Classification Lecture Notes
cse352

Neural Networks

Professor Anita Wasilewska
Neural Networks Classification
Introduction

– **INPUT**: classification data, i.e. it contains an classification (class) attribute

– **WE** also say that the class label is known for all data.

– **DATA** is divided, as in any classification problem, into **TRAINING** and **TEST** data sets
Building a Neural Networks Classifier

- **ALL DATA must be normalized**, i.e. all values of attributes in the dataset has to be changed to contain values in the interval $[0,1]$, or $[-1,1]

TWO BASIC normalization techniques:
- Max- Min normalization and
- Decimal Scaling normalization.
Data Normalization

- **Max-Min Normalization**
 Performs a linear transformation on the original data.
 - Given an attribute A, we denote by $\min A, \max A$ the minimum and maximum values of the values of the attribute A.

- **Max-Min Normalization** maps a value v of A to v' in the range $[\text{new}_\min A, \text{new}_\max A]$ as follows.
Data Normalization

Max- Min normalization formula is as follows:

\[v' = \frac{v - \min A}{\max A - \min A} \left(\text{new}_\text{max} A - \text{new}_\text{min} A \right) + \text{new}_\text{min} A \]

Example: we want to normalize data to range of the interval \([-1, 1]\).
We put: \(\text{new}_\text{max} A = 1, \quad \text{new}_\text{min} A = -1\)
In general, to normalize within interval \([a, b]\) we put:
\(\text{new}_\text{max} A = b, \quad \text{new}_\text{min} A = a\)
Example of Max-Min Normalization

Max- Min normalization formula

$$v' = \frac{v - \min A}{\max A - \min A} (new_\max A - new_\min A) + new_\min A$$

Example: We want to normalize data to range of the interval [0,1].
We put: new_max A= 1, new_minA =0

Say, max A was 100 and min A was 20 (That means maximum and minimum values for the attribute A)

Now, if v = 40 (If for this particular pattern, attribute value is 40),
v’ will be calculated as
$$v' = (40-20) x (1-0) / (100-20) + 0$$
$$=> v' = 20 x 1/80$$
$$=> v' = 0.4$$
Decimal Scaling Normalization

Normalization by decimal scaling normalizes by moving the decimal point of values of attribute A. A value \(v\) of A is normalized to \(v'\) by computing

\[
v' = \frac{v}{10^j}
\]

where \(j\) is the smallest integer such that \(\max|v'| < 1\).

Example:

A – values range from -986 to 917 \(\text{Max } |v| = 986\)
\(v = -986\) normalize to \(v' = -986/1000 = -0.986\)
Neural Network

• **Neural Network** is a set of connected INPUT/OUTPUT UNITS, where each connection has a WEIGHT associated with it.

• **Neural Network** learning is also called CONNECTIONIST learning due to the connections between units.

• **Neural Network** is always fully connected.

• It is a case of SUPERVISED, INDUCTIVE or CLASSIFICATION learning.
Neural Network Learning

- **Neural Network** learns by adjusting the weights so as to be able to **correctly classify** the training data and hence, after **testing** phase, to classify **unknown data**.

- **Neural Network** needs **long time** for training.

- **Neural Network** has a **high tolerance** to noisy and incomplete data.
Classification by Backpropagation

- **Backpropagation**: a neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- **A neural network**: a set of connected input/output units where each connection has a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units
How A Multi-Layer Neural Network Works?

- The inputs to the network correspond to the attributes and their values for each training tuple.
- Inputs are fed simultaneously into the units making up the input layer.
- Inputs are then weighted and fed simultaneously to a hidden layer.
- The number of hidden layers is arbitrary, although often only one or two.
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction.
How A Multi-Layer Neural Network Works?

- The network is **feed-forward** - it means that **none** of the weights cycles back to an **input unit** or to an **output unit** of a previous layer.
- From a statistical point of view, networks perform **nonlinear regression**:
- Given **enough hidden units** and **enough training samples**, they can closely **approximate** any function.
A Multilayer Feed-Forward (MLFF) Neural Network

Output vector;
Classes

Output nodes
O_k

Hidden nodes
O_j

Input nodes

Input vector;
Record: x_i

Network is fully connected

- weights

Network is fully connected
A Multilayer Feed-Forward (MLFF) Neural Network

- The units in the hidden layers and output layer are sometimes referred to as neurones due to their symbolic biological basis or just as output units.
- A multilayer neural network shown on the previous slide has two layers.
- The input layer is not counted because it serves only to pass the input values to next layer.
- Therefore, we say that it is a two-layer neural network.
A Multilayer Feed-Forward (MLFF) Neural Network

