CSE 352 Artificial Intelligence
Fall 2014
Professor Anita Wasilewska
http://www.cs.sunysb.edu/~cse352

Meets Monday, Wednesday 2:30 - 3:50pm

Place FREY HALL, room 305

Professor Anita Wasilewska e-mail
anita@cs.sunysb.edu,
Office phone number: 632 8458
Office location: Computer Science Department building, office 1428.

Office Hours Monday, Wednesday 12:30 pm - 2:00 pm and by appointment.

Textbook
This is a short condensed book (not expensive!). Everybody has to buy the book!
We will cover in detail first 3 chapters (plus my lecture notes) and chapter 7. But it is your
responsibility to read all of the book and refer to its proper chapters in your presentations.

Lecture Notes are VERY detailed and are posted on the course WEB PAGE.

Grading During the semester you have to complete the following.

Homeworks - 4 assignments each 25pts - total 100pts

Final test (60pts) covering material covered in class, homeworks and taken from reading assignments;
it is a take home test

Project (see project description) and project presentation (60pts);

Research Presentation (80pts); - see Presentation description

None of the grades will be curved.

Final grade computation During the session you can earn 300pts. The grade will be determined in
the following way: # of earned points divided by $3 = \%$ grade.
The % grade is translated into a letter grade in a standard way i.e.
100 – 94 % is A, 93 – 90 is A–,
89 – 86% is B+,
85 – 83 % is B,
82 – 80 % is B–,
79 – 76 % is C+,
75 – 73 % is C,
72 – 70 % is C–,
69 – 60 % is D range and F is below 60%.

RESEARCH PRESENTATION (80pts)
Each student has to deliver a a 30- 40 minutes long presentation on a chosen topic of AI.
You can do it also in a team of two, if needed. In this case a team presentation should last at least 45 minutes.

Students are free to choose their own subjects.

It can be a presentation of a software involving AI techniques, of a product that uses an AI techniques, of a research paper, or an overview of an AI subject not covered in the class. It also can be a AI related science fiction book or a movie that are using AI themes and techniques.

Search the WEB, look in for the papers, books- anything goes!
It has to be YOUR own vision of what you think is interesting in or about AI TODAY! Bring what you find interesting and share with us.

Students presentations are a VERY IMPORTANT part of the whole course design. You will bring us up date with AI technology, research, implementations, and trends!

GENERAL PRINCIPLES OF THE PRESENTATIONS

First slide must contain: the title (subject) of your presentation, your name(s), student ID, professor name, course number and the title.

Second slide must contain ALL sources you used for the your presentation. The course book, or lecture notes is included. In the case of the book the reference you have to put are title of the chapter, sections and pages numbers.

Third slide is an OVERVIEW of your presentation.

Remember to include a source of any picture, of slides copied from a source or any DIRECT citation on the bottom of each of your slides where it appears. REFERENCES are very important. You must be clear about the distinction between the information from a source and your own statements.

A hard copy in slide spread format of the presentation slides is to be delivered o the Professor before the presentation starts.

Presentation slides have to be e-mailed to the Professor before the presentation. You can also e-mail a working copy of you want to have Professor’s feed back before you deliver a final version.

You receive 0-10pts for the organization of your presentation.

It is a presenter responsibility to STRUCTURE the presentation to fit the time framework.

Remember to leave some time for students (and professor) questions and discussion.

Practice and time your presentation before you present it in the class.

The FINAL Power Point file of the presentation has to be send to the Professor, within 3 days of the presentation in case that to do some improvements are needed after the class presentation.

ALL PRESENTATIONS will be available on the web for other students to learn the material.

Students must attend the presentations to learn the material, but by having access to already delivered (and if needed, improved) presentations they will be able to to comprehend better the material and improve their own presentation skills.

Final test will include some Presentations related questions.
PROJECT and PROJECT PRESENTATION (60pts) Each student, or a group will have to deliver a formal, power point presentation of the project. This is a short 5 minutes presentation. The organization of the presentation and submitted materials are the same as in the case of research presentation.

FINAL TEST (60pts) The Final test will be distributed the week before of end of the classes and due on the official date of the final, or anytime before.

HOMEWORKS (100pts) There will be 4 Homeworks, 25pts each.

Class attendance is the most important, as students presentations are integral and as important part of the course design as Professor’s lecture.

I will take attendance; three unexcused absences will result of lowering the final grade by half a letter grade.

PRESENTATIONS SCHEDULE

Presentation Proposal due via e-mail Monday SEPTEMBER 22. You can discuss it with Professor earlier before you submit the final version.

It must contain a TITLE and a short few paragraphs long description.

