$, as the formula $A(x_1)$ **does not appear** on the tree above

$$\neg A(x_1), \neg B(x_1), ... A(x_1), \exists x A(x)$$

By the definition of the sequence ST, the variable x_1 is placed somewhere in it, i.e. $x_1 = t_i$, for certain $i \geq 1$

It means that after i applications of the step (\exists) in the decomposition tree, we will get a leaf

$$\neg A(x_1), \neg B(x_1), ... A(x_1), \exists x A(x)$$

which is an **axiom**