Practice Final is DUE LAST DAY OF CLASSES. YOU DON'T NEED to solve the PUMPING LEMMA and Turing Machine Problems - they will NOT appear on the FINAL. I included them so show you the SOLUTIONS.

FOR FINAL study Practice Final (minus PUMPING LEMMA and Turing Machines) and Problems from Q1 – Q4, Practice Q1 – Q4, and Midterm and Practice midterm. I will choose some of these problems for your Final.

PART 1: Yes/No Questions Circle the correct answer to ALL questions. Write ONE-SENTENCE justification to ten questions.

1. There is a set A and an equivalence relation defined on A that is an order relation with 2 Maximal elements.
 Justify: $\text{y} \quad \text{n}$

2. $(ab \cup a^*b)^*$ is a regular language.
 Justify: $\text{y} \quad \text{n}$

3. Let $\Sigma = \phi$, there is $L \neq \phi$ over Σ.
 Justify: $\text{y} \quad \text{n}$

4. A is uncountable iff $|A| = c$ (continuum).
 Justify: $\text{y} \quad \text{n}$

5. There are uncountably many languages over $\Sigma = \{a\}$.
 Justify: $\text{y} \quad \text{n}$

6. Let RE be a set of regular expressions. $L \subseteq \Sigma^*$ is regular iff $L = L(r)$, $r \in RE$.
 Justify: $\text{y} \quad \text{n}$
7. \(L^* = \{ w \in \Sigma^* : \exists q \in F (s, w) \vdash_M^* (q, e) \} \).
 Justify:

8. \((a^{*}b \cup \phi^*) \) is a regular expression.
 Justify:

9. \(\{a\}^{*}\{b\} \cup \{ab\} \) is a language (regular).
 Justify:

10. Let \(L \) be a language defined by \((a^{*}b \cup ab) \), i.e (shorthand) \(L = a^{*}b \cup ab \).
 Then \(L \subseteq \{a, b\}^{*} \).
 Justify:

11. \(\Sigma = \{a\} \), there are \(c \) (continuum) languages over \(\Sigma \).
 Justify:

12. \(L^* = L^{+} - \{e\} \).
 Justify:

13. \(L^* = \{w_1 \ldots w_n, w_i \in L, i = 1, \ldots, n\} \).
 Justify:

14. For any languages \(L_1, L_2, L_3 \subseteq \Sigma^* \), \((L_1 \cup L_2) \cap (L_1 \cup L_3) = (L_1 \cap L_2) \cup (L_1 \cap L_3) \).
 Justify:

15. For any languages \(L_1, L_2 \subseteq \Sigma^* \), if \(L_1 \subseteq L_2 \), then \((L_1 \cup L_2)^* = L_2^* \).
 Justify:

16. \(((\phi^* \cap a) \cup (a \cup b^*)) \cap \phi^* \) represents a language \(L = \{e\} \).
 Justify:

17. \(L = ((\phi^* \cup b) \cap (b^* \cup \phi)) \) (shorthand) has only one element.
 Justify:

18. \(L(M) = \{w \in \Sigma^* : (q, w) \vdash_M^* (s, e)\} \).
 Justify:

19. If \(M \) is a FA, then \(L(M) \neq \phi \).
 Justify:
20. If \(M \) is a nondeterministic FA, then \(L(M) \neq \emptyset \).

\[\text{Justify:} \]

21. \(L(M_1) = L(M_2) \) iff \(M_1 \) and \(M_2 \) are finite automata.

\[\text{Justify:} \]

22. A language is regular iff \(L = L(M) \) and \(M \) is a deterministic automaton.

\[\text{Justify:} \]

23. If \(L \) is regular, then there is a nondeterministic \(M \), such that \(L = L(M) \).

\[\text{Justify:} \]

24. Any finite language is CF.

\[\text{Justify:} \]

25. Intersection of any two regular languages is CF language.

\[\text{Justify:} \]

26. Union of a regular and a CF language is a CF language.

\[\text{Justify:} \]

