Classification: Testing Classifier
Accuracy

Professor Anita Wasilewska
Computer Science Department
Stony Brook University
Overview

• Introduction

• Basic Concept on training and testing

• Main Methods of predictive accuracy evaluations
Predictive Accuracy Evaluation

The **main methods** of **predictive accuracy** evaluations are:

- **Resubstitution** \((N ; N)\)
- **Holdout** \((2N/3 ; N/3)\)
- **k-fold cross-validation** \((N- N/k ; N/k)\)
- **Leave-one-out** \((N-1 ; 1)\)

where \(N\) is the number of records (instances) in the dataset.
Predictive Accuracy

- **REMEMBER:** we must know the classification (class attribute values) of all instances (records) used in the test procedure.

- **Basic Concepts**
 - **Success:** instance (record) class is classified correctly
 - **Error:** instance class is classified incorrectly
 - **Error rate:** a percentage of errors made over the whole set of instances (records) used for testing

Predictive Accuracy: a percentage of well classified data in the testing data set.
Correctly and Not Correctly Classified

• A record is correctly classified if and only if the following conditions hold:

(1) we can classify the record, i.e. there is a rule such that its LEFT side matches the record,
(2) classification determined by the rule is correct, i.e. the RIGHT side of the rule matches the value of the record’s class attribute

OTHERWISE

• the record is not correctly classified

• Words used:
 • not correctly = incorrectly = misclassified
Predictive Accuracy

• Example:

Testing Rules (testing record #1) = record #1.class - Succ
Testing Rules (testing record #2) not= record #2.class - Error
Testing Rules (testing record #3) = record #3.class - Succ
Testing Rules (testing record #4) = instance #4.class - Succ
Testing Rules (testing record #5) not= record #5.class - Error

Error rate:

2 errors: #2 and #5
Error rate = 2/5=40%
Predictive Accuracy: 3/5 = 60%
Resubstitution ($N ; N$)

Testing the classification model by using the given data set (already used for "training")

\[
\begin{array}{c}
V_1 \ldots V_j \ldots V_m \text{ Class} \\
O_1 \\
. \\
. \\
. \\
O_n \\
\end{array}
\]

Train = Test

\[
\begin{array}{c}
V_1 \ldots V_j \ldots V_m \text{ Class} \\
O_1 \\
. \\
. \\
. \\
O_n \\
\end{array}
\]
Re-substitution Error Rate

- **Re-substitution error rate** is obtained from training data.
- **Training Data Error:** uncertainty of the rules.
- The error rate is not always 0%, but usually (and hopefully) very low!
- **Re-substitution error rate** indicates only how good (bad) are our results (rules, patterns, NN) on the TRAINING data.
- It expresses some knowledge about the algorithm used.
Re-substitution Error Rate

- Re-substitution **error rate** is usually used as the **performance measure**:

 The **training error rate** reflects **imprecision** of the training results.

 The lower **training error rate** the **better**

 In the case of **rules** it is called **rules accuracy**

Predictive Accuracy

Predictive accuracy reflects how **good** are the **training results** with respect to the **test data**

The higher predictive accuracy the better

(N:N) re-substitution **does not** compute predictive accuracy

- **Re-substitution** error rate = **training data error rate**
Why not always 0%?

- The **error rate** on the **training data** is **not always 0%** because **algorithms** involve different (often statistical) **parameters** and **measures** that lead to **uncertainties**.

- It is used for **“parameters tuning”**.

- The **error** on the **training data** is **NOT** a good **indicator of performance** on **future data** since it **does not** measure any **not yet seen data**.

- **Solution:** Split data into **training** and **test** set.
Training and test set

- **Training** and **Test** data may differ in nature, but **must have** the same **format**

Example:

Given customer data from two different towns A and B.