- A network containing two hidden layers is called a three-layer neural network, and so on.
- The network is feed-forward - it means that none of the weights cycles back to an input unit or to an output unit of a previous layer.
MLFF Neural Network

Output vector; 3 classes here

Output nodes O_k

Hidden nodes O_j

Input nodes
Input vector; Record: x_i

Network is fully connected

- weights w_{ij}

Network is fully connected
MLFF Network Input

- **INPUT:** records without class attribute and with normalized attributes values
- We call it an **input vector**
- **INPUT VECTOR:**
 \[X = \{ x_1, x_2, \ldots, x_n \} \]
 where \(n \) is the **number of (non class) attributes**

Observe that \(\{,\} \) do not denote a SET symbol here! NN network people like use that symbol for a vector; Normal vector symbol is [\(x_1, \ldots, x_n \)]
MLFF Network Topology

- **Network topology:**
- We define the *network topology* by setting the following:
 1. number of units in the *input layer*
 2. number of *hidden layers*
 3. number of units in each *hidden layer*
 4. number of units in the *output layer*
MLFF Network Topology

- **INPUT LAYER** – there are as many nodes as non-class attributes i.e. as the length of the input vector

- **HIDDEN LAYER** – the number of nodes in the hidden layer and the number of hidden layers depends on implementation

$$O_j$$

\[j=1, 2 \ldots \#\text{hidden nodes} \]
MLFF Network Topology

- **OUTPUT LAYER** – corresponds to the **class attribute**
- There are as many nodes as classes (if classification has more than 2 classes)

\[O_k \quad k = 1, 2, \ldots \#\text{classes} \]

- Network is **fully connected**, i.e. **each unit provides input to each unit in the next forward layer**
MLFF Network Topology

- Once a network has been trained
- and its predictive accuracy is unacceptable
- repeat the training process with a different network topology
- or a different set of initial weights
Classification by Backpropagation

• **Backpropagation** is a neural network learning algorithm

• **It learns** by iteratively processing a set of **training data**
 • comparing the **network’s prediction** for each record with the actual known **target value**
 • **The target** value may be the **known class label** of the training tuple

• or a **continuous value** for **prediction**
Classification by Backpropagation

- For each training sample, the weights are first set random then they are modified as to minimize the mean squared error between the network’s classification (prediction) and actual classification.

- These weights modifications are propagated in “backwards” direction, that is,
- from the output layer, through each hidden layer down to the first hidden layer
- Hence the name backpropagation
Steps in Backpropagation Algorithm

- **STEP ONE:** initialize the weights and biases

 - The weights in the network are initialized to small random numbers ranging for example from -1.0 to 1.0, or -0.5 to 0.5.

 - Each unit has a **BIAS** associated with it (see next slide).

 - The biases are similarly initialized to small random numbers.

- **STEP TWO:** feed the training sample
Steps in Backpropagation Algorithm

• **STEP THREE:** propagate the inputs forward (by applying activation function)
• We compute the net input and output of each unit in the hidden and output layers
• **STEP FOUR:** backpropagate the error
• **STEP FIVE:** update weights and biases to reflect the propagated errors
• **STEP SIX:** repeat and apply terminating conditions
The inputs to unit j are outputs from the previous layer. These are multiplied by their corresponding weights in order to form a weighted sum, which is added to the bias associated with unit j.

A nonlinear activation function f is applied to the net input.
Step Three: propagate the inputs forward

• For **unit j** in the **input layer**, its **output** is equal to its **input**, that is,

\[O_j = I_j \]

The net input to each unit in the hidden and output layers is computed as follows.

• Given a **unit j** in a **hidden** or **output layer**, the **net input** is

\[I_j = \sum_i w_{ij}O_i + \theta_j \]

where **wij** is the weight of the connection from unit i in the previous layer **to unit j**; **Oi** is the output of unit i from the previous layer; **\(\theta_j \)** is the bias of the unit
Step 3: propagate the inputs forward

• Each unit in the hidden and output layers takes its net input and then applies an activation function.
• The function symbolizes the activation of the neuron represented by the unit.
• It is also called a logistic, sigmoid, or squashing function.
• Given a net input I_j to unit j, then

$$O_j = f(I_j)$$

the output of unit j, is computed as

$$O_j = \frac{1}{1 + e^{-I_j}}$$
Step 4: Back propagate the error

- When reaching the **output layer**, the **error** is computed and propagated backwards.

