Genetic Algorithms

An Introduction

Benjamin Kudria
CSE 352
This Presentation

What are Genetic Algorithms?
When can we use them?
How do they work?
An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?
Related techniques
This Presentation

What are Genetic Algorithms?
When can we use them?
How do they work?
An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?
Related techniques
What are Genetic Algorithms?

Evolutionary Search optimization algorithms

Techniques inspired by Biology, such as:
 Evolution (Fitness, Selection)
 Mutation (Crossover, etc)

Can search large spaces somewhat intelligently and quickly
This Presentation

What are Genetic Algorithms?

When can we use them?

How do they work?

An Example – Binary Numbers

Why should we use them?

Why shouldn't we use them?

Related techniques
When can we use them?

- Large complex search space
- Many levels of correctness for a potential solution
- We can encode a solution with a small amount of data
- We can quickly and precisely, tell how good a potential solution is.
This Presentation

What are Genetic Algorithms?
When can we use them?

How do they work?
An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?
Related techniques
General Technique

Encode the problem, and select an initial population
Select the most fit of each generation, create an offspring population
Replace unselected solutions with the new offspring to obtain a new population.

Repeat until:
 There is a suitably-fit solution
 A certain number of generations or computational time elapse
 Successive repetitions reach a plateau and no better solutions are found
Implementing

Define the problem, and decide how to encode a potential solution

Write a fitness function, to determine the degree of "correctness" for any solution

Define how we select the most fit solutions:

Usually top X% percent, but there are other strategies

Determine how to breed individual solutions:

Crossover: selecting large sections of a solution from one parent, and others from another

Mutation: randomly changing the elements of the children, with some probability, to avoid local optima

Select a termination condition
This Presentation

What are Genetic Algorithms?
When can we use them?
How do they work?

An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?
Related techniques
Example – Binary Numbers

Problem: Which bitstring encodes a specific number in binary?

Each solution (genotype) is a string of bits

Our fitness function converts the bitstring into decimal, and subtracts it from the goal

We stop when we have found the bitstring, i.e., difference is 0.

I used a library called Charlie, written by Sander Land

http://charlie.rubyforge.org
We find a random number, and how big it might be.

We define the genotype

The fitness function

Convert it to a number

```ruby
SIZE = 30
MAX = 2**SIZE
MIN = MAX / SIZE
N = rand(MAX - MIN) + MIN

class Number < BitStringGenotype(size)
  def fitness
    -(number - N).abs
  end
  def number
    bitstring.to_i(2)
  end
  def bitstring
    genes.map(&:to_s).join
  end
  def to_s
    "#{bitstring} (#{number.to_s})"
  end
end
```
We can also specify multiple strategies to test, and compare with mutation, crossover, and selection strategies are best for our problem.

```
GABenchmark.benchmark(Number, 'output.html') do
  selection \n    RandomSelection,
    TruncationSelection,
    TruncationSelection(0.5),
    TruncationSelection(0.9),
    BestOnlySelection,
    ScaledRouletteSelection,
    TournamentSelection

  crossover \n    SinglePointCrossover, TwoPointCrossover, ThreePointCrossover, NPointCrossover(10),
    UniformCrossover,
    BlendingCrossover,
    BlendingCrossover(0.2, :cube),
    BlendingCrossover(0.5, :cube),
    BlendingCrossover(0.9, :cube),
    BlendingCrossover(0.2, :line),
    BlendingCrossover(0.5, :line),
    BlendingCrossover(0.9, :line)

  mutator \n    ListMutator(:expected_n[1], :flip),
    ListMutator(:expected_n[5], :flip),
    ListMutator(:expected_n[15], :flip)

  repeat 20
  generations 100
end
```
Why should we use GAs?

Sometimes, depending on the problem, they can find a solution very fast in a large problem space.

Implementing a GA is not too difficult.

Your other option is exhaustive search.
What are Genetic Algorithms?
When can we use them?
How do they work?
An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?
Related techniques
Why shouldn’t we use GAs?

Writing a good fitness function for your problem may be hard. The fitness “landscape” may cause a population to converge on a local optima, and thus miss a global optimum.

If your problem can only tell you if a solution is either right or wrong, GAs cannot search effectively.

 (However, if the test can be repeated with varying results, a ratio of right to wrong can be used.)

Computationally expensive, although easily parallelizable.
This Presentation

What are Genetic Algorithms?
When can we use them?
How do they work?
An Example – Binary Numbers
Why should we use them?
Why shouldn't we use them?

Related techniques
Related Techniques

Simulated Annealing
- Useful when the search space is discrete
- Can, to a degree, avoid local optima

Genetic Programming
- Use a GA to evolve a program to solve instances of your problem efficiently

Memetic Algorithms
- New technique, individuals undergo self-improvement in each generation.
Swarm Intelligence

Ant-colony Optimization

Individuals leave "pheromones" to direct later iterations in the proper direction.

Bees Algorithm

Mimics honey-bee foraging behavior, teaches other individuals where "food" (optima/ridge) is.

Particle Swarm Optimization

Each individual is given a velocity, heading is adjusted towards particles that have performed better. Often are able to adapt to a changing problem space, and can thus run continually.

Applications in network routing, urban traffic routing, etc.
Sources

