Testing Classifier Accuracy

Professor Anita Wasilewska
Overview

• Introduction

• Basic Concept on training and testing

• Main Methods of predictive accuracy evaluations
The **main methods** of **predictive accuracy** evaluations are:

- **Resubstitution** \((N ; N)\)
- **Holdout** \((2N/3 ; N/3)\)
- **k-fold cross-validation** \((N- N/k ; N/k)\)
- **Leave-one-out** \((N-1 ; 1)\)

where \(N\) is the number of records (instances) in the dataset
Predictive Accuracy

• \textbf{REMEMBER:} we must know the \textit{classification (class attribute values)} of \textit{all instances (records)} used in the test procedure

• \textbf{Basic Concepts}

 \textbf{Success:} instance (record) \texttt{class} is classified correctly

 \textbf{Error:} instance \texttt{class} is classified \textbf{incorrectly}

 \textbf{Error rate:} a \textit{percentage of errors} made over the \textit{whole set} of instances (records) used for \textbf{testing}

 \textbf{Predictive Accuracy:} a \textit{percentage of well classified data} in the \textbf{testing} data set.
Correctly and Not Correctly Classified

- A record is correctly classified if and only if the following conditions hold:

 1. We can classify the record, i.e. there is a rule such that its LEFT side matches the record,
 2. Classification determined by the rule is correct, i.e. the RIGHT side of the rule matches the value of the record’s class attribute

OTHERWISE
- the record is not correctly classified
- Words used:
 - not correctly = incorrectly = misclassified
Predictive Accuracy

Example:

Testing Rules (testing record #1) = record #1.class - Succ
Testing Rules (testing record #2) not= record #2.class - Error
Testing Rules (testing record #3) = record #3.class - Succ
Testing Rules (testing record #4) = instance #4.class - Succ
Testing Rules (testing record #5) not= record #5.class - Error

Error rate:

2 errors: #2 and #5
Error rate = 2/5 = 40%

Predictive Accuracy: 3/5 = 60%
Resubstitution \((N ; N)\)

Testing the classification model by using the given data set (already used for "training")
Re-substitution Error Rate

• Re-substitution error rate is obtained from training data

• **Training Data Error:** uncertainty of the rules

• The error rate is not always 0%, but usually (and hopefully) very low!

• Re-substitution error rate indicates only how good (bad) are our results (rules, patterns, NN) on the TRAINING data

• It expresses some knowledge about the algorithm used
Re-substitution Error Rate

• Re-substitution error rate is usually used as the performance measure:

The training error rate reflects imprecision of the training results.

The lower training error rate the better.

In the case of rules it is called rules accuracy.
Predictive Accuracy

Predictive accuracy reflects how **good** are the **training results** with respect to the **test data**

The higher predictive accuracy **the better**

(N:N) **re-substitution does not compute** predictive accuracy

- **Re-substitution error rate** = **training data error rate**
Why not always 0%?

- The **error rate** on the **training data** is **not always 0%** because **algorithms** involve different (often statistical) **parameters** and **measures** that lead to **uncertainties**
- It is used for **“parameters tuning”**
- The **error** on the training data is **NOT** a good **indicator of performance** on future data **since it does not measure** any **not yet seen data**
- **Solution:**

 Split data into **training** and **test** set
Training and test set

- **Training** and **Test** data may differ in nature, but **must have** the same format.

Example:

Given customer data from two different towns A and B.

We **train the classifier** with the data from town A and we **test it** on data from town B, and vice-versa.
Learning Process

- It is important that the **test data is not used** in any way to create the training **rules**

- In fact, **learning process** operate in three stages:

 Stage 1: build the **basic patterns** structure (training)

 Stage 2: optimize **parameter settings**; can use \((N:N)\) re-substitution
 - parameter tuning

 Stage 3: use **test data** to compute **predictive accuracy/error rate**
Validation Data

- Proper **learning process** uses three sets of data:
 - training data, validation data and test data
 - validation data is **used** for parameter tuning
 - validation data is **not** a test data
 - validation data can be the training data, or a subset of training data
- The **test data** can not be used for parameter tuning!
Training and testing

• Generally, the larger is the training set, the better is the classifier.

