CSE 303 PRACTICE FINAL SOLUTIONS

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing Machines) and Problems from Q1 – Q4, Practice Q1 – Q4, and Midterm and Practice midterm. I will choose some of these problems for your FINAL TEST.

THE FINAL TEST will also contain YES/NO questions from the questions below, Q1 – Q4, Practice quizzes and Midterm and Practice Midterm. There will be more questions from the second part of the semester then from the first.

PART 1: Yes/No Questions Circle the correct answer. Write ONE-SENTENCE justification.

1. There is a set A and an equivalence relation defined on A that is an order relation with 2 Maximal elements.
 Justify: $A = \{a, b\}, R = " = "$
 y

2. $(ab \cup a^*b)^*$ is a regular language.
 Justify: this is a regular expression
 n

3. Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ.
 Justify: $0^* = \{e\}$ and $L = \{e\} \subseteq \Sigma^*$
 y

4. A is uncountable iff $|A| = c$ (continuum).
 Justify: 2^R, R real numbers, is uncountable and $|2^R| > c$
 n

5. There are uncountably many languages over $\Sigma = \{a\}$.
 Justify: $|\{a\}^*| = \aleph_0$ and $|2^{\{a\}}^*| = c$ and any set of cardinality c is uncountable.
 y

6. Let RE be a set of regular expressions. $L \subseteq \Sigma^*$ is regular iff $L = L(r), r \in RE$.
 Justify: definition
 y

7. $L^* = \{w \in \Sigma^* : \exists q \in F(s, w) \vdash^*_M (q, e)\}$.
 Justify: this is definition of $L(M)$, not L^*
 n
8. \((a^*b \cup \phi^*)\) is a regular expression.
 Justify: definition

9. \(\{a\}^*\{b\} \cup \{ab\}\) is a regular language
 Justify: it is a union of two regular languages, and hence is regular

10. Let \(L\) be a language defined by \((a^*b \cup ab)\), i.e. (shorthand) \(L = a^*b \cup ab\).
 Then \(L \subseteq \{a, b\}^*\).
 Justify: definition

11. \(\Sigma = \{a\}\), there are \(c\) (continuum) languages over \(\Sigma\).
 Justify: \(|2^{\{a\}^*}| = c\)

12. \(L^* = L^+ - \{e\}\).
 Justify: only when \(e \notin L\)

13. \(L^* = \{w_1 \ldots w_n, w_i \in L, i = 1, \ldots, n\}\).
 Justify: \(i = 0, 1, \ldots, n\)

14. For any languages \(L_1, L_2, L_3 \subseteq \Sigma^*\), if \(L_1 \subseteq L_2\), then \((L_1 \cup L_2)^* = L_2^*\).
 Justify: languages are sets

15. For any languages \(L_1, L_2 \subseteq \Sigma^*\), if \(L_1 \subseteq L_2\), then \((L_1 \cup L_2)^* = L_2^*\).
 Justify: languages are sets, so \((L_1 \cup L_2)^* = L_2^*\)

16. \(((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*\) represents a language \(L = \{e\}\).
 Justify: \(((\{e\} \cap \{a\}) \cup \{b\}^*) \cap \{e\} = \{b\}^* \cap \{e\} = \{e\}\)

17. \(L = ((\phi^* \cup b) \cap (b^* \cup \phi))\) (shorthand) has only one element.
 Justify: \(\{e, b\} \cap \{b\}^* = \{e, b\}\)

18. \(L(M) = \{w \in \Sigma^*: (q, w) \xrightarrow{s} M (s, e)\}\).
 Justify: only when \(q \in F\)

19. If \(M\) is a FA, then \(L(M) \neq \phi\).
 Justify: take \(M\) with \(\Sigma = \phi\)

20. If \(M\) is a nondeterministic FA, then \(L(M) \neq \phi\).
 Justify: take \(M\) with \(\Sigma = \phi\) or \(F = \phi\)

2
21. \(L(M_1) = L(M_2) \) iff \(M_1 \) and \(M_2 \) are finite automata.
 Justify: take as \(M_1 \) any automata such that \(L(M_1) \neq \phi \) and \(M_2 \) such that \(L(M_2) = \phi \)

