Chapter 2
Introduction to Classical Propositional Logic

PART 1: Classical Propositional Model Assumptions
PART 2: Syntax and Semantics
PART 3: Classical Propositional Connectives
Chapter 2
Introduction to Classical Propositional Logic

PART 1: Classical Propositional Model Assumptions
Very short History
Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus.
Modern Origins: Mid-19th century
English mathematician G. Boole, who is sometimes regarded as the founder of mathematical logic.
First Axiomatic System: 1879 by German logician G. Frege.
Classical Propositional Model

Assumption 1
The first assumption of the propositional model of classical reasoning, and hence of a formalization of classical propositional logic is the following.
We assume that sentences (statements) are always evaluated as true or false.
Such sentences are called logical sentences or propositions. Hence the name two valued propositional logic.
Motivation

Why two logical values only?
We build a model for classical logic to reflect the black and white qualities of mathematics.
We expect from mathematical theorems to be always either true or false and the reasonings leading to them should guarantee this without any ambiguity.
Classical Propositional Model

Assumption 2

1. We combine logical sentences (basic true-false blocks) to form more complicated sentences, called formulas.

2. We combine logical sentences using only the following words or phrases: not; and; or; if ..., then; if and only if.

3. We use symbols to denote both logical sentences and the words or phrases, called logical connectives. Hence the name symbolic logic.
Choice of the Symbols

There are different choices of **logical symbols**; we adopt the following

Symbols for logical sentences are

\(a, b, c, p, r, q, \ldots \), with indices, if necessary

They are called **propositional variables**

Symbols for logical connectives are:

\(\neg \) for "not",

\(\cap \) for "and",

\(\cup \) for "or",

\(\Rightarrow \) for "if ..., then",

\(\Leftrightarrow \) for "if and only if".

The **names** for our **logical connectives** are:

\(\neg \) **negation**

\(\cap \) **conjunction**, \(\cup \) **disjunction**,

\(\Rightarrow \) **implication** and \(\Leftrightarrow \) **equivalence**.
Translation Example

Exercise: Translate a natural language sentence into corresponding propositional symbolic logic formula.

Sentence

The fact that it is not true that at the same time $2+2 = 4$ and $2+2 = 5$ implies that $2+2 = 4$

Translation Steps

Step 1: identify all **logical connectives** and we write the sentence introducing parenthesis to express the meaning of the sentence

If not ($2 + 2 = 4$ and $2 + 2 = 5$) then $2 + 2 = 4$
Translation Example

Step 2: identify basic sentences with no logical connectives and assign propositional variables to them:

\[a : \ 2 + 2 = 4, \quad b : \ 2 + 2 = 5 \]

Step 3: we write the (symbolic) formula as

\[(\neg(a \cap b) \Rightarrow a) \]
PART 2: Syntax

Syntax of a symbolic language is the formal description of the symbols we use and the way we construct its set of formulas.

A formal language, or just a language, is another word for the symbolic language.

Propositional languages are the syntax of propositional logics.

Predicate languages form the syntax of more complex logics, called predicate logics or predicate calculi.
General Remarks

The formal language symbols and well defined set of formulas i.e. an established syntax do not directly carry with them any logical value.

We assign a logical value to syntactically defined formulas of a given language in a separate step.

This next step is called a semantics of the given language.

We will see that a given language can have different semantics and the different semantics will define different logics.
Propositional Formulas

Propositional formulas are expressions build recursively by means of logical connectives and propositional variables as follows

1. All propositional variables are formulas
 They are called atomic formulas
2. For already defined formulas A, B, the expressions

 $(A \cap B), (A \cup B), (A \Rightarrow B), (A \Leftrightarrow B), \neg A$

 are also well defined formulas
 They are called non-atomic formulas
Example

By the definition, any propositional variable is a formula. Let’s take two variables a and b.