27. \(L_1 \) is regular, \(L_2 \) is CF, \(L_1, L_2 \subseteq \Sigma^* \), then \(L_1 \cap L_2 \subseteq \Sigma^* \) is CF.

\[\text{Justify:} \]

28. If \(L \) is regular, there is a PDA \(M \) such that \(L = L(M) \).

\[\text{Justify:} \]

29. If \(L \) is regular, there is a CF grammar \(G \), such that \(L = L(G) \).

\[\text{Justify:} \]

30. \(L = \{a^n b^n c^n : n \geq 0\} \) is CF.

\[\text{Justify:} \]

31. \(L = \{a^n b^n : n \geq 0\} \) is CF.

\[\text{Justify:} \]

32. Let \(\Sigma = \{a\} \), then for any \(w \in \Sigma^* \), \(w^R w \in \Sigma^* \).

\[\text{Justify:} \]
33. $A \rightarrow Ax, A \in V, x \in \Sigma^*$ is a rule of a regular grammar.
Justify: y n
34. Regular grammar has only rules $A \rightarrow xA, A \rightarrow x, x \in \Sigma^*, A \in V - \Sigma$.
Justify: y n
35. Let $G = (\{S,,\}, \{,\}, R, S)$ for $R = \{S \rightarrow SS | (S)\}$. $L(G)$ is regular.
Justify: y n
36. The grammar with rules $S \rightarrow AB, B \rightarrow b | bB, A \rightarrow e | aAb$ generates a language $L = \{a^k b^j : k < j\}$.
Justify: y n
37. $L = \{w \in \{a, b\}^* : w = w^R\}$ is regular.
Justify: y n
38. We can always show that L is regular using Pumping Lemma.
Justify: y n
39. $((p,e,\beta), (q,\gamma)) \in \Delta$ means: read nothing, move from p to q.
Justify: y n
40. $L = \{ a^n b^m c^n : n, m \in N \}$ is CF.
Justify: y n
41. If L is regular, then there is a CF grammar G, such that $L = L(G)$.
Justify: y n
42. There is countably many non CF languages.
Justify: y n
43. Every subset of a regular language is a regular language.
Justify: y n
44. A parse tree is always finite.
Justify: y n
45. Any regular language is accepted by some PD automata.
Justify: y n
46. Every subset of a regular language is a language.
 Justify: \[y \quad n \]

47. A parse tree is always finite.
 Justify: \[y \quad n \]

48. Parse trees are equivalence classes.
 Justify: \[y \quad n \]

49. For some languages, all grammars are ambiguous.
 Justify: \[y \quad n \]

50. A CF grammar G is called ambiguous if there is \(w \in L(G) \) with at least two distinct parse trees.
 Justify: \[y \quad n \]

51. A CF language \(L \) is inherently ambiguous iff all context-free grammars \(G \), such that \(L(G) = L \) are ambiguous.
 Justify: \[y \quad n \]

52. Programming languages are sometimes inherently ambiguous.
 Justify: \[y \quad n \]

53. The largest number of symbols on the right-hand side of any rule of a CF grammar G is called called a fanout and denoted by \(\phi(G) \).
 Justify: \[y \quad n \]

54. The Pumping Lemma for CF languages uses the notion of the fanout.
 Justify: \[y \quad n \]

55. Any regular language is accepted by some PD automata.
 Justify: \[y \quad n \]

56. Class of context-free languages is closed under intersection.
 Justify: \[y \quad n \]

57. There is countably many non-regular languages.
 Justify: \[y \quad n \]

58. Every subset of a regular language is regular.
 Justify: \[y \quad n \]
59. A CF language is a regular language.
 Justify: y n

