1 YES/NO questions

1. For any function \(f \) from \(A \neq \emptyset \) onto \(A \), \(f \) has property \(f(a) \neq a \) for certain \(a \in A \).
 \textbf{Justify}: \(f(x) = x \) is always "onto". \(n \)

2. All infinite sets have the same cardinality.
 \textbf{Justify}: \(|N| \neq |R| \) and \(N \) (natural numbers) and \(R \) (real numbers) are infinite sets. \(n \)

3. \(\{\{a, b\}\} \subseteq 2\{a, b, \{a, b\}\} \)
 \textbf{Justify}: \(\{\{a, b\}\} \subseteq \{a, b, \{a, b\}\} \). \(y \)

4. For any binary relation \(R \subseteq A \times A \), \(R^{-1} \) exists.
 \textbf{Justify}: The set \(R^{-1} = \{(b, a) : (a, b) \in R\} \) always exists. \(y \)

5. Regular language is a regular expression.
 \textbf{Justify}: Regular language is a language defined by a regular expression. \(n \)

6. \(L^+ = \{w_1...w_n : w_i \in L, i = 1, 2, ..n, n \geq 1\} \)
 \textbf{Justify}: definition \(y \)

7. \(L^* = \{e\} \)
 \textbf{Justify}: only when \(e \not\in L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \not\in L^* - \{e\} \). \(n \)

8. For any languages \(L_1, L_2 \), \((L_1 \cap L_2) \cup L_2 = L_2 \).
 \textbf{Justify}: \(L_1 \cap L_2 \subseteq L_2 \) and languages are sets. \(y \)

9. \((\emptyset \cap b^*) \cup \emptyset^* \) describes a language with only one element.
 \textbf{Justify}: \((\{e\} \cap \{b\}^* \) \cup \{e\} = \{e\} \) \(y \)

10. For any \(M, L(M) \neq \emptyset \) iff the set \(F \) of its final states is non-empty.
 \textbf{Justify}: Let \(M \) be such that \(\Sigma = \emptyset, F \neq \emptyset, s \not\in F \), we get \(L(M) = \emptyset \). \(n \)

11. A configuration of any finite automaton \(M = (K, \Sigma, \Delta, s, F) \) is any element of \(K \times \Sigma^* \times K \).
 \textbf{Justify}: it is element of \(K \times \Sigma^* \) (lecture definition) \(n \)

12. If \(M = (K, \Sigma, \Delta, s, F) \) is a non-deterministic as defined in the book, then \(M \) is also non-deterministic, as defined in the lecture.
 \textbf{Justify}: \(\Sigma \cup \{e\} \subseteq \Sigma^* \) \(y \)

13. Let \(M \) be a finite state automaton, \(L(M) = \{\omega \in \Sigma^* : (s, \omega) \xrightarrow{s,M} (q, e)\} \).
 \textbf{Justify}: only when \(q \in F \) \(n \)

14. \(L(M_1) = L(M_2) \) iff \(M_1, M_2 \) are finite automata.
 \textbf{Justify}: one can have 2 automata that accept different languages. \(n \)

15. DFA and NDFA recognize the same class of languages.
 \textbf{Justify}: theorem proved in class \(y \)
2 Two definitions of a non-deterministic automaton

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when

$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and

$$\Delta \subseteq K \times \Sigma^* \times K$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

3 Very short questions (25pts)

For all state diagrams below do the following.

1. Determine whether it defines a finite state automaton.
2. Determine whether it is a deterministic / non-deterministic automaton.
3. Write full definition of M by listing all its components.
4. Describe the language by writing a regular expression or a property that defines it.

Q1 Solution: $M = (K, \Sigma, s, \Delta, F)$ for $K = \{q_0\} = F$, $s = q_0$, $\Sigma = \emptyset, \Delta = \emptyset$. M is deterministic and

$L(M) = \{e\} \neq \emptyset$

Q2 Solution: $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1\}, s = q_0, F = \{q_0\}, \Delta = \{(q_0, a, q_1), (q_1, b, q_0)\}$. M is non-deterministic; Δ is not a function on $K \times \Sigma$.

$L(M) = (ab)^*$

Q3 Solution: $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, F = \{q_1\}$,

$\Delta = \{(q_0, a, q_1), (q_0, b, q_1), (q_1, a, q_1), (q_1, e, q_2), (q_2, ab, q_2)\}$. It is NOT an automaton. It has no initial state.

Q4 $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \emptyset$,

$\Delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_0, e, q_3), (q_2, a, q_3)\}$. M is non-deterministic; $\Delta \subseteq K \times \Sigma \cup \{e\} \times K$.