22. A language is regular iff \(L = L(M) \) and \(M \) is a deterministic automaton.
 Justify: \(M \) is a finite automata

23. If \(L \) is regular, then there is a nondeterministic \(M \), such that \(L = L(M) \).
 Justify: a finite automata

24. Any finite language is CF.
 Justify: any finite language is regular and \(RL \subset CFL \)

25. Intersection of any two regular languages is CF language.
 Justify: Regular languages are closed under intersection and \(RL \subset CFL \)

26. Union of a regular and a CF language is a CF language.
 Justify: \(RL \subseteq CFL \) and FCL are closed under union

27. \(L_1 \) is regular, \(L_2 \) is CF, \(L_1, L_2 \subseteq \Sigma^* \), then \(L_1 \cap L_2 \subseteq \Sigma^* \) is CF.
 Justify: theorem

28. If \(L \) is regular, there is a PDA \(M \) such that \(L = L(M) \).
 Justify: FA is a PDA operating on an empty stock

29. If \(L \) is regular, there is a CF grammar \(G \), such that \(L = L(G) \).
 Justify: \(RL \subseteq CFL \)

30. \(L = \{a^nb^nca^n : n \geq 0\} \) is CF.
 Justify: is not CF, as proved by Pumping Lemma for CF languages

31. \(L = \{a^nb^n : n \geq 0\} \) is CF.
 Justify: \(L = L(G) \) for \(G \) with \(R = \{S \rightarrow aSb|e\} \)

32. Let \(\Sigma = \{a\} \), then for any \(w \in \Sigma^*, w^Rw \in \Sigma^* \).
 Justify: \(a^R = a \) and \(w^R = w \) for \(w \in \{a\}^* \)

33. \(A \rightarrow Ax, A \in V, x \in \Sigma^* \) is a rule of a regular grammar.
 Justify: this is a rule of a left-linear grammar and we defined regular
grammar as a right-linear

34. Regular grammar has only rules \(A \to xA, A \to x, x \in \Sigma^*, A \in V - \Sigma \).
 Justify: not only, \(A \to xB \) for \(B \neq A \) is also a rule of a regular grammar

35. Let \(G = (\{S, (,), \}, \{(,), \}, R, S) \) for \(R = \{S \to SS | (S)\} \). \(L(G) \) is regular.
 Justify: \(L(G) = \emptyset \) and hence regular

36. The grammar with rules \(S \to AB, B \to b | bB, A \to e | aAb \) generates a language \(L = \{a^kb^j : k < j\} \).
 Justify: the rule \(A \to e | aAb \) produces the same amount of a’s and b’s, the rule \(B \to bB \) adds only b’s.
 More formally, let’s look at the derivations
 \[
 S \Rightarrow AB \Rightarrow ... \Rightarrow a^n b^n B \Rightarrow ... \Rightarrow a^n b^n b^k \Rightarrow a^n b^{n+k} \in L(G) \text{ and } n < n + k, \text{ and } a^n b^{n+1} \in L(G) \text{ and } n < n + 1
 \]
 we get \(a^n b^{n+k} \in L(G) \) and \(n < n + k \), and \(a^n b^{n+1} \in L(G) \) and \(n < n + 1 \)

37. \(L = \{w \in \{a, b\}^* : w = w^R\} \) is regular.
 Justify: we use Pumping Lemma; while pumping the string \(a^k b a^k \) with \(y \) containing only a’s we get that \(xy^2z \not\in L \)

38. We can always show that \(L \) is regular using Pumping Lemma.
 Justify: we use Pumping Lemma to prove (if possible) that \(L \) is not regular

39. \((p, e, \beta), (q, \gamma)\) \(\in \Delta \) means: read nothing, move from \(p \) to \(q \)
 Justify: and replace \(\gamma \) by \(\beta \) on the top of the stack

40. \(L = \{a^n b^m c^n : n, m \in N\} \) is CF.
 Justify: when \(n = m \) we get \(L = \{a^n b^n c^n : n \in N\} \) that is not CF

41. If \(L \) is regular, then there is a CF grammar \(G \), such that \(L = L(G) \).
 Justify: \(RL \subseteq CF \)

42. There is countably many non CF languages over \(\Sigma \neq \emptyset \)
 Justify: contradicts the fact that \(|\Sigma^*| = c \), i.e. is uncountable

43. Every subset of a regular language is a language.
 Justify: subset of a set is a set
44. A parse tree is always finite.
 Justify: derivations are finite.