60. Class of context-free languages is closed under intersection.
 Justify: y n

61. Class of regular languages is closed under intersection.
 Justify: y n

62. A regular language is a CF language.
 Justify: y n

63. Turing Machines are as powerful as today’s computers.
 Justify: y n

64. It is proved that everything computable (algorithm) is computable by a Turing Machine and vice versa.
 Justify: y n

65. Church’s Thesis says that Turing Machines are the most powerful.
 Justify: y n

66. Turing Machines can read and write.
 Justify: y n

67. A configuration of a Turing machine \(M = (K, \Sigma, \delta, s, H) \) is any element of a set \(K \times \Sigma^* \times (\Sigma^*(\Sigma - \{\#\}) \cup \{e\}) \), where \# denotes a blank symbol.
 Justify: y n

68. A computation of a Turing machine can start at any position of \(w \in \Sigma \).

69. A computation of a Turing machine can start at any state.
 Justify: y n

70. In Turing machines, words \(w \in \Sigma^* \) can’t contain blank symbols.
 Justify: y n

71. A Turing machine \(M \) decides a language \(L \subseteq \Sigma^* \), if for any word \(w \in \Sigma^* \) the following is true.
 If \(w \in L \), then \(M \) accepts \(w \); and if \(w \not\in L \) then \(M \) rejects \(w \).
 Justify: y n
PART 2: Problems

WRITE solutions to TWO problems of your choice. SOLVE all of them, a practice.

QUESTION 1 Let Σ be any alphabet, L_1, L_2 two languages over Σ such that $e \in L_1$ and $e \in L_2$. Show that

$$(L_1 \Sigma^* L_2)^* = \Sigma^*$$

Solution:

QUESTION 2 Construct a non-deterministic finite automaton M, such that

$L(M) = (ab)^* (ba)^*$.

Draw a state diagram and specify all components K, Σ, Δ, s, F. Justify your construction by listing strings accepted the state diagram of M.

State Diagram of M is:

Some elements of $L(M)$ as defined by the state diagram are:
Components of M are:

QUESTION 3 Given a **Regular grammar** $G = (V, \Sigma, R, S)$, where

- $V = \{a, b, S, A\}$, $\Sigma = \{a, b\}$,
- $R = \{S \rightarrow aS \mid A \mid e, \quad A \rightarrow abA \mid a \mid b\}$.

1. Construct a finite automaton M, such that $L(G) = L(M)$. You can draw a diagram.

2. Trace a transitions of M that lead to the acceptance of the string $aaaababa$, and compare with a derivation of the same string in G.

8
QUESTION 4 Construct a context-free grammar G such that

$$L(G) = \{ w \in \{a, b\}^* : w = w^R \}.$$

Justify your answer.

QUESTION 5 Construct a pushdown automaton M such that

$$L(M) = \{ w \in \{a, b\}^* : w = w^R \}$$

Components of M are:

Explain your construction. Write motivation.
Diagram of M is:

Trace a transitions of M that lead to the acceptance of the string $ababa$.

QUESTION 6 Construct a PDA M, such that

$$L(M) = \{b^n a^{2n} : n \geq 0\}.$$

Solution $M = \{K, \Sigma, \Gamma, \Delta, s, F\}$ for
Explain the construction. Write motivation.

Trace a transitions of M that leads to the acceptance of the string $bbaaaa$.

QUESTION 7
Use PUMPING LEMMA to prove that

$L = \{ww : w \in \{a,b\}^*\}$

in NOT regular. Consider ALL cases.
Question 8 Use Pumping Lemma to prove that

\[L = \{ a^{n^2} : n \geq 0 \} \]

is not CF.
QUESTION 9 Here is the definition:

Let $L \subseteq \Sigma^*$. For any $x, y \in \Sigma^*$ we define an equivalence relation on Σ^* as follows.

$$x \approx_L y \text{ if and only if } \forall z \in \Sigma^* (xz \in L \iff yz \in L).$$

Let now

$$L = (aab \cup ab)^*.$$

FIND all equivalence classes of $x \approx_L y$.

Write all definitions and show work.
Question 10 Show that the following language L is NOT CF.

\[L = \{ w \in \{a, b, c\} : \text{all occurrences of } a, b, c \text{ in } w \text{ are different} \}. \]