CSE 352 Artificial Intelligence
Fall 2015
Professor Anita Wasilewska
http://www.cs.sunysb.edu/~cse352

Meets Monday, Wednesday 2:30 - 3:50pm

Place Earth&Space, room 131

Professor Anita Wasilewska e-mail
anita@cs.sunysb.edu,
Office phone number: 632 8458
Office location: Computer Science Department building, office 208

Office Hours Monday, Wednesday 12:30 pm - 2:00 pm and by appointment.

Textbook
This is a short condensed book (not expensive!) and not very technical
We will cover in detail first 3 chapters (plus my lecture notes for technical details) and chapter 7.
It is your responsibility to read all of the book and refer to its proper chapters in your presentations.

Lecture Notes posted on the course webpage EXTEND the material from the book providing TECHNICAL details and are the major source for the course.

Additional Textbook
DATA MINING - Concepts and Techniques
Jiawei Han and Michelle Kamber, Morgan, Kauffman Publishers, 2006, 2010, 2013

Here is the author webpage: www.cs.uiuc.edu/ hanj
You can download text and slides for CHAPTER 6: Classification and Prediction at
http://web.engr.illinois.edu/ hanj/bk2/slidesindex.htm

Our Lecture Notes cover almost all of this chapter.

Class attendance is the most important, as the Lecture Notes serve as an extra textbook for the course and students presentations are integral and as important part of the course design as Professor’s lecture.

I will check class attendance by giving and collecting answers (almost each class) to small questions connected with the lecture; you will get 1-2 extra credit points for your answers.

Grading
During the semester you have to complete the following.

Homeworks - 4 assignments each 25pts - total 100pts

Midterm/Final test (60pts) covering material covered in class, homeworks and taken from reading assignments; it is a take home test
Research Presentation (80pts); - see Presentation description

Project (see project description) and project presentation (60pts);

Extra Credit work; I will give during the class small questions for extra credit and assign some extra credit work. You can earn up to 30 extra points during the semester.

None of the grades will be curved.

Final grade computation During the semester you can earn 300pts plus extra credit.

The grade will be determined in the following way: # of earned points divided by 3 = % grade.

The % grade is translated into a letter grade in a standard way i.e.

100 – 94 % is A, 93 – 90 is A–,
89 – 86% is B+,
85 – 83 % is B,
82 – 80 % is B–,
79 – 76 % is C+, 75 – 73 % is C,
72 – 70 % is C–,
69 – 60 % is D range and F is below 60%.

Homeworks and Test Schedule

This is a preliminary tentative schedule dates may change- I will post changes on the course webpage

Homework 1 due Monday, September 21
Homework 2 due Monday, October 26
Homework 3 due Monday, November 16
Thanksgiving Break: November 25-29
Homework 4 due Wednesday, December 2

PROJECT DATA = Project Homework - 10 extra points due Monday, November 23

MIDTERM/FINAL will be published on the course webpage November 30

It is a take home test and is due on the day of OFFICIAL FINAL, or any day before

PRESENTATIONS SCHEDULE

Presentation Proposal is due via e-mail Monday SEPTEMBER 21

Send it to TA and Professor

You can discuss it with Professor earlier before you submit the final version.

It must contain a TITLE and a one short paragraph long description.

You CAN change your subject LATER- but I need your preliminary proposal of the subject by September 21
RESERVE the presentation DATE as soon as you get your Team Number - by e-mailing TA your Team Number and presentation date. We schedule 3 presentations per P-DAY.

P-DAY 1 Monday, October 5
P-DAY 2 Monday, October 12
P-DAY 3 Monday, October 19
P-DAY 4 Monday, November 2
P-DAY 5 Monday, November 9
P-DAY 6 Monday, November 16
P-DAY 7 Monday, November 23

Thanksgiving Break: November 25 - 29

PROJECT PRESENTATIONS November 30, December 3

RESEARCH PRESENTATION DESCRIPTION

Presentations Teams
Each student has to deliver a 20 minutes long presentation on a chosen topic of AI as a member of a chosen Presentation Team of three or four students.

It is students responsibility to form the Presentation Teams

You use the same Team for your Research Project

Each team has to have a designated Team Leader in order to communicate with Professor and course TA.

Please e-mail TA as soon as possible, and the latest by September 21 the following:

1. list names and e-mails of your Team members denoting who is the Team Leader
2. TITLE and a one short paragraph long description of your team presentation. This is a PRELIMINARY proposal and can be changed later.

TA will assign a Team Number to each team and e-mail it to each TEAM LEADER to be used for future correspondence.

You have to use your Team Number when reserving the presentation date

You use the same Team for your Research Project

Students are free to choose their own subjects.

It can be a presentation of a software involving AI techniques, of a product that uses an AI techniques, of a research paper, or an overview of an AI subject not covered in the class.

It also can be an AI related science fiction book or a movie that are using AI themes and techniques.

Search the WEB, look in for the papers, books- anything goes!
It has to be YOUR own vision of what you think is interesting in or about AI TODAY!

Bring what you find interesting and share with us

Students presentations are a VERY IMPORTANT part of the whole course design. You will bring us up date with AI technology, research, implementations, and trends!

GENERAL PRINCIPLES OF THE PRESENTATIONS

First slide must contain: the title (subject) of your presentation, your **Team members** names, student ID, professor name, course number and the title.

