BASIC DECISION TREE INDUCTION
FULL ALGORITHM

cse352

Professor Anita Wasilewska
Stony Brook University
Decision Tree Algorithms

Short History

• **Late 1970s** - **ID3 (Interactive Dichotomiser)** by J. Ross Quinlan

• This work expanded on earlier work on concept learning system, described by E. B. Hunt, J. Marin, and P. T. Stone

• **Early 1980** - **C4.5 a successor of ID3** by Quinlan

• **C4.5** later became a **benchmark** to which newer supervised learning algorithms, are often compared

• **In 1984**, a group of statisticians (L. Breinman, J. Friedman, R. Olshen, and C. Stone) published the book **“Classification and Regression Trees (CART)”**
Decision Tree Algorithms
Short History

• The “Classification and Regression Trees (CART)” book described a generation of binary decision trees.

• ID3, C4.5 and CART were invented independently of one another yet follow a similar approach for learning decision trees from training tuples.

• These cornerstone algorithms spawned a flurry of work on decision tree induction.
Decision Tree Algorithms

General Description

• **ID3, C4.5, and CART** adopt a **greedy** (i.e. a non-backtracking) approach

• It this approach decision trees are constructed in a **top-down recursive divide-and-conquer** manner

• **Most algorithms** for decision tree induction also follow such a **top-down approach**

• All of the algorithms start with a **training set** of tuples and their **associated class labels** (classification data table)

• The **training set** is recursively partitioned into smaller subsets as the tree is being built
BASIC Decision Tree Algorithm
General Description

• A Basic Decision Tree Algorithm presented here is as published in J.Han, M. Kamber book “Data Mining, Concepts and Techniques”, 2006 (second Edition)
• The algorithm may appear long, but is quite straightforward
• Basic Algorithm strategy is as follows

• The algorithm is called with three parameters: D, $attribute_list$, and $Attribute_selection_method$
• We refer to D as a data partition
• Initially, D is the complete set of training tuples and their associated class labels (input training data)
Basic Decision Tree Algorithm
General Description

- The parameter **attribute_list** is a list of **attributes** describing the tuples
- **Attribute_selection_method** specifies a **heuristic procedure** for **selecting** the **attribute** that “best” discriminates the given tuples according to **class**
- **Attribute_selection_method** procedure employs an **attribute selection measure**, such as **Information Gain** or the **Gini Index**
- Whether the tree is **strictly binary** is generally driven by the **attribute selection measure**
Basic Decision Tree Algorithm
General Description

• Some attribute selection measures, like the Gini Index enforce the resulting tree to be binary
• Others, like the Information Gain, do not
• They, as Information Gain does, allow multi-way splits
• They allow for two or more branches to be grown from a node
• In this case the branches represent all the (discrete) values of the nodes attributes
Basic Decision Tree Algorithm
General Description

- The tree **starts** as a single **node** N
 - The **node** N represents the **training tuples in** D (training data table)
- This is the **step 1** in the **algorithm**

- **IF** the tuples in D are all of the **same class**
 - **THEN** **node** N becomes a **leaf** and is **labeled** with that **class**

- Theses are the **steps 2** and **3** in the **algorithm**

- The **steps 4** and **5** in the **algorithm** are **terminating conditions**
 - All of the **terminating conditions** are explained at the **end** of the **algorithm**
Basic Decision Tree Algorithm

General Description

• Otherwise, the algorithm calls *attribute_selection_method* to determine the *splitting criterion*

• The *splitting criterion* tells us which attributes to test at node \(N \) in order to determine the “best” way to separate or *partition* the tuples in \(D \) into individual classes (*sub-tables*) called *partitions*

• This is the *step 6* in the *algorithm*

• The *splitting criterion* also tells us *which branches* to grow from node \(N \) with respect to the outcomes of the chosen test

• More specifically, the *splitting criterion* indicates the *splitting attribute* and may also indicate either a *split-point* or a *splitting subset*
Basic Decision Tree Algorithm
General Description

• The splitting criterion is determined so that, ideally, the resulting partitions at each branch are as “pure” as possible.

• A partition is PURE if all of the tuples in it belong to the same class.

• In other words, if we were to split up the tuples in D according to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting partitions to be as pure as possible.
Basic Decision Tree Algorithm
General Description

• The node N is labeled with the splitting criterion, which serves as a test at the node
• This is step 7
• A branch is grown from node N for each of the outcomes of the splitting criterion
• The tuples in D are partitioned accordingly
• These are steps 10 and 11

• There are three possible scenarios, as illustrated in figure 6.4 on your handout
Basic Decision Tree Algorithm
General Description

• Let A be the \textit{splitting attribute}

• A has distinct values (attribute values)

• a_1, a_2, \ldots, a_v

• The \textit{values} a_1, a_2, \ldots, a_v of the \textit{attribute} A are based on the \textit{training data} for the run of the \textit{algorithm}