45. Any regular language is accepted by some PD automata.
 Justify: $RL = FA, FA \subseteq PDA$.

46. Class of context-free languages is closed under intersection.
 Justify: $L_1 = \{a^n b^n c^m, n, m \geq 0\}$ is CF, $L_1 = \{a^n b^n c^n, n, m \geq 0\}$ is CF, but $L_1 \cap L_2 = \{a^n b^n c^n, n \geq 0\}$ is not CF.

47. There is countably many non-regular languages.
 Justify: contradicts the fact that $|\Sigma^*| = \mathfrak{c}$, i.e. is uncountable.

48. Every subset of a regular language is a regular language.
 Justify: $L = \{a^n b^n : n \geq 0\} \subseteq a^* b^*$ and L is not regular.

49. A CF language is a regular language.
 Justify: $L = \{a^n b^n : n \geq 0\}$ is CF and not regular.

50. Class of regular languages is closed under intersection.
 Justify: theorem.

51. A regular language is a CF language.
 Justify: Regular grammar is a special case of a context-free grammar.

52. Every subset of a regular language is a regular language.
 Justify: $L_1 = a^n b^n$ is a non-regular subset of a regular language $L_2 = a^* b^*$.

53. Any regular language is accepted by some PD automata.
 Justify: Any regular language is accepted by a finite automata, and a finite automaton is a PD automaton (that never operates on the stock).

54. A parse tree is always finite.
 Justify: Any derivation of w in a CF grammar is finite.

55. Parse trees are equivalence classes.
 Justify: represent equivalence classes.

56. For all languages, all grammars are ambiguous.
 Justify: programming languages are never inherently ambiguous.

57. A CF grammar G is called ambiguous if there is $w \in L(G)$ with at least two distinct parse trees.
 Justify: definition.
58. A CF language \(L \) is inherently ambiguous iff all context-free grammars \(G \), such that \(L(G) = L \) are ambiguous.
 Justify: definition

59. Programming languages are sometimes inherently ambiguous.
 Justify: never

60. The largest number of symbols on the right-hand side of any rule of a CF grammar \(G \) is called called a fanout and denoted by \(\phi(G) \).
 Justify: definition

61. The Pumping Lemma for CF languages uses the notion of the fanout.
 Justify: condition on the length of \(w \in L \)

62. Turing Machines are as powerful as today’s computers.
 Justify: thesis

63. It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa.
 Justify: this is Church - Turing Hypothesis, not a theorem

64. Church’s Thesis says that Turing Machines are the most powerful.
 Justify: We adopt a Turing Machine that halts on all inputs as a formal notion of "an algorithm".

65. Turing Machines can read and write.
 Justify: by definition

66. A configuration of a Turing machine \(M = (K, \Sigma, \delta, s, H) \) is any element of a set \(K \times \Sigma^* \times (\Sigma^* (\Sigma - \{\#\}) \cup \{e\}) \), where \(\# \) denotes a blanc symbol.
 Justify: a configuration is an element of a set \(K \times \Delta \Sigma^* \times (\Sigma^* (\Sigma - \{\#\}) \cup \{e\}) \)

67. A computation of a Turing machine can start at any position of \(w \in \Sigma \).
 Justify: by definition

68. A computation of a Turing machine can start at any state.
 Justify: definition

69. In Turing machines, words \(w \in \Sigma^* \) can’t contain blanc symbols.
 Justify: \(\Sigma \) contains the blanc symbol

70. A Turing machine \(M \) decides a language \(L \subseteq \Sigma^* \), if for any word \(w \in \Sigma^* \) the following is true.