- For a **unit** \(k \) in the **output layer** the **error** is computed by a formula:

\[
Err_k = O_k(1 - O_k)(T_k - O_k)
\]

Where \(O_k \) is the **actual output** of unit \(k \) computed by **activation function**

\[
O_k = \frac{1}{1 + e^{-I_k}}
\]

\(T_k \) is the **TRUE output** based of known **class label** of training sample

Observe: \(O_k(1-O_k) \) is a derivative (rate of change) of activation function.
Step 4: Backpropagate the error

- **The error** is propagated backwards by updating weights and biases to reflect the error of the network classification.
- For a unit j in the hidden layer the error is computed by a formula:

\[
Err_j = O_j (1 - O_j) \sum_k Err_k w_{jk}
\]

where \(w_{jk}\) is the weight of the connection from unit j to unit k in the next higher layer, and \(Err_k\) is the error of unit k.
Step 5: Update weights and biases

- **Weights** are updated by the following equations, where \(l \) is a constant between 0.0 and 1.0 reflecting the learning rate - this learning rate is **fixed for implementation**

\[
\Delta w_{ij} = (l)Err_j O_i \\
w_{ij} = w_{ij} + \Delta w_{ij}
\]

The rule of thumb is to set the learning rate to \(l = 1/k \) where \(k \) is the number of iterations through the training set so far.
Backpropagation Formulas

\[
Err_j = O_j (1 - O_j) \sum_k Err_k w_{jk}
\]

\[
\theta_j = \theta_j + (l) Err_j
\]

\[
w_{ij} = w_{ij} + (l) Err_j O_i
\]

\[
Err_j = O_j (1 - O_j) (T_j - O_j)
\]

\[
O_j = \frac{1}{1 + e^{-I_j}}
\]

\[
I_j = \sum_i w_{ij} O_i + \theta_j
\]
Step 5: Update weights and bias

Learning Rate

- The **learning rate** helps avoid getting stuck at the **local minimum** (i.e. where the weights appear to converge, but are not optimum solution).
- The **learning rate** encourages finding the **global minimum**.
- If the **learning rate** is **too small**, then learning will occur at a very slow pace.
- If the **learning rate** is **too large**, then oscillation between inadequate solutions may occur.
Step 5: Update weights and biases

Bias update

Biases are updated by the following equations

\[
\Delta \theta_j = (l)Err_j
\]

\[
\theta_j = \theta_j + \Delta \theta_j
\]

Where \(\Delta \theta_j\) is the change in the bias
Weights and Biases Updates

- **Case updating:** we are updating weights and biases after the presentation of each sample

Epoch: One iteration through the training set

- **Epoch updating:**
 - The weight and bias increments are **accumulated** in variables and the weights and biases are **updated** after all of the samples of the training set have been presented

- **Case updating is more accurate**
Terminating Conditions

• Training **stops** when

 • All Δw_{ij} in the previous epoch are below some threshold, or

 • The percentage of samples **misclassified** in the previous epoch is below some threshold, or

 • a pre-specified number of epochs has **expired**

• In practice, **several hundreds of thousands of epochs** may be required before the **weights will converge**
Backpropagation Formulas

Output vector

Output nodes

Hidden nodes

Input nodes

Input vector: x_i

$O_j = \frac{1}{1 + e^{-I_j}}$

$I_j = \sum_i w_{ij}O_i + \theta_j$

$Err_k = O_k(1 - O_k)(T_k - O_k)$

$Err_j = O_j(1 - O_j)\sum_k Err_k w_{jk}$

$\theta_j = \theta_j + (l)Err_j$

$w_{ij} = w_{ij} + (l)Err_j O_i$
Example of Back Propagation

Input = 3, Hidden Neuron = 2 Output = 1

Initialize weights:
Random Numbers from -1.0 to 1.0

Initial Input and weight

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>w_{14}</th>
<th>w_{15}</th>
<th>w_{24}</th>
<th>w_{25}</th>
<th>w_{34}</th>
<th>w_{35}</th>
<th>w_{46}</th>
<th>w_{56}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.2</td>
<td>-0.3</td>
<td>0.4</td>
<td>0.1</td>
<td>-0.5</td>
<td>0.2</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
</tbody>
</table>
Example of Back Propagation

- Bias added to Hidden and output nodes
- **Initialize Bias**
- Bias: Random Values from
 - -1.0 to 1.0
- Bias (Random)