By the recursive step we get that

$$(a \cap b), \ (a \cup b), \ (a \Rightarrow b), \ (a \Leftrightarrow b), \neg a, \neg b$$

are formulas

Recursive step applied again produces for example formulas:

$$\neg (a \cap b), \ ((a \Leftrightarrow b) \cup \neg b), \neg \neg a, \neg \neg (a \cap b)$$
Formulas

We didn’t list all formulas we obtained in the first recursive step
Moreover, the recursive process could continue
The set of all formulas is countably infinite
Remark that we put parenthesis within the formulas in a way to avoid ambiguity
The expression: $a \cap b \cup a$, is ambiguous.
We don’t know whether it represents $(a \cap b) \cup a$ or $a \cap (b \cup a)$
Observe that neither of $a \cap b \cup a$, $(a \cap b) \cup a$ or $a \cap (b \cup a)$ is a well formed formula
Introduction to Semantics

We explain now how we define propositional connectives in terms of logical values and discuss the motivations for presented definitions.

The formal description of a process of assigning logical values to all formulas of a given language is called a semantics of the language.

We give all formal definitions in the next chapter (Lecture).
Conjunction: Motivation and Definition

A **conjunction** \((A \cap B)\) is a **true** formula if both \(A\) and \(B\) are **true** formulas.

If one of the formulas, or both, are **false**, then the **conjunction** is a **false** formula.

Let’s denote statement: formula \(A\) is **false** by \(A = F\) and

a statement: formula \(A\) is **true** by \(A = T\)
Conjunction: Definition

The logical value of a **conjunction** depends on the logical values of its factors in a way which is express in the form of the following table (truth table).

Conjunction Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>((A \cap B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Disjunction

The word or is used in natural language in two different senses.

First: A or B is true if at least one of the statements A, B is true

Second: A or B is true if one of the statements A and B is true and the other is false

In mathematics and hence in logic, the word or is used in the first sense
Disjunction: Definition

We adopt the convention that a disjunction \((A \cup B)\) is true if at least one of the formulas \(A\), \(B\) is true.

Disjunction Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>((A \cup B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Negation: Definition

The **negation** of a **true** formula is a **false** formula, and the
negation of a **false** formula is a **true** formula.

Negation Table:

<table>
<thead>
<tr>
<th>A</th>
<th>$\neg A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Implication: Motivation and Definition

The semantics of the statements in the form

\textit{if A, then B}

needs a little bit more discussion.

In \textit{everyday language} a statement \textit{if A, then B} is interpreted to mean that B can be \textit{inferred} from A.

In mathematics its interpretation \textit{differs} from that in natural language.
Implication: Motivation and Definition

Consider the following

Theorem

For every natural number \(n \),

\[
\text{if } 6 \ DIvides \ n, \ \text{then } 3 \ DIvides \ n
\]

The theorem is **true** for any natural number, hence in particular, it is **true** for numbers \(2, \ 3, \ 6 \)

Consider number \(2 \)

The following proposition is **true**

\[
\text{if } 6 \ DIvides \ 2, \ \text{then } 3 \ DIvides \ 2
\]

It means an implication \((A \Rightarrow B) \) in which \(A \) and \(B \) are **false** is interpreted as a **true** statement
Consider now a number 3

The following proposition is **true**

if 6 DIVIDES 3, then 3 DIVIDES 3,

It means that an implication $(A \Rightarrow B)$ in which A is false and B is true is interpreted as a **true statement**

Consider now a number 6

The following proposition is **true**

if 6 DIVIDES 6, then 3 DIVIDES 6.

It means that an implication $(A \Rightarrow B)$ in which A and B are true is interpreted as a **true statement**
One more case.

What happens when in the implication \((A \Rightarrow B)\) the formula \(A\) is **true** and the formula \(B\) is **false**

Consider a sentence

\[
\text{if 6 DIVIDES 12, then 6 DIVIDES 5.}
\]

Obviously, this is a **false statement**
The above examples justify adopting the following definition of a semantics for the implication \((A \Rightarrow B)\).

Implication Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>((A \Rightarrow B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Equivalence Definition

An equivalence \((A \Leftrightarrow B)\) is **true** if both formulas \(A\) and \(B\) have the same logical value.