• This is the \textit{step 7} in the algorithm

• We have the following \textit{cases} depending of the \textit{TYPE} of the \textit{values} of the \textit{split attribute} A
1. **A** is discrete-valued:
 - In this case, the **outcomes** of the **test** at node **N** correspond **directly** to the known **in training set** values of **A**
 - A **branch** is created for each **value** **aj** of the attribute **A**
 - The **branch** is **labeled** with that **value** **aj**.
 - There are **as many branches** the **number** of **values** of **A** in the **training data**
2. A is continuous-valued

- In this case, the test at node \(N \) has two possible outcomes, corresponding to the conditions
- \(A \leq \text{split} _\text{point} \) and \(A > \text{split} _\text{point} \)
- The \text{split} _\text{point} is the split-point returned by \text{Attribute selection method}
- In practice, the \text{split} _\text{point} is often taken as the midpoint of two known adjacent values of \(A \)
- Therefore the \text{split} _\text{point} may not actually be a pre-existing value of \(A \) from the \text{training data}
Basic Decision Tree Algorithm
General Description

• Two branches are grown from N and labeled $A \leq \text{split_point}$ and $A > \text{split_point}$
• The tuples (table at the node N) are partitioned sub-tables D1 and D2
• D1 holds the subset of class-labeled tuples in D for which $A \leq \text{split_point}$
• D2 holds the rest
Basic Decision Tree Algorithms
General Description

3. A is discrete-valued and a binary tree must be produced

- The test at node N is of the form “A?SA?”
- SA is the splitting subset for A
- SA is returned by attribute_selection_method as part of the splitting criterion
- SA is a subset of the known values of A
- IF a given tuple has value aj of A and aj belongs to SA, THEN the test at node N is satisfied
Basic Decision Tree Algorithms

General Description

- **Two branches** are grown from **N**
- The **left branch** out of **N** is labeled **yes** so that **D1** corresponds to the subset of class-labeled tuples in **D** that **satisfy** the **test**
- The **right branch** out of **N** is labeled **no** so that **D2** corresponds to the subset of class-labeled tuples from **D** that **do not satisfy** the **test**

- **The algorithm** uses the same process **recursively** to form a decision tree for the tuples **at each** resulting partition, **Dj** of **D**
- This is **step 14**
Basic Decision Tree Algorithms
General Description

• **TERMINATING CONDITIONS**

• The recursive partitioning stops only when any one of the following terminating conditions is true

• **1.** All of the tuples in partition D (represented at node N) belong to the same class (step 2 and 3), or

• **2.** There are no remaining attributes on which the tuples may be further partitioned (step 4)

• In this case, majority voting is employed (step 5)
Basic Decision Tree Algorithms
General Description

- **Majority voting** involves converting node N into a **leaf** and labeling it with **the most common class** in D which is a set of training tuples and their associated class labels.
- **Alternatively**, the **class distribution** of the node tuples may be stored.
- **3.** There are no tuples for a given branch, that is, a partition D_j is empty.
- In this case, a **leaf** is created with **the majority class** in the a set of training tuples D.
- The **decision tree** is returned.
- This is the **step 15** of the algorithm.
Basic Decision Tree Algorithm

- Algorithm: *Geneate_decision_tree*
- Input:
 - Data partition, D, which is a set of training tuples and their associated class labels.
 - *Attribute_list*, the set of candidate attributes
 - *Attribute_selection_method*, a procedure to determine the splitting criterion that “best” partitions the data tuples into individual classes. This criterion consists of a *splitting_attribute* and, possibly, either a *split point* or *splitting subset*.

- Output: a decision tree

- Method:
 1. create a node N;
 2. if tuples in D are all of the same class, C then
 3. return N as a leaf node labeled with the class C;
 4. if *attribute_list* is empty then
 5. return N as a leaf node labeled with the majority class in D; //majority voting
 6. apply *attribute_selection_method* (D, attribute_list) to find the “best” splitting criterion;
 7. label node N with splitting criterion;
 8. if *splitting_attribute* is discrete-valued and
 - multiway splits allowed then // not restricted to binary trees
 9. attribute_list→attribute_list - splitting_attribute; //remove splitting_attribute
 10. for each outcome j of splitting_criterion // partition the tuples and grow sub-trees for each partition
 11. let D_j be the set of a data tuples in D satisfying outcome j; // a partition
 12. if D_j is empty then
 13. attach a leaf labeled with the majority class in D to node N;
 14. else attach the node returned by *Geneate_decision_tree* (D_j, attribute list) to node N;
 15. return N;
Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the **highest information gain**
- Let p_i be the **probability** that an arbitrary tuple in D belongs to class C_i, estimated by $|C_{i,D}|/|D|$
- **Expected information** (entropy) needed to classify a tuple in D:

$$\text{Info}(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- **Information** needed (after using A to split D into v partitions) to classify D:

$$\text{Info}_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times I(D_j)$$

- **Information gained** by branching on attribute

$$\text{Gain}(A) = \text{Info}(D) - \text{Info}_A(D)$$
Computing Information-Gain for Continuous-Value Attributes

• Let attribute A be a **continuous-valued attribute**
• Must determine the *best split point* for A

 – Sort the value A in increasing order

 – Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*

 • \((a_i + a_{i+1})/2\) is the midpoint between the values of \(a_i\) and \(a_{i+1}\)

 – The point with the *minimum expected information requirement* for A is selected as the split-point for A
• Split:

 – D1 is the set of tuples in D satisfying \(A \leq\) split-point, and D2 is the set of tuples in D satisfying \(A >\) split-point
Gain Ratio for Attribute Selection (C4.5)

- **Information gain measure** is biased towards attributes with a large number of values.
- **C4.5** (a successor of ID3) uses **gain ratio** to overcome the problem (normalization to information gain):
 \[
 SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)
 \]

 \[\text{GainRatio}(A) = \frac{\text{Gain}(A)}{\text{SplitInfo}(A)}\]

- **Ex.** \[\text{SplitInfo}_A(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14} \right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14} \right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14} \right) = 0.926\]

 \[\text{gain}_\text{ratio}(\text{income}) = 0.029/0.926 = 0.031\]

- The attribute with the **maximum gain ratio** is selected as the splitting attribute.
Gini index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, gini index, $\text{gini}(D)$ is defined as

$$\text{gini}(D) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_j is the relative frequency of class j in D

• If a data set D is split on A into two subsets D_1 and D_2, the gini index $\text{gini}(D)$ is defined as

$$\text{gini}_A(D) = \frac{|D_1|}{|D|} \text{gini}(D_1) + \frac{|D_2|}{|D|} \text{gini}(D_2)$$

• Reduction in Impurity:

$$\Delta\text{gini}(A) = \text{gini}(D) - \text{gini}_A(D)$$

• The attribute provides the smallest $\text{gini}_{\text{split}}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)
Gini index (CART, IBM IntelligentMiner)

- Ex. D has 9 tuples in buys_computer = “yes” and 5 in “no”

\[
gini(D) = 1 - \left(\frac{9}{14} \right)^2 - \left(\frac{5}{14} \right)^2 = 0.459
\]

- Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂

\[
gini_{income\in\{low,medium\}}(D) = \left(\frac{10}{14} \right) Gini(D₁) + \left(\frac{4}{14} \right) Gini(D₁)
\]

\[
= \frac{10}{14} (1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14} (1 - (\frac{1}{4})^2 - (\frac{3}{4})^2)
\]

\[
= 0.450
\]

but \(gini_{\{medium,high\}}\) is 0.30 and thus the best since it is the lowest

- Case: All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes
Comparing Attribute Selection Measures

• The three measures, in general, return good results but
 – Information gain:
 • biased towards multivalued attributes
 – Gain ratio:
 • tends to prefer unbalanced splits in which one partition is much smaller than the others
 – Gini index:
 • biased to multivalued attributes
 • has difficulty when # of classes is large
 • tends to favor tests that result in equal-sized partitions and purity in both partitions
Other Attribute Selection Measures

• **CHAID:** a popular decision tree algorithm, measure based on χ^2 test for independence

• **C-SEP:** performs **better** than info. gain and gini index in certain cases

• **G-statistics:** has a close approximation to χ^2 distribution

• **MDL** (Minimal Description Length) principle (i.e., the simplest solution is preferred):

 – The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree

• **Multivariate splits** (partition based on multiple variable combinations)

 – **CART:** finds multivariate splits based on a linear comb. of attrs.

• **Which attribute selection measure is the best?**

 – Most give good results, **none is significantly superior** than others
Overfitting and Tree Pruning

- **Overfitting:** An induced tree may *overfit* the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples

- **Two approaches to avoid overfitting**
 - **Prepruning:** Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - **Postpruning:** Remove branches from a “fully grown” tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the “best pruned tree”
Enhancements to Basic Decision Tree Induction

• Allow for continuous-valued attributes
 – Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals

• Handle missing attribute values
 – Assign the most common value of the attribute
 – Assign probability to each of the possible values

• Attribute construction
 – Create new attributes based on existing ones that are sparsely represented
 – This reduces fragmentation, repetition, and replication
Classification in Large Databases

• **Classification**—a classical problem extensively studied by statisticians and machine learning researchers

• **Scalability:** Classifying data sets with millions of examples and hundreds of attributes with reasonable speed

• **Why decision tree induction in data mining?**
 – relatively faster learning speed (than other classification methods)
 – convertible to simple and easy to understand classification rules
 – can use SQL queries for accessing databases
 – comparable classification accuracy with other methods
Scalable Decision Tree Induction Methods

- **SLIQ** (EDBT ’96 — Mehta et al.)
 - Builds an index for each attribute and only class list and the current attribute list reside in memory
- **SPRINT** (VLDB ’96 — J. Shafer et al.)
 - Constructs an attribute list data structure
- **PUBLIC** (VLDB ’98 — Rastogi & Shim)
 - Integrates tree splitting and tree pruning: stop growing the tree earlier
- **RainForest** (VLDB ’98 — Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)
- **BOAT** (PODS ’99 — Gehrke, Ganti, Ramakrishnan & Loh)
 - Uses bootstrapping to create several small samples