Decision Tree Algorithms
Short History

- **Late 1970s - ID3 (Interactive Dichotomiser)** by J. Ross Quinlan.
 - This work expanded on earlier work on concept learning system, described by E. B. Hunt, J. Marin, and P. T. Stone.
- **Early 1980 - C4.5 a successor of ID3** by Quinlan.
 - C4.5 later became a benchmark to which newer supervised learning algorithms, are often compared.
- **In 1984**, a group of statisticians (L. Breinman, J. Friedman, R. Olshen, and C. Stone) published the book “Classification and Regression Trees (CART)”.
Decision Tree Algorithms
Short History

• The “Classification and Regression Trees (CART)” book described a generation of binary decision trees.

• ID3, C4.5 and CART were invented independently of one another yet follow a similar approach for learning decision trees from training tuples.

• These two cornerstone algorithms spawned a flurry of work on decision tree induction.
Decision Tree Algorithms
General Description

• **ID3, C4.5, and CART** adopt a greedy (i.e., non-backtracking) approach.
• It this approach decision trees are constructed in a **top-down recursive divide-and-conquer** manner.
• **Most algorithms for decision tree induction also follow such a top-down approach.**
• All of the algorithms start with a **training set** of tuples and their associated class labels (classification data table).
• The training set is recursively partitioned into smaller subsets as the tree is being built.
BASIC Decision Tree Algorithm

General Description

• **A Basic Decision Tree Algorithm** presented here is as published in J. Han, M. Kamber book “Data Mining, Concepts and Techniques”, 2006 (second Edition)

• The algorithm may appear long, but is quite straightforward.

• Basic Algorithm strategy is as follows.

• The algorithm is called with three parameters: D, $attribute_list$, and $Attribute_selection_method$.

• We refer to D as a data partition.

• Initially, D is the complete set of training tuples and their associated class labels (input training data).
Basic Decision Tree Algorithms

General Description

• The parameter \textit{attribute_list} is a list of attributes describing the tuples.

• \textit{Attribute_selection_method} specifies a heuristic procedure for selecting the attribute that “best” discriminates the given tuples according to class.

• \textit{Attribute_selection_method} procedure employs an attribute selection measure, such as Information Gain or the Gini Index

• Whether the tree is strictly binary is generally driven by the attribute selection measure.
Basic Decision Tree Algorithms

General Description

• Some attribute selection measures, like the Gini Index, enforce the resulting tree to be binary.
• Others, like the Information Gain, do not.
• They, as Information Gain does, allow multi-way splits (i.e. two or more branches to be grown from a node). In this case the branches represent all the (discrete) values of the nodes attributes.
Basic Decision Tree Algorithms

General Description

- The tree starts as a single node N.
- The node N represents the training tuples in D (training data table).
- This is the step 1 in the algorithm.
- If the tuples in D are all of the same class, then node N becomes a leaf and is labeled with that class.
- Theses are the steps 2 and 3 in the algorithm.

- The steps 4 and 5 in the algorithm are terminating conditions.
- All of the other terminating conditions are explained at the end of the algorithm.
Basic Decision Tree Algorithms
General Description

- **Otherwise,** the algorithm calls `attribute_selection_method` to determine the splitting criterion.

- The splitting criterion tells us which attributes to test at node \(N \) in order to determine the “best” way to separate or partition the tuples in \(D \) into individual classes (sub-tables) called partitions.

- This is the **step 1** in the algorithm.

- The splitting criterion also tells us which branches to grow from node \(N \) with respect to the outcomes of the chosen test.

- More specifically, the **splitting criterion** indicates the splitting attribute and may also indicate either a split-point or a splitting subset.
Basic Decision Tree Algorithms

General Description

• The splitting criterion is determined so that, ideally, the resulting partitions at each branch are as “pure” as possible.

• A partition is **PURE** if all of the tuples in it belong to the same class.

• In other words, if we were to split up the tuples in D according to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting partitions to be as pure as possible.
Basic Decision Tree Algorithms

General Description

• The node N is labeled with the splitting criterion, which serves as a test at the node.

• A branch is grown from node N for each of the outcomes of the splitting criterion.

• The tuples in D are partitioned accordingly.

• (step 10 and 11).