 If \(w \in L \), then \(M \) accepts \(w \); and if \(w \not\in L \) then \(M \) rejects \(w \).
 Justify: any word \(w \in \Sigma_0^* \), for \(\Sigma_0 = \Sigma - \{\#\} \)
QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that
\[(L_1\Sigma^*L_2)^* = \Sigma^*\]

Solution: By definition, $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$ and $\Sigma^* \subseteq \Sigma^*$. Hence
\[(L_1\Sigma^*L_2)^* \subseteq \Sigma^*.\]

We have to show that also $\Sigma^* \subseteq (L_1\Sigma^*L_2)^*$. Let $w \in \Sigma^*$ we have that also $w \in (L_1\Sigma^*L_2)^*$ because $w = e^2 e$ and $e \in L_1$ and $e \in L_2$.

QUESTION 2 Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton M, such that
$L(M) = (ab)^*(ba)^*$.

Draw a state diagram and specify all components K, Σ, Δ, s, F of M. Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of M are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1\}$, $s = q_0$, $F = \{q_0, q_1\}$.

We define Δ as follows.
$\Delta = \{(q_0, ab, q_0), (q_0, a, q_1), (q_1, ba, q_1)\}$.

Strings accepted: $ab, abab, abba, ababba, ababbaba,$

Solution 2 We use the book definition.

Components of M are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$.

We define Δ as follows.
$\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}$.

Strings accepted: $ab, abab, abba, ababba, ababbaba,$

QUESTION 3 Given a Regular grammar $G = (V, \Sigma, R, S)$, where
$V = \{a, b, S, A\}$, $\Sigma = \{a, b\}$,
$R = \{S \to aS | A | e, \ A \to abA | a | b\}$.

7
1. Construct a finite automaton M, such that $L(G) = L(M)$.

Solution We construct a non-deterministic finite automata

$$M = (K, \Sigma, \Delta, s, F)$$

as follows:

- $K = (V - \Sigma) \cup \{f\}$, $\Sigma = \Sigma$, $s = S$, $F = \{f\}$
- $\Delta = \{(S, a, S), (S, e, A), (S, e, f), (A, ab, A), (A, a, f), (A, b, f)\}$

2. Trace a transitions of M that lead to the acceptance of the string $aaaababa$, and compare with a derivation of the same string in G.

Solution

The accepting computation is:

$$(S, aaaababa) \vdash_{M} (S, aaababa) \vdash_{M} (S, aababa) \vdash_{M} (S, ababa) \vdash_{M} (A, ababa) \vdash_{M} (A, aba) \vdash_{M} (A, a) \vdash_{M} (f, e)$$

G derivation is:

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaS \Rightarrow aaaS \Rightarrow aaaA \Rightarrow aaaaA \Rightarrow aaaaA \Rightarrow aaaaaba \Rightarrow aaaaaba$$

QUESTION 4 Construct a context-free grammar G such that

$$L(G) = \{w \in \{a, b\}^* : w = w^R\}.$$

Justify your answer.

Solution $G = (V, \Sigma, R, S)$, where

- $V = \{a, b, S\}$, $\Sigma = \{a, b\}$,
- $R = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid e\}$.

Derivation example: $S \Rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

$$ababa^R = ((ab)a(ba))^R = (ba)^Ra^Ra^R(ab)^R = ababa.$$

Observation 1 We proved in class that for any $x, y \in \Sigma^*$, $(xy)^R = y^Rx^R$.

From this we have that

$$(xyz)^R = ((xy)z)^R = z^R(xy)^R = z^Ry^Rx^R$$
Grammar correctness justification: observe that the rules $S \rightarrow aS | bS | e$ generate the language $L_1 = \{ww^R : w \in \Sigma^*\}$. With additional rules $S \rightarrow a | b$ we get hence the language $L = L_1 \cup \{waw^R : w \in \Sigma^*\} \cup \{wbw^R : w \in \Sigma^*\}$. Now we are ready to prove that $L = L(G) = \{w \in \{a, b\}^* : w = w^R\}$.