Second slide must contain ALL sources you used for the your presentation. The course book, or lecture notes is included. In the case of the book the reference you have to put are title of the chapter, sections and pages numbers.

Third slide is an OVERVIEW of your presentation.

Remember to include a **source** of any picture, of slides copied from a source or any DIRECT citation on the bottom of each of your slides where it appears. REFERENCES are very important. You must be clear about the distinction between the information from a source and your own statements.

A **hard copy** in slide spread format of the presentation slides is to be delivered the Professor before the presentation starts. I need to keep it for the records.

Presentation slides have to be e-mailed to the Professor and TA before the presentation.

You can also e-mail a working copy of you want to have Professor's feed back before you deliver a final version.

You receive 0-10pts for the organization of your presentation.

It is a presenter responsibility to STRUCTURE the presentation to fit the time framework.

Remember to leave some time for students (and professor) questions and discussion.

Practice and time your presentation before you present it in the class.

The **FINAL Power Point** file of the presentation has to be send to the Professor, within 3 days of the presentation in case when some improvements are needed after the class presentation.

Chosen Presentations will be available on the web for other students to learn the material.

Students must attend the presentations to learn the material, but by having access to already delivered (and if needed, improved) presentations they will be able to to comprehend better the material and improve their own presentation skills.

Midterm/ Final test will include some Presentations related questions.

PROJECT PRESENTATION DESCRIPTION

You work on the Project in the same **Teams** as you formed for the Research Presentations.

Each **Team** will have to deliver a formal, power point presentation of the project. This is a short 5 minutes presentation. The organization of the presentation and submitted materials are the same as in the case of research presentation.
PROJECT PRESENTATIONS November 30, December 3

PROJECT DESCRIPTION

BAKARY DATA - posted on the course web page.

This is a classification data with TYPE DE ROCHE (Rock Type) as a CLASS attribute. There are 98 records with 48 attributes and 6 classes.

Classes are:
C1 : R. Carbonatees AND R. Carbonatees impures
C2 : Pyrate
C3 : Charcopyrite
C4 : Galene
C5 : Spahlerite
C6 : Sediments terrigenes

Most important attributes (as determined by the expert) are: S, Zn, Pb, Cu, CaO+MgO, CaO, MgO, Fe2O3

This is a real life experimental data and it contains a lot of missing data (no value).

THE PROJECT GOAL is to use an Internet based CLASSIFICATION TOOL (choose one you like) to built a descriptive classifier that generates a sets of DISCRIMINANT RULES describing the content of the data.

You can search the web for the tools you want to use but here are some suggestions for Decision Trees tools:

WEKA http://www.cs.waikato.ac.nz/ml/weka/index.html

RAPID MINER https://rapidminer.com/

The project has to follow all steps of Learning Process:

Data Preparation that includes attributes selection, cleaning the data, filling the missing values, etc...

Data preprocessing: must use at least 2 methods of data discretization, and compare the final results obtained after each of them.

Learning Proper: for each experiment described below use a classification tool for rules generation applied to the TWO sets of preprocessed data and compare the results.

Discriminant Rules Generation Experiments

You have to perform 3 experiments (all on the same preprocessed data)

Experiment 1: use all records to find rules for the full classification; i.e. rules describing all classes C1- C6 simultaneously.

Experiment 2 (contrast classification): use all records to find rules contrasting class C1 with all others
Experiment 3: repeat Experiment 1 for all records with the most important attributes only.

Write a short Project Description with methods, motivations, results and e-mail it it to the TA and Professor on the day of your PROJECT PRESENTATION.

Project Presentation: each group will be given 5 minutes to present the project and results.

Neural Networks

You can also explore additionally Neural Network Learning and build a non descriptive NN Classifier

Here are some suggestions for Neural Network tools:

https://pypi.python.org/pypi/neurolab
RAPID MINER https://rapidminer.com/

Course Content

The book is very thin. It is a short overview of major areas of AI. I supplement it with LECTURE NOTES for detailed information. In particular we will cover all or majority of the following book chapters and LECTURE NOTES subjects, not always in the order they are listed

Chapter 1 AI history and applications. Lecture Notes

Chapter 2 Knowledge Representation and Inference.

Propositional and Predicate Calculus is presented in detail in Lecture Notes are on the douse webpage

Lecture notes and EXTRA HANDOUT distributed in class.

Chapter 2- Logic Details for Chapter 2: Overview of Propositional and Predicate Logic; Predicate languages and basic Laws of Quantifiers; Predicate Logic Arguments in Lecture Notes

Automated theorem proving DETAILS for Chapter 2: Propositional Resolution. EXTRA HANDOUTS and Lecture notes.

Chapter 5 Natural Language Processing- reading assignment.

Chapter 7 Machine Learning - concentration on INDUCTIVE, or CLASSIFICATION Learning.

The book is not technical- we will use the extensive Lecture Notes

Lecture Notes: In particular we cover the following techniques.

Decision Trees - detailed algorithm on lecture slides posted on the web and intuitive introduction is in the book.

Neural Networks - detailed algorithm on lecture slides on the web and intuitive introduction in the book.

Chapter 8 Agent and Robots - readings.

New Advances Students presentations.

ACADEMIC INTEGRITY STATEMENT (Adopted by the Undergraduate Council September 12, 2006)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

Stony Brook University Syllabus Statement If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml