1 YES/NO questions

1. For any binary relation \(R \subseteq A \times A \), \(R^* \) exists.
 Justify: definition

2. \(R^* = R \cup \{(a, b) : \text{there is a path from } a \text{ to } b\} \).
 Justify: book definition

3. \(R^* = R \) for \(R = \{(a, b), (b, c), (a, c)\} \).
 Justify: \((a, a) \in R^* \) (trivial path from \(a \) to \(a \) always exist) but \((a, a) \notin R \)

4. All infinite sets have the same cardinality.
 Justify: \(|N| < |2^N| \) by Cantor Theorem and \(N, 2^N \) are infinite

5. Set \(A \) is uncountable iff \(R \subseteq A \) (\(R \) is the set of real numbers).
 Justify: \(R, 2^R \) are both uncountable and \(R \) is not a subset of \(2^R \) \((R \not\subseteq 2^R) \) but \(R \in 2^R \).

6. Let \(A \neq \emptyset \) such that there are exactly 25 partitions of \(A \). It is possible to define 20 equivalence relations on \(A \).
 Justify: one can define up to 25 (as many as partitions) of equivalence classes

7. There is a relation that is equivalence and order at the same time.
 Justify: equality relation

8. Let \(A = \{n \in N : n^2 + 1 \leq 15\} \). It is possible to define 8 alphabets \(\Sigma \subseteq A \).
 Justify: \(A \) has 4 elements, so we have \(2^4 > 8 \) subsets

9. There is exactly as many languages over alphabet \(\Sigma = \{a\} \) as real numbers.
 Justify: \(|\Sigma^*| = \aleph_0, |2^{\Sigma^*}| = |R| = C| \)

10. Let \(\Sigma = \{a, b\} \). There are more than 20 words of length 4 over \(\Sigma \).
 Justify: There are exactly \(2^4 = 16 \) words of length 4 over \(\Sigma \) and 16 < 20.

11. \(L^* = \{w_1...w_n : w_i \in L, i = 1, 2, n, n \geq 1\} \).
 Justify: \(n \geq 0 \)

12. \(L^+ = LL^* \).
 Justify: the problem is only with cases \(e \in L \) or \(e \notin L \). When \(e \in L \), then \(e \in L^+ \), and always \(e \in L^* \), hence \(e \in LL^* \).
 When \(e \notin L \), then \(e \notin L^+ \), and always \(e \in L^* \), hence \(e \in LL^* \) and \(L^+ \neq LL^* \)

13. \(L^+ = L^* - \{e\} \).
 Justify: only when \(e \notin L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \notin L^* - \{e\} \).
13. If \(L = \{ w \in \{0,1\}^* : w \text{ has an unequal number of 0's and 1's} \} \), then \(L^* = \{0,1\}^* \).

Justify: \(1 \in L, 0 \in L \) so \(\{0,1\} \subseteq L \subseteq \Sigma^* \), hence \(\{0,1\}^* \subseteq L^* \subseteq (\Sigma^*)^* = \Sigma^* = \{0,1\}^* \) and \(L^* = \{0,1\}^* \).

14. For any languages \(L_1, L_2, (L_1 \cup L_2) \cap L_1 = L_1 \).

Justify: languages are sets and \((A \cup B) \cap A = A \).

15. For any languages \(L_1, L_2 \),
\[
L_1^* = L_2^* \text{ iff } L_1 = L_2
\]

Justify: Consider \(L_1 = \{a,e\}, L_2 = \{a\} \). Obviously, \(L_1 \neq L_2 \) and \(L_1^* = L_2^* \).

16. For any languages \(L_1, L_2, (L_1 \cup L_2)^* = L_1^* \).

Justify: languages are sets so it is true only when \(L_1 \subseteq L_2 \).

17. \((\emptyset \cap a) \cup b^* \cap \emptyset^* \) describes a language with only one element.

Justify: \(\emptyset \cup b^* = b^*, b^* \cap \{e\} = \{e\} \)

18. \((\emptyset \cap a) \cup b^* \cap a^* \) is a finite regular language.

Justify: \(b^* \cap a^* = \{e\} = \emptyset^* \)

19. \(\{a\} \cup \{e\} \cap \{ab\}^* \) is a finite regular language.

Justify: \(\{a\} \cup \{e\} \cap \{ab\}^* = \{a,e\} \cap \{ab\}^* = \{e\} = \emptyset^* \)

20. Any regular language has a finite description.

Justify: by definition \(L = \mathcal{L}(r) \) and \(r \) is a finite string.

21. Any finite language is regular.

Justify: \(L = \{w_1 \cup ... \cup w_i\} \) and \(\{w_i\} \) has a finite description \(w_i \)

22. Every deterministic automata is also non-deterministic.

Justify: any function is a relation

The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: \(K \neq \emptyset \), because \(s \in K \). If \(\Sigma = \emptyset \) the set of all configuration of non-deterministic automata (book definition) is a subset of \(K \times \emptyset \cup \{e\} \neq \emptyset \) as it always contains \((s,e) \). For the lecture definition, the set of all configuration is a subset of \(K \times \Sigma^* \) and always \(e \in \Sigma^* \) hence always \((s,e) \in K \times \Sigma^* \).

23. Let \(M \) be a finite state automaton, \(L(M) = \{w \in \Sigma^* : (q,w) \xrightarrow{M}(s,e)\} \).

Justify: \(L(M) = \{w \in \Sigma^* : \exists q \in F((s,w) \xrightarrow{M}(q,e))\} \)

24. For any automata \(M, L(M) \neq \emptyset \).

Justify: if \(\Sigma = \emptyset \) or \(F = \emptyset \), \(L(M) = \emptyset \)

25. \(L(M_1) = L(M_2) \) iff \(M_1, M_2 \) are deterministic.

Justify: Let \(M_1 \) be an automata over \(\{a,b\} \) with with \(\Delta = \{(q_0,ab,q_0)\}, F = \{q_0\}, s = q_0 \) and let \(M_2 \) be an automata over \(\{a,b\} \) with with \(\Delta = \{(q_0,ab,q_0),(q_0,e,q_1)\}, F = \{q_1\}, s = q_0 \).

\(L(M_1) = L(M_2) = (ab)^* \) and both are non-deterministic.
26. DFA and NDFA compute the same class of languages.
 \textbf{Justify:} basic theorem

27. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$
 \textbf{Justify:} the class of finite automata is closed under $\ast, \cup, -, \cap$

\section*{TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA}

\textbf{BOOK DEFINITION:} $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when
\[\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K\]

OBSERVE that Δ is always finite because K, Σ are finite sets.

\textbf{LECTURE DEFINITION:} $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and
\[\Delta \subseteq K \times \Sigma^* \times K\]

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

\section*{SOLVING PROBLEMS}

\textbf{you can use any of these definitions.}

\section*{2 Problems}

\textbf{Problem 1} Let L be a language defines as follows
\[L = \{w \in \{a, b\}^*: \text{every } a \text{ is either immediately proceeded or followed by } b\}\]

1. Describe a regular expression r such that $L(r) = L$ (Meaning of r is L).
 \textbf{Solution} $L = (b \cup ab \cup ba \cup bab)^*$

2. Construct a finite state automata M, such that $L(M) = L$.
 \textbf{Solution}
 \textbf{Components} of M are:
 \[K = \{s\}, \{a, b\}, \quad s, \quad F = \{s\}, \]
 \[\Delta = \{(s, b, s), (s, ab, s), (s, ba, s), (s, bab, s)\}\]

 \textbf{Some elements} of $L(M)$ are: $b, bb, baab, abab, abbbba, bbbababbabbbabb$

\textbf{Problem 2}

1. Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?
 \textbf{Solution}
 \[e \in L(M) \quad \text{iff} \quad s \in F.\]

2. Let $M = (K, \Sigma, \Delta, s, F)$ be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?
Solution Now we have two possibilities: \(s \in F \) (computation of length 0) or there is a computation of length \(> 0 \) from \((s, e)\) to \((q, e)\) for \(q \in F \) when \(s \not\in F \).