Proof Let $w \in L$, i.e. $w = xx^R$ or $w = xax^R$ or $w = xbx^R$. We show that in each case $w = w^R$ as follows.

c1: $w^R = (xx^R)^R = (x^R)^R = x = w$ (used property: $(x^R)^R = x$).

c2: $w^R = (xax^R)^R = (x^R)^Ra^Rx^R = xax^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $a^R = a$).

c3: $w^R = (xbx^R)^R = (x^R)^Rb^Rx^R = xbx^R = w$ (used Observation 1 and properties: $(x^R)^R = x$ and $b^R = b$).

QUESTION 5 Construct a pushdown automaton M such that $L(M) = \{w \in \{a, b\}^* : w = w^R\}$

Solution 1 We define M as follows: $M = (K, \Sigma, \Gamma, \Delta, s, F)$

M components are

$K = \{s, f\}$, $\Sigma = \{a, b\}$, $\Gamma = \{a, b\}$, $F = \{f\}$

$\Delta = \{((s, a, e), (s, a)), ((s, b, e), (s, b)), ((s, e, e), (f, e)), (s, a, e), (f, a)),

((s, b, e), (f, b)), ((f, a, a), (f, e)), (f, b, b), (f, e))\}$

Trace a transitions of M that lead to the acceptance of the string $ababa$.

Solution

$S \quad ababa \quad e$
$S \quad baba \quad a$
$S \quad aba \quad ba$
$f \quad ba \quad ba$
$f \quad a \quad a$
$f \quad e \quad e$
QUESTION 6 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \geq 0\}.$$

Solution $M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

- $K = \{s, f\}$,
- $\Sigma = \{a, b\}$,
- $\Gamma = \{a\}$,
- $s, F = \{f\}$,
- $\Delta = \{(s, b, e), (s, aa), ((s, c, e), (f, e)), ((f, a, a), (f, e))\}$

Explain the construction. Write motivation.

Solution M operates as follows: Δ pushes aa on the top of the stock while M is reading b, switches to f (final state) non-deterministically; and pops a while reading a (all in final state). M puts on the stock two a’s for each b, and then remove all a’s from the stock comparing them with a’s in the word while in the final state.

Trace a transitions of M that leads to the acceptance of the string $bbaaaa$.

Solution The accepting computation is:

\[
(s, bbaaaa, e) \vdash_M (s, ba, aa) \vdash_M (s, aaaa, aaaa) \\
\vdash_M (f, aaaa, aaaa) \vdash_M (f, aa, aa) \vdash_M (f, a, a) \vdash_M (f, e, e)
\]

Solution 2 $M = (K, \Sigma, \Gamma, \Delta, s, F)$ for

- $K = \{s, f\}$,
- $\Sigma = \{a, b\}$,
- $\Gamma = \{b\}$,
- $s, F = \{f\}$,
- $\Delta = \{(s, b, e), (s, b), ((s, e, e), (f, e)), ((f, aa, b), (f, e))\}$

QUESTION 7 Use PUMPING LEMMA to prove that $L = \{ww : w \in \{a, b\}^*\}$ in NOT regular. Consider ALL cases.

Solution Assume L is regular, then by PM Lemma there is $k \geq 0$ such that the Condition holds for all $w \in L$. Take $w = a^kba^kb$. Observe that $|w| = 2k + 2 \geq k$, and so $|w| \geq k$. So there are $x, y, z \in \Sigma^*$, such that $y \neq e$, $w = xyz$ and $|xy| \leq k$.

Observe that y can’t contain first (or the second) b. If $y = b$ then $x = a^k$ and $|xy| = k + 1 > k$. Argument for the second b, and any location between first and the second b is the same. It proves that $x = a^j, y = a^i, z = a^m ba^kb$, for $i > 0, m \geq 0, j \geq 0$ and $j + i + m = k$.