Equivalence Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>((A \Leftrightarrow B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Extensional Connectives

Extensional connectives are the connectives that have the following property:
the logical value of the formulas form by means of these connectives and certain given formulas depends only on
the logical value(s) of the given formulas

All classical propositional connectives

\neg, \cup, \cap, \Rightarrow, \Leftrightarrow

are extensional
Propositional Connectives

Remark
In everyday language there are expressions such as "I believe that", "it is possible that", "certainly", etc.... They are represented by some propositional connectives which are not extensional.

They do not play any role in mathematics and so are not discussed in classical logic, they belong to non-classical logics.
Connectives Symbols

Other Notations

<table>
<thead>
<tr>
<th>Negation</th>
<th>Disjunction</th>
<th>Conjunction</th>
<th>Implication</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>−A</td>
<td>A ∪ B</td>
<td>A ∩ B</td>
<td>A ⇒ B</td>
<td>A ↔ B</td>
</tr>
<tr>
<td>NÁ</td>
<td>DAB</td>
<td>CAB</td>
<td>IAB</td>
<td>EAB</td>
</tr>
<tr>
<td>¯A</td>
<td>A ∨ B</td>
<td>A & B</td>
<td>A → B</td>
<td>A ↔ B</td>
</tr>
<tr>
<td>~ A</td>
<td>A ∨ B</td>
<td>A · B</td>
<td>A ⊃ B</td>
<td>A ≡ B</td>
</tr>
<tr>
<td>A’</td>
<td>A + B</td>
<td>A · B</td>
<td>A → B</td>
<td>A ≡ B</td>
</tr>
</tbody>
</table>

The first notation is the closest to ours and is drawn mainly from the algebra of sets and lattice theory.

The second comes from the Polish logician J. Łukasiewicz and is called the Polish notation.

The third was used by D. Hilbert.

The fourth comes from Peano and Russell.

The fifth goes back to Schröder and Pierce.
All Extensional Two Valued Connectives

There are many other binary (two valued) extensional propositional connectives!
Here is a table of all unary connectives

<table>
<thead>
<tr>
<th></th>
<th>▽₁A</th>
<th>▽₂A</th>
<th>¬A</th>
<th>▽₄A</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
All Extensional Binary Connectives

Table of all binary connectives:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$(A \circ_1 B)$</th>
<th>$(A \cap B)$</th>
<th>$(A \circ_3 B)$</th>
<th>$(A \circ_4 B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$(A \downarrow B)$</th>
<th>$(A \circ_6 B)$</th>
<th>$(A \circ_7 B)$</th>
<th>$(A \leftrightarrow B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$(A \circ_9 B)$</th>
<th>$(A \circ_{10} B)$</th>
<th>$(A \circ_{11} B)$</th>
<th>$(A \lor B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$(A \circ_{13} B)$</th>
<th>$(A \Rightarrow B)$</th>
<th>$(A \uparrow B)$</th>
<th>$(A \circ_{16} B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Functional Dependency Definition

Definition

Functional dependency of connectives is the ability of defining some connectives in terms of some others.

All classical propositional connectives can be defined in terms of disjunction and negation.

Two binary connectives: ↓ and ↑ suffice, each of them separately, to define all classical connectives, whether unary or binary.
Functional Dependency

The connective \uparrow was discovered in 1913 by H.M. Sheffer, who called it alternative negation. Now it is often called a Sheffer’s connective.

The formula $A \uparrow B$ reads: not both A and B.

Negation $\neg A$ is defined as $A \uparrow A$.

Disjunction $(A \cup B)$ is defined as $(A \uparrow A) \uparrow (B \uparrow B)$.
Functional Dependency

The connective \downarrow was termed by J. Łukasiewicz a joint negation.

The formula $A \downarrow B$ reads: neither A nor B.

It was proved in 1925 by E. Żyliński that no propositional connective other than \uparrow and \downarrow suffices to define all the remaining classical connectives.

Write the proof as an exercise.