<table>
<thead>
<tr>
<th>(\Theta_4)</th>
<th>(\Theta_5)</th>
<th>(\Theta_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Net Input and Output Calculation

<table>
<thead>
<tr>
<th>Unit</th>
<th>Net Input (I_j)</th>
<th>Output (O_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2 + 0 - 0.5 -0.4 = -0.7</td>
<td>(O_j = \frac{1}{1 + e^{0.7}} = 0.332)</td>
</tr>
<tr>
<td>5</td>
<td>-0.3 + 0 + 0.2 + 0.2 =0.1</td>
<td>(O_j = \frac{1}{1 + e^{-0.1}} = 0.525)</td>
</tr>
<tr>
<td>6</td>
<td>(-0.3)0.332-(0.2)(0.525)+0.1= -0.105</td>
<td>(O_j = \frac{1}{1 + e^{0.105}} = 0.475)</td>
</tr>
</tbody>
</table>
Calculation of Error at Each Node

<table>
<thead>
<tr>
<th>Unit j</th>
<th>Error j</th>
</tr>
</thead>
</table>
| 6 | 0.475(1-0.475)(1-0.475) =0.1311
 We assume T₆ = 1 |
| 5 | 0.525 x (1- 0.525)x 0.1311x
 (-0.2) = 0.0065 |
| 4 | 0.332 x (1-0.332) x 0.1311 x
 (-0.3) = -0.0087 |
Calculation of weights and Bias Updating

Learning Rate $l = 0.9$

<table>
<thead>
<tr>
<th>Weight</th>
<th>New Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{46}</td>
<td>$-0.3 + 0.9(0.1311)(0.332) = -0.261$</td>
</tr>
<tr>
<td>w_{56}</td>
<td>$-0.2 + (0.9)(0.1311)(0.525) = -0.138$</td>
</tr>
<tr>
<td>w_{14}</td>
<td>$0.2 + 0.9(-0.0087)(1) = 0.192$</td>
</tr>
<tr>
<td>w_{15}</td>
<td>$-0.3 + (0.9)(-0.0065)(1) = -0.306$</td>
</tr>
<tr>
<td>θ_6</td>
<td>$0.1 +(0.9)(0.1311)=0.218$</td>
</tr>
</tbody>
</table>

.........similarly

.........similarly
Network Pruning and Rule Extraction

• Network pruning
 – Fully connected network is hard to articulate
 – N input nodes, h hidden nodes and m output nodes lead to $h(m+N)$ weights
 – **Pruning**: Remove some of the links without affecting classification accuracy of the network
Some Facts to be Remembered

- NNs perform well, generally better with larger number of hidden units
- More hidden units generally produce lower error
- Determining network topology is difficult
- Choosing single learning rate impossible
- Difficult to reduce training time by altering the network topology or learning parameters
- NN with Subsets (see next slides) learning often produce better results
Some Facts to be Remembered

- **Rule extraction from networks**: network pruning
 - **Simplify** the network structure by removing weighted links that have the least effect on the trained network
 - **Then perform** link, unit, or activation value clustering
 - The set of input and activation values are studied to **derive rules** describing the relationship between the input and hidden unit layers

- **Sensitivity analysis**: assess the impact that a given input variable has on a network output.

- **The knowledge gained** from this analysis can be represented in **rules**
Advanced Features of Neural Network (may be covered by students presentations)

- Training with Subsets
- Modular Neural Network
- Evolution of Neural Network
Training with subsets

The Whole Dataset

Split the dataset into subsets that can fit into memory.

Subset 1 → NN 1
Subset 2 → NN 2
Subset 3 → NN 3
...
Subset n → NN n

A Single Neural Network Model
Training with subsets

• **Break** the data into **subsets**, that can fit in memory

• **Train** one neural network **on a series of the subsets**

• **The result** is a **single neural network model**

• In this way, we attempt to overcome the difficulty making use of **all the available data**, without leaving anything
Training with Subsets

- Select subsets of data
- Build a new classifier on a subset
- **Aggregate** with previous classifiers
- Compare **error** after adding a classifier
- Repeat as long as error decreases
Modular Neural Network

- Modular Neural Network

 Made up of a combination of several neural networks

The idea is to reduce the load for each neural network as opposed to trying to solve the problem on a single neural network.
Evolving Network Architectures

- **Small networks** without a hidden layer can’t solve problems such as XOR, that are **not** linearly separable.