• There are three possible scenarios, as illustrated in figure 6.4 in the handout.
Basic Decision Tree Algorithms

General Description

• Let \(A \) be the splitting attribute.
• \(A \) has distinct values (attribute values)
• \(\{a1, a2, \ldots, av\} \)
• The values \(\{a1, a2, \ldots, av\} \) of the attribute \(A \) are based on the training data within the run of the algorithm
• This is the step 7 in the algorithm.
• We have the following cases depending of the TYPE of the values of the split attribute \(A \).
Basic Decision Tree Algorithms

General Description

1. A is discrete-valued:
 • In this case, the outcomes of the test at node N correspond directly to the known (in training set) values of A.
 • A branch is created for each value a_j of the attribute A.
 • The branch is labeled with that value a_j.
 • There are as many branches the number of values of A in the training data.
 • Partition D_j is the subset of class-labeled tuples in D having value a_j of A.
 • Partition D_j is a sub-table of the table at the node N.
 • Because all of the tuples in a given partition have the same value for A, then A need not be considered in any future partitioning of the tuples.
 • Therefore the attribute A it is removed from attribute_list.
 • Theses are the steps 8 and 9 in the algorithm.
Basic Decision Tree Algorithms

General Description

• **A is continuous-valued.**
 • In this case, the test at node N has two possible outcomes, corresponding to the conditions
 • \(A \leq \text{split} _ \text{point} \) and \(A > \text{split} _ \text{point} \)
 • The \textit{split} _ \textit{point} is the split-point returned by \textit{Attribute} _ \textit{selection} _ \textit{method}.
 • In practice, the split-point is often taken as the midpoint of two known adjacent values of A and therefore may not actually be a pre-existing value of A from the training data.
• **Two branches are grown from N and labeled**
 • \(A \leq \text{split} _ \text{point} \) and \(A > \text{split} _ \text{point} \)
 • The tuples (table at the node N) are \textit{partitioned} in two sets (sub-tables) \(D_1 \) and \(D_2 \).
 • \(D_1 \) holds the subset of class-labeled tuples in D for which \(A \leq \text{split} _ \text{point} \), while \(D_2 \) holds the rest.
Basic Decision Tree Algorithms

General Description

• A is discrete-value and a binary tree must be produced (as described by the attribute selection measure or algorithm being used): The test at node N is of the form “A?SA?”. SA is the splitting subset for A, returned by attribute_selection_method as part of the splitting criterion. It is a subset of the known values of A. if a given tuples has value aj of A and if aj?SA, then the test at node N is satisfied. Two branches are grown from N. By convention, the left branch out of N is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D that satisfy the test. The right branch out of N is labeled no so that D2 corresponds to the subset of class-labeled tuples from D that do not satisfy the test.

• The algorithm uses the same process recursively to form a decision tree for the tuples at each resulting partition, Dj, of D (step 14).
Basic Decision Tree Algorithms

General Description

• **TERMINATING CONDITIONS**
 • The recursive partitioning **stops** only when any one of the following terminating conditions is true.
 • **1. All of the tuples in partition D (represented at node N) belong to the same class** (step 2 and 3), or
 • **2. There are no remaining attributes** on which the tuples may be further partitioned (step 4).
 • In this case, **majority voting** is employed (step 5).
 • **Majority voting** involves converting node N into a leaf and labeling it with the most common class in D which is a set of training tuples and their associated class labels. Alternatively, the class distribution of the node tuples may be stored.
 • **3. There are no tuples for a given branch**, that is, a partition Dj is empty.
 • In this case, a leaf is created with the **majority class in D**.
 • The decision tree is returned
 • This is the **step 14** of the algorithm.
Basic Decision Tree Algorithm

Algorithm: *Generate_decision_tree*

Input:
- *Data partition, D*, which is a set of training tuples and their associated class labels.
- *Attribute_list*, the set of candidate attributes
- *Attribute_selection_method*, a procedure to determine the splitting criterion that “best” partitions the data tuples into individual classes. This criterion consists of a *splitting_attribute* and, possibly, either a *split point* or *splitting subset*.

Output: a decision tree

Method:
1. Create a node N;
2. If tuples in D are all of the same class, C then
3. Return N as a leaf node labeled with the class C;
4. If *attribute_list* is empty then
5. Return N as a leaf node labeled with the majority class in D; //majority voting
6. Apply *attribute_selection_method* (D, attribute_list) to find the “best” *splitting_criterion*;
7. Label node N with *splitting_criterion*;
8. If *splitting_attribute* is discrete-valued and
 - Multiway splits allowed then // not restricted to binary trees
 - *attribute_list*→*attribute_list* - *splitting_attribute*; //remove *splitting_attribute*
9. For each outcome j of *splitting_criterion* // partition the tuples and grow sub-trees for each partition
10. Let Dj be the set of a data tuples in D satisfying outcome j; // a partition
11. If Dj is empty then
12. Attach a leaf labeled with the majority class in D to node N;
13. Else attach the node returned by *Generate_decision_tree* (Dj, attribute list) to node N;
14. Return N;