By PM Lemma $xy^n z \in L$ for all $n \geq 0$. Consider $xy^2 z = a^j a^{2i} a^m ba^kb$. Observe that $xy^2 z \in L$ iff $j + 2i + m = k$. On the other hand we had that $j + i + m = k$, and it gives $2i = i$. This contradiction proves that L is not regular.
Question 8 Use Pumping Lemma to prove that
\[L = \{a^{n^2} : n \geq 0 \} \]
is not CF.

Solution look at the solutions to hmk 4.

QUESTION 9 Here is the definition:

Let \(L \subseteq \Sigma^* \). For any \(x, y \in \Sigma^* \) we define an equivalence relation on \(\Sigma^* \) as follows.
\[x \approx_L y \text{ iff } \forall z \in \Sigma^* (xz \in L \iff yz \in L). \]

Let now \(L = (aab \cup ab)^* \).

FIND all equivalence classes of \(x \approx_L y \).

Write all definitions and show work.

Solution We evaluate the equivalence classes as follows.
\[[e] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (z \in L \iff yz \in L) \} = L. \]

Observe that the main operator of \(L \) construction is \(* \), hence \(yz \in L \) iff \(x, y \in L \).

\[[a] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (az \in L \iff yz \in L) \} = La. \]

Observe that \(az \in L \) iff \(z \in bL \) (\(z \) begins with \(b \)), or \(z \in aL \) (\(z \) begins with \(a \)). Let \(z \in bL \), hence when \(yz \in L \), we get that \(y \in Laa \) or \(y \in La \) (\(y \) ends with \(aa \), or \(a \)). But the case \(y \in Laa \) is impossible, as for \(y = aa(e \in L) \) we get \(\forall z \in \Sigma^* (az \in L \iff aaz \in L) \) what is not true for \(z = ab; aab \in L \) and \(aab \notin L \).

Let now \(z \in aL \) we get \(yz \in L \) iff \(y \in La \).

\[[aa] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (aaaz \in L \iff yz \in L) \} = Laa. \]

Observe that \(aaaz \in L \) iff \(z \in bL \) (\(z \) begins with \(b \)), and hence \(yz \in L \) iff \(y \in Laa \) or \(y \in La \) (\(y \) ends with \(aa \), or \(a \)). But the case \(y \in Laa \) is impossible, as for \(y = a \) we get \(\forall z \in \Sigma^* (aaaz \in L \iff az \in L) \) what is not true for \(z = ab \).

Now observe that \(bb \notin L, aaa \notin L \) and \(L \) can’t contain any word in which \(bb \) or \(aaa \) appear. So we evaluate, as the next step \([bb]\) and \([aa]\).

\[[aaa] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (aaaz \in L \iff yz \in L) \} \]
\[[bb] = \{ y \in \Sigma^* : \forall z \in \Sigma^* (bbz \in L \Leftrightarrow yz \in L) \} \]

Observe that the statements: \(aaaz \in L, bbz \in L \) are false for all \(z \) and hence we are looking for \(y \in \Sigma^* \) such that the statement \(yz \in L \) is false for all \(z \in \Sigma^* \). So \(y \) is any word from \(\Sigma^* \) that must contain at least one appearance of \(aaa \) or \(bb \). It means that \(y \in \Sigma^* (aaa \cup bb) \Sigma^* \) and

\[[aaa] = [bb] = \Sigma^* (aaa \cup bb) \Sigma^*. \]

We have hence 4 equivalence classes:

\[L, \ La, \ Laa, \ \Sigma^* (aaa \cup bb) \Sigma^*. \]

Question 10 Show that the following language \(L \) is NOT CF.

\[L = \{ w \in \{a, b, c\}^* : \text{all numbers of accurences of } a, b, c \text{ in } w \text{ are different} \} \]

Solution First we represent \(L \) as \(L = L_1 \cup L_2 \cup L_3 \), for \(L_1 = \{ w \in \{a, b, c\}^* : \#a \neq \#b \text{ in } w \} \) - CF;

\(L_2 = \{ w \in \{a, b, c\}^* : \#b \neq \#c \text{ in } w \} \) - CF;

\(L_3 = \{ w \in \{a, b, c\}^* : \#c \neq \#a \text{ in } w \} \) - CF;

and use the closure of CF languages under union.