 Large networks can easily **overfit** a problem to match the training data, **limiting** their ability to **generalize** a problem set.
Constructive vs Destructive Algorithm

• **Constructive** algorithms take a *minimal* network and **build up** new layers nodes and connections during training

• **Destructive** algorithms take a *maximal* network and **prunes unnecessary layers** nodes and connections during training
Faster Convergence

• Back propagation requires many epochs to converge

An epoch is one presentation of all the training examples in the dataset

• Some ideas to overcome this are:
 – Stochastic learning:
 – updates weights after each example, instead of updating them after one epoch
Faster Convergence

– **Momentum:**
– This *optimization* is due to the fact that it speeds up the learning when the *weight* are moving in a *single direction* continuously by increasing the size of steps.

– The closer this value is to one, the more each *weight change* will not only include the *current error*, but also the *weight change* from *previous examples* (which often leads to *faster convergence*)
Discriminative Classifiers

• Advantages
 – prediction accuracy is generally high
 • As compared to Bayesian methods – in general
 – robust, works when training examples contain errors
 – fast evaluation of the learned target function
 • Bayesian networks are normally slow

• Criticism
 – long training time
 – difficult to understand the learned function (weights)
 • Bayesian networks can be used easily for pattern discovery
 – not easy to incorporate domain knowledge
 • Easy in the form of priors on the data or distributions
SVM—Support Vector Machines

- A new classification method for both linear and nonlinear data
- It uses a nonlinear mapping to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyper plane (i.e., “decision boundary”)
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyper plane
- SVM finds this hyper plane using support vectors (“essential” training tuples) and margins (defined by the support vectors)
SVM—History and Applications

• **Vapnik** and colleagues (1992)—groundwork from Vapnik & Chervonenkis’ statistical learning theory in 1960s

• **Features:** training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)

• Used both for **classification** and **prediction**

• **Applications:**
 – handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests
SVM—General Philosophy

Small Margin

Large Margin

Support Vectors
Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data.
- The support vectors are the essential or critical training examples — they lie closest to the decision boundary (MMH).
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found.
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality.
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high.
SVM vs. Neural Network

- **SVM**
 - Relatively new concept
 - Deterministic algorithm
 - Nice Generalization properties
 - Hard to learn – learned in batch mode using quadratic programming techniques
 - Using kernels can learn very complex functions

- **Neural Network**
 - Relatively old
 - Nondeterministic algorithm
 - Generalizes well but doesn’t have strong mathematical foundation
 - Can easily be learned in incremental fashion
 - To learn complex functions—use multilayer perceptron (not that trivial)
SVM Related Links

• SVM Website
 – http://www.kernel-machines.org/

• Representative implementations
 – LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 – SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only C language
 – SVM-torch: another recent implementation also written in C.
SVM—Introduction Literature

• “Statistical Learning Theory” by Vapnik: extremely hard to understand, containing many errors too.

• C. J. C. Burges.
 – Better than the Vapnik’s book, but still written too hard for introduction, and the examples are so not-intuitive

• The book “An Introduction to Support Vector Machines” by N. Cristianini and J. Shawe-Taylor
 – Also written hard for introduction, but the explanation about the mercer’s theorem is better than above literatures

• The neural network book by Haykins
 – Contains one nice chapter of SVM introduction
Lazy vs. Eager Learning

- **Lazy vs. eager learning**
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify

- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space
Lazy Learner: Instance-Based Methods

• Instance-based learning:
 – Store training examples and delay the processing (“lazy evaluation”) until a new instance must be classified

• Typical approaches
 – k-nearest neighbor approach
 • Instances represented as points in a Euclidean space.
 – Locally weighted regression
 • Constructs local approximation
 – Case-based reasoning
 • Uses symbolic representations and knowledge-based inference
Rough Set Approach

- Rough sets are used to approximately or “roughly” define equivalent classes.
- A rough set for a given class C is approximated by two sets: a lower approximation (certain to be in C) and an upper approximation (cannot be described as not belonging to C).
- Finding the minimal subsets (reducts) of attributes for feature reduction is NP-hard but a discernibility matrix (which stores the differences between attribute values for each pair of data tuples) is used to reduce the computation intensity.
Fuzzy Set Approaches

- Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as using fuzzy membership graph).
- Attribute values are converted to fuzzy values
 - e.g., income is mapped into the discrete categories \{low, medium, high\} with fuzzy values calculated.
- For a given new sample, more than one fuzzy value may apply.
- Each applicable rule contributes a vote for membership in the categories.
- Typically, the truth values for each predicted category are summed, and these sums are combined.