RESERVE the presentation DATE as soon as possible- by e-mailing Professor your name and date. You don’t need the TITLE or subject to reserve the spot.

P-DAY 1 Monday, October 6
P-DAY 2 Monday, October 13
P-DAY 3 Monday, October 20
P-DAY 4 Monday, November 3
P-DAY 5 Monday, November 10
P-DAY 6 Monday, November 17
P-DAY 7 Monday, November 24

Thanksgiving Break: November 26 -30

PROJECT PRESENTATIONS December 1, 3

Homeworks and Tests Schedule

Homework 1 due Monday, September 22
Homework 2 due Monday, October 27
Homework 3 due Monday, November 17

Thanksgiving Break: November 26-30

Homework 4 due Monday, December 1
PROJECT DATA = Project Homework (10 extra points) due Monday, November 22

FINAL will be published on the course webpage November 24.

It is a take home test and is due on the day of OFFICIAL FINAL, or any day before.

Course Content

The book is very thin. It is a short overview of major areas of AI. I will supplement it with LECTURE NOTES for detailed information. In particular we will cover all or majority of the following chapters and subjects (not always in the order they are listed).

Chapter 1 AI history and applications. Lecture Notes

Chapter 2 Knowledge Representation and Inference. Propositional and Predicate Calculus will be presented in detail SEPARATELY at the end of semester. Lecture Notes are on the web, Extra Handout will be distributed in class.

Chapter 2- Logic Details for Chapter 2. Overview of Propositional and Predicate Logic; Predicate languages and basic LAWS of Quantifiers; Predicate Logic Arguments. EXTRA HANDOUTS and Lecture Notes.

Automated theorem proving 1 DETAILS for Chapter 2: Propositional Resolution. EXTRA HANDOUTS and Lecture notes.

Chapter 5 Natural Language Processing- reading assignment.

Chapter 7 Machine Learning - concentration on INDUCTIVE, or CLASSIFICATION Learning.

In particular we cover the following techniques.

Decision Trees - detailed algorithm on lecture slides posted on the web and intuitive introduction is in the book.

Neural Networks - detailed algorithm on lecture slides on the web and intuitive introduction in the book.

Chapter 8 Agent and Robots - readings.

New Advances Students presentations.

CSE352 Artificial Intelligence
PROJECT DESCRIPTION

BAKARY DATA - on the course web page.

This is a classification data with TYPE DE ROCHE (Rock Type) as a CLASS attribute. There are 98 records with 48 attributes and 6 classes.

Classes are:
C1 : R. Carbonates AND R. Carbonates impures
C2 : Pyrate
C3 : Charcoryrite
C4 : Galene
C5 : Spahlerite
C6 : Sediments terrigene

Most important attributes (as determined by the expert) are: S, Zn, Pb, Cu, CaO+MgO, CaO, MgO, Fe2O3

This is a real life experimental data and it contains a lot of missing data (no value).

THE PROJECT GOAL is to use different Internet based CLASSIFICATION TOOLS (choose one you like) to generate sets of DISCRIMINANT RULES describing the content of the data.

The project has to follow all steps of Learning Process:

Data Preparation that includes attributes selection, cleaning the data, filling the missing values, etc...

Data preprocessing: must use at least 2 methods of data discretization, and compare the final results obtained after each of them.

Learning Proper: for each experiment describe below use a classification tool for rules generation applied to the TWO sets of preprocessed data and compare the results.

Discriminant Rules Generation Experiments: you have to perform 3 experiments (all on the same preprocessed data)

Experiment 1: use all records to find rules for the full classification; i.e. rules describing all classes C1- C6 simultaneously.

Experiment 2 (contrast classification): use all records to find rules contrasting class C1 with all others

Experiment 3: repeat Experiment 1 for all records with the most important attributes only.

Write a detailed Project Description with methods, motivations, results and submit it to the Professor in a folder (and CD) on the day of your PROJECT PRESENTATION.

Project Presentation: each student, or a group will be given 10-15 minutes to present the project and results.

ACADEMIC INTEGRITY STATEMENT (Adopted by the Undergraduate Council September 12, 2006)

Each student must pursue his or her academic goals honestly and be personally accountable for all submitted work. Representing another person’s work as your own is always wrong. Any suspected instance of academic dishonesty will be reported to the Academic Judiciary. For more comprehensive information on academic integrity, including categories of academic dishonesty, please refer to the academic judiciary website at http://www.stonybrook.edu/uaa/academicjudiciary/

Stony Brook University Syllabus Statement If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Students who require assistance during emergency evacuation are encouraged to discuss their needs with their professors and Disability Support Services. For procedures and information go to the following website: http://www.sunysb.edu/ehs/fire/disabilities.shtml