$L(M) = \emptyset$

Q5 $M = (K, \Sigma, s, \Delta, F)$ for $\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \{q_1\}$,

$\Delta = \{(q_0, ab, q_1), (q_1, e, q_0), (q_1, a, q_2), (q_1, ba, q_2), (q_2, a, q_2), (q_0, e, q_3), (q_1, a, q_3)\}$. M is non-deterministic; $\Delta \subseteq K \times \Sigma^* \times K$, q_2, q_3 are trap states.

$L(M) = (ab)^+$
4 Problems

Problem 1 Let L be a language defined as follows

\[L = \{ w \in \{a, b\}^* : \text{between any two } a's \text{ in } w \text{ there is an even number of consecutive } b's. \}. \]

1. Describe a regular expression r such that $L(M) = L$.

Solution Remark that 0 is an even number, hence $a^* \in L$,

\[r = b^* \cup b^*ab^* \cup b^*(a(bb)^*a)^*b^* = b^*ab^* \cup b^* \]

2. Construct a finite state automata M, such that $L(M) = L$.

Solution 1 Components of M are:

\[\Sigma = \{a, b\}, \quad K = \{q_0, q_1, q_2, q_3\}, \quad s = q_0, \quad F = \{q_0, q_2, q_3\} \]

\[\Delta = \{(q_0, b, q_0), (q_0, a, q_3), (q_0, a, q_1), (q_1, bb, q_1), (q_1, a, q_2), (q_2, c, q_0), (q_3, b, q_3)\} \]

Some elements of $L(M)$ as defined by the state diagram are:

\[a, aaa, bbb, aaaaabbb, bbbaaaa, abba, abbabbbba, abbbbbbabba, \ldots \]

Solution 2 Components of M are:

\[\Sigma = \{a, b\}, \quad K = \{q_0, q_1, q_2\}, \quad s = q_0, \quad F = \{q_0, q_1, q_2\} \]

\[\Delta = \{(q_0, b, q_0), (q_0, a, q_1), (q_1, bb, q_1), (q_1, a, q_2), (q_1, c, q_2), (q_2, b, q_2)\} \]

Problem 2 Let

\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0\}, \quad s = q_0, \Sigma = \{a, b\}, \quad F = \{q_0\} \) and

\[\Delta = \{(q_0, aba, q_0), (q_0, ab, q_0)\} \]

1. List some elements of $L(M)$.

Solution

\[e, ab, abab, ababa, ababaaba, \ldots \]

2. Write a regular expression for the language accepted by M.

Solution

\[L = (ab \cup aba)^* \]
Problem 3 We know that for any deterministic finite automaton \(M = (K, \Sigma, s, \delta, F) \) the following is true:

\[e \in L(M) \iff s \in F. \]

Show that the above is not true for all non-deterministic automata.

Solution Let \(M = (K, \Sigma, s, \Delta, F) \) for \(K = \{q_0, q_1\}, s = q_0, \Sigma = \emptyset, F = \{q_1\} \), and \(\Delta = \{(q_0, e, q_1)\} \).

\[L(M) = \{e\} \text{ and } s \notin F. \]

Problem 4 For \(M \) defined as follows

\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0, q_1, q_2, q_3\}, s = q_0 \)

\[\Sigma = \{a, b\}, F = \{q_2, q_3\} \text{ and } \Delta = \{(q_0, a, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, b, q_3), (q_1, e, q_3), (q_2, b, q_2), (q_2, e, q_3), (q_3, a, q_3)\} \]

Write a regular expression describing \(L(M) \).

Solution

\[aa^* \cup a^* \cup aba^* \cup bb^* \cup bb\ast a^* \]

Write 4 steps of the general method of transformation the NDFA \(M \), into an equivalent deterministic \(M' \).

Reminder: \(E(q) = \{p \in K : (q, e) \xrightarrow{q, \sigma} (p, e)\} \) and

\[\delta(Q, \sigma) = \bigcup\{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}. \]

Solution Step 1:

\[E(q_0) = \{q_0, q_1, q_3\}, \ E(q_1) = \{q_1, q_3\}, \ E(q_2) = \{q_2, q_3\}, \ E(q_3) = \{q_3\}. \]

Solution Step 2:

\[\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_1) \cup E(q_3) = \{q_1, q_3\} \in F, \]

\[\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_2) \cup E(q_3) \cup \emptyset = \{q_2, q_3\} \in F, \]

Solution Step 3:

\[\delta(\{q_1, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F, \]

\[\delta(\{q_1, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\} \in F, \]

\[\delta(\{q_2, q_3\}, a) = \emptyset \cup E(q_3) = \{q_3\} \in F, \]

\[\delta(\{q_2, q_3\}, b) = \emptyset \cup \emptyset = \emptyset \]

Solution Step 4:

\[\delta(\{q_3\}, a) = E(q_3) = \{q_3\} \in F, \ \delta(\{q_3\}, b) = \emptyset, \]

\[\delta(\emptyset, a) = \emptyset, \ \delta(\emptyset, b) = \emptyset. \]

End of the construction.