Problem 3 Let

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\}, \ s = q_0 \)
\(\Sigma = \{a, b\}, \ F = \{q_1, q_2, q_3\} \) and
\(\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\} \)

1. List some elements of \(L(M) \).

Solution \(a, b, aa, aba, abba \)

2. Write a regular expression for the language accepted by \(M \). Simplify the solution.

Solution

\[
L(M) = ab^* \cup ab^* a \cup ba^* b = ab^* (e \cup a) \cup ba^* (e \cup b).
\]

3. Define a deterministic \(M' \) such that \(M \approx M' \), i.e. \(L(M) = L(M') \).

Solution We complete \(M \) do a deterministic \(M' \) by adding a TRAP state \(q_4 \) and put
\[
\Delta' = \delta = \Delta \cup \{(q_2, a, q_4), (q_2, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}
\]

Justify why \(M \approx M' \).

Solution \(q_4 \) is a trap state, it does not influence \(L(M) \).

Problem 4 Let \(M \) be defined as follows

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\}, \ s = q_0 \)
\(\Sigma = \{a, b, c\}, \ F = \{q_0, q_2, q_3\} \) and
\(\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \).

Find the regular expression describing the \(L(M) \). Simplify it as much as you can. Explain your steps. Does \(e \in L(M) \)?

Solution

\[
L = (abc)^* a(bc)^* \cup e \cup a^* ba^*.
\]

Observe that \(e \in L \) as \(q_0 \in F \) and also \((q_0, e, q_3) \in \Delta \) and \(q_3 \in F \).

Write down (you can draw the diagram) an automata \(M' \) such that \(M' \equiv M \) and \(M' \) is defined by the BOOK definition.

Solution

Solution We apply the "stretching" technique to \(M \) and the new \(M' \) is as follows.

\[
M' = (K \cup \{p_1, p_2, p_3\} \ \Sigma, \ s = q_0, \ \Delta', \ F' = F)
\]

for \(K = \{q_0, q_1, q_2\}, \ s = q_0 \)
\(\Sigma = \{a, b\}, \ F = \{q_0, q_2, q_3\} \) and
\(\Delta' = \{(q_0, a, q_1), (q_0, c, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, e)\}

\]

4
Problem 5 For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_2\}$ and

$\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), (q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}$

Write 2 steps of the general method of transformation the NDFA M defined above into an equivalent DFA M'.

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step 2: Evaluate δ on all states that result from step 1.

Reminder: $E(q) = \{p \in K : (q, e) \overset{M}{\rightarrow} (p, e)\}$ and

$$\delta(Q, \sigma) = \bigcup \{E(p) : \exists q \in Q. \ (q, \sigma, p) \in \Delta\}.$$

Solution Step 1: First we need to evaluate $E(q)$, for all $q \in K$.

$E(q_0) = \{q_0, q_1, q_3\} = S$, $E(q_1) = \{q_1\}$, $E(q_2) = \{q_2q_3\} \in F$, $E(q_3) = \{q_3\}$

$$\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_3) \cup E(q_2) \cup \emptyset = \{q_2, q_3\} \in F$$

$$\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_1) \cup \emptyset \cup \emptyset = \{q_1\}$$

Solution Step 2:

$$\delta(\{q_2, q_3\}, a) = \emptyset \cup \emptyset = \emptyset$$

$$\delta(\{q_2, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\}$$

$$\delta(\{q_1\}, a) = E(q_2) = \{q_2, q_3\} \in F$$

$$\delta(\{q_1\}, b) = \emptyset$$