We **train the classifier** with the data from town A and we **test it** on data from town B, and vice-versa.
Learning Process

- It is important that the **test data** is not used in any way to create the training **rules**

- In fact, **learning process** operate in three stages:

 Stage 1: build the **basic patterns** structure

 Stage 2: optimize **parameter settings**; can use \((N:N)\) re-substitution - **parameter tuning**

 Stage 3: use **test data** to compute **predictive accuracy/error rate**
Validation Data

• Proper **learning process** uses three sets of data:

 • **training data, validation data** and **test data**
 validation data is **used** for parameter tuning

• validation data **is not** a test data
• validation data can be the **training data**, or a subset of **training data**

• The **test data** can not be used for **parameter tuning**!
Training and testing

• Generally, the larger is the training set, the better is the classifier

• Larger test data assures more accurate predictive accuracy, or error estimation

• Remember:
• the error rate of re-substitution \((N;N)\) can tell us ONLY whether the algorithm used in training is good or not good or how good it is
Training and testing

- **Holdout procedure**
 is a method of splitting original data into training and test data sets

- **Dilemma:**
 - ideally **both training** and **test data** should be large
 - What to do if the **amount of data** is limited?
 - How to **split** the data into training and test subsets?
- **Disjoint sets** - in the best way
Train-and-Test (for large sample sizes) (> 1000))
dividing the given data set in

- a **training sample** for generating the classification model
- a **test sample** to test the model on independent objects with given classifications (randomly selected, 20-30% of the complete data set)
Holdout ($N - N/3 \ ; N/3$)

- The **holdout method** reserves a certain amount of data for testing and uses the **remainder** for training – so they are disjoint!

- **Usually**, one third ($N/3$) of data is used for testing, and the rest ($N - N/3 = 2N/3$) for training.

- **The choice** of records for train and test data is essential.

We usually perform a cycle:

Train-and-test; repeat
Repeated Holdout

- Holdout can be made more reliable by repeating the process with different sub-samples (subsets of data):
 1. In each iteration, a certain portion is randomly selected for training, the rest of data is used for testing
 2. The error rates or predictive accuracy on different iterations are averaged to yield an overall error rate, or overall predictive accuracy
- Repeated holdout still is not optimal: the different test sets overlap
k-fold cross-validation \((N - N/k ; N/k) \)

- This is a **cross-validation** used to **prevent** the overlap of the test sets.

- **First step:** split data into \(k \) disjoint subsets \(D_1, \ldots, D_k \), of equal size, called **folds**.

- **Second step:** use each subset in turn for **testing**, the remainder for **training**.

- **Training** and **testing** is performed \(k \) times.
k-fold cross-validation
predictive accuracy computation

- The predictive accuracy estimate is the overall number of correct classifications from all iterations, divided by the total number of records in the initial data.
Stratified cross-validation

- In the **stratified cross-validation**
- the **folds** are stratified; i.e.
- the **class distribution** of the tuples
- (records) in **each fold** is
- approximately **the same as** in the
- **initial data**
10 folds cross-validation

• In general,
• 10-fold cross-validation or stratified 10-fold cross-validation
• is recommended and
• widely used even if computational power allows using more folds
• Why 10?

Extensive experiments have shown that this is the best choice to get an accurate estimate due to its relatively low bias and variance

So interesting!
Improve cross-validation

• Even better: repeated cross-validation

Example:

10-fold cross-validation is repeated 10 times and results are averaged; We adopt the union of rules as the new set of rules
A particular form of cross-validation

• k-fold cross-validation: \((N - N/k ; N/k)\)

• If \(k = N\), what happens?

• We get \((N-1; 1)\)

 It is called “leave one out”

Each sample (record) is used the same number of times for training and once for testing
Leave-one-out (N-1 ; 1)

Cross-Validation (for moderated sample sizes) → Sampling without replacement:
- Dividing the given data set into m subsamples of equal size
- Each subsample is tested by using a model generated from the remaining $(m-1)$ subsamples
→ Leave-One-Out: $m = \text{Number of objects}$
Leave-one-out (N-1 ; 1)

- **Leave-one-out** is a particular form of cross-validation

 We set number of folds to number of training instances, i.e. \(k = N \)

For \(N \) instances we build classifier (repeat the training - testing) \(n \) times
Leave-one-out Procedure

• Let $C(i)$ be the classifier (rules, patterns) built on all data except record x_i
• Evaluate $C(i)$ on x_i
• Determine if it is correct or in error
• Repeat for all $i=1, 2, \ldots, n$
• The total error is the proportion of all the incorrectly classified x_i
• The final set of rules (patterns) is a union of all rules obtained in the process
Leave-one-out (N-1 ; 1)

- Makes the **best** use of the data
- Involves **no random** sub-sampling
- **Stratification** is not possible
- **Computationally** expensive
- MOST **commonly** used