• Larger test data assures more accurate predictive accuracy, or error estimation.

• Remember:

• the error rate of re-substitution (N;N) can tell us ONLY whether the algorithm used in training is good or not good, or how good it is.
Training and testing

• **Holdout procedure**
 is a method of **splitting** original data into training and test data sets

• **Dilemma:**
 • ideally both training and test data should be large!
 • What to do if the **amount of data** is limited?
 • How to **split** the data into training and test subsets?
 • **Disjoint sets** - in the best way
Holdout

Train-and-Test (for large sample sizes) (> 1000))

- a training sample for generating the classification model
- a test sample to test the model on independent objects with given classifications (randomly selected, 20-30% of the complete data set)
Holdout (N- N/3 ; N/3)

• The holdout method reserves a certain amount of data for testing and uses the remainder for training – so they are disjoint!

• Usually, one third \((N/3)\) of data is used for testing, and the rest \((N - N/3) = (2N/3)\) for training

• The choice of records for train and test data is essential

We usually perform a cycle: Train-and-test; repeat
Repeated Holdout

- **Holdout** can be made more reliable by repeating the process with different sub-samples (subsets of data):
 1. In each iteration, a certain portion is randomly selected for training, the rest of data is used for testing
 2. The **error rates** or **predictive accuracy** on different iterations are averaged to yield an overall error rate, or overall predictive accuracy
- Repeated holdout still **is not optimal**: the different test sets overlap
k-fold cross-validation (N - N/k ; N/k)

• This is a cross-validation used to prevent the overlap of the test sets

• First step: split data into k disjoint subsets
 • D1, … Dk, of equal size, called folds

• Second step: use each subset in turn for testing, the remainder for training

• Training and testing is performed k times
The **predictive accuracy** estimate is the overall number of correct classifications from all \(k \) iterations, divided by the total number of records in the initial data, i.e.

The predictive accuracy results are averaged;

We adopt the **union of rules** as the **new final set** of rules.
Stratified cross-validation

• In the **stratified cross-validation**
• the **folds are stratified**; i.e.
• the **class distribution** of the tuples
• (records) in **each fold** is
• approximately **the same as** in the
• **initial data**
10 folds cross-validation

• In general,
• **10-fold cross-validation** or **stratified 10-fold cross-validation**
• is **recommended** and
• **widely used** even if computational power allows using more folds

• **Why 10?**

 Extensive experiments have shown that this is the **best choice** to get an accurate estimate due to its relatively low bias and variance

So interesting!
Improve cross-validation

• Even better: repeated cross-validation

Example:

10-fold cross-validation is repeated 10 times and predictive accuracy results are averaged;

We adopt the union of rules as the new set of rules
A particular form of cross-validation

- k-fold cross-validation: \((N - N/k ; N/k)\)
- If \(k = N\), what happens?
- We get \((N-1; 1)\)

It is called “leave one out”

Each sample (record) is used the same number of times for training and once for testing.
Leave-one-out (N-1 ; 1)

Cross-Validation (for moderated sample sizes) \rightarrow Sampling without replacement
- Dividing the given data set into \textit{m subsamples of equal size}
- Each subsample is tested by using a model generated from the remaining \((m-1)\) subsamples
\rightarrow \textbf{Leave-One-Out:} \(m = \) Number of objects
Leave-one-out (N-1 ; 1)

• **Leave-one-out** is a particular form of cross-validation

 We set number of *folds* to number of *training* instances, i.e. $k = N$

 For N instances we build classifier (repeat the training - testing) n times
Leave-one-out Procedure

- Let $C(i)$ be the classifier (rules, patterns) built on all data except record x_i
- Evaluate $C(i)$ on x_i
- Determine if it is correct or in error
- Repeat for all $i=1,2,...,n$
- The total error is the proportion of all the incorrectly classified x_i
- The final set of rules (patterns) is a union of all rules obtained in the process
Leave-one-out (N-1 ; 1)

- Makes the **best** use of the **data**
- Involves **no random** sub-sampling
- **Stratification** is not possible
- **Computationally** expensive
- MOST commonly used