CSE303 Q2 PRACTICE SOLUTIONS Spring 20012

PART 1: YES/NO QUESTIONS Circle the correct answer. Write SHORT justification.

1. The set K of states of any deterministic finite automaton is always non-empty
 Justify: $s \in K$

2. Alphabet Σ of any deterministic finite automaton is always non-empty
 Justify: An alphabet Σ is any FINITE set, hence it can be empty.

3. A configuration of a deterministic finite automaton $M = (K, \Sigma, \delta, s, F)$ is any element of $K \times \Sigma^*$.
 Justify: this is definition

4. Given an automaton $M = (K, \Sigma, \delta, s, F)$, a binary relation $\vdash_M \subseteq (K \times \Sigma^*) \times (K \times \Sigma^*)$ is a one step computation iff the following condition holds
 $(q, aw) \models_M (q', w)$ iff $\delta(q', a) = q$.
 Justify: Proper condition is:
 $(q, aw) \models_M (q', w)$ iff $\delta(q, a) = q'$.

5. Given $M = (K, \Sigma, \delta, s, F)$ we define
 $L(M) = \{w \in \Sigma^* : \exists q \in K ((s, w) \models^*_M (q, e))\}$.
 Justify: Must be: $\exists q \in F ((s, w) \models^*_M (q, e))$.

6. If $M = (K, \Sigma, \delta, s, F)$ is a deterministic, then M is also non-deterministic.
 Justify: The function δ is a (special) relation on $K \times \Sigma \times K$, i.e.
 $\delta = \Delta \subseteq K \times \Sigma \times K \subseteq K \times \Sigma \cup \{e\} \times K \subseteq K \times \Sigma^* \times K$.

7. A configuration of a non-deterministic finite automaton $M = (K, \Sigma, \Delta, s, F)$ is any element of $K \times \Sigma^*$.
 Justify: by definition

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA
BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when
$$\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$$

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and
$$\Delta \subseteq K \times \Sigma^* \times K.$$

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

A VERY SHORT QUESTION Given the automaton M with the following components:
$$\Sigma = \{a, b, c\}, \quad K = \{q_0, q_1, q_2\}, \quad s = q_0, \quad F = \{q_2\}.$$

We define Δ as follows.
$$\Delta = \{(q_0, abc, q_1), (q_1, e, q_2), (q_0, a, q_2)\}$$

1. State and explain whether M represents a deterministic or a non-deterministic automaton.

Solution M is non-deterministic. Δ is not a function on $K \times \Sigma$., also $\Delta \subseteq K \times \Sigma^* \times K$ (Lecture definition).

2. Write down a regular expression representing $L(M)$.

Solution
$$L(M) = abc \cup a$$

PART 2: PROBLEMS

QUESTION 1 Construct a deterministic finite automaton M such that
$$L(M) = \{w \in \{a, b\}^* : \text{neither } bb \text{ nor } aa \text{ is a substring of } w\}.$$

Draw a state diagram and specify all components K, Σ, δ, s, F of M. Justify your construction.

Solution
Components of \(M = (K, \Sigma, \delta, s, F) \) are:

\(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1, q_2, q_3 \} \), \(s = q_0 \), \(q_3 \) is a trap state, \(F = \{ q_0, q_1 \} \).

We define \(\delta \) on non-trap states as follows.

\(\delta(q_0, a) = q_1 \), \(\delta(q_0, b) = q_2 \),
\(\delta(q_1, b) = q_2 \),
\(\delta(q_2, a) = q_1 \).

\(M \) accepts strings \(a, aba, ababa.. \) or \(b, bab, baba.. \) etc and never \(aa, bb, \) etc...

QUESTION 2 For the automata \(M \) defined below describe the property defining \(L(M) \).

Components of \(M \) are:

\(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1, q_2, q_3 \} \), \(s = q_0 \), \(F = \{ q_1 \} \).

We define \(\delta \) as follows.

\(\delta(q_0, a) = q_1 \), \(\delta(q_0, b) = q_2 \),
\(\delta(q_1, a) = q_0 \), \(\delta(q_1, b) = q_3 \),
\(\delta(q_2, a) = q_3 \), \(\delta(q_2, b) = q_0 \),
\(\delta(q_3, a) = q_2 \), \(\delta(q_3, b) = q_1 \).

Solution

Language of \(M \) is:

\(L(M) = \{ w \in \Sigma^* : w \text{ has an odd number of } a \text{'s and an even number of } b \text{'s} \} \).

QUESTION 3 Use book or lecture definition (specify which are you using) to construct a non-deterministic finite automaton \(M \), such that

\(L(M) = (ab)^*(ba)^* \).

Draw a state diagram and specify all components \(K, \Sigma, \Delta, s, F \) of \(M \). Justify your construction by listing some strings accepted by the state diagram.

Solution 1 We use the lecture definition.

Components of \(M \) are: \(\Sigma = \{ a, b \} \), \(K = \{ q_0, q_1 \} \), \(s = q_0 \), \(F = \{ q_0, q_1 \} \).

We define \(\Delta \) as follows.

\(\Delta = \{ (q_0, ab, q_0), (q_0, c, q_1), (q_1, ba, q_1) \} \).

Strings accepted : \(ab, abab, abba, ababba, abababa, .. \).

Solution 2 We use the book definition.
Components of M are: $\Sigma = \{a, b\}$, $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $F = \{q_2\}$.

We define Δ as follows.

$\Delta = \{(q_0, a, q_1), (q_1, b, q_0), (q_0, e, q_2), (q_2, b, q_3), (q_3, a, q_2)\}$.

Strings accepted: $ab, abab, abba, ababba, ababbaba,$

QUESTION 4 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$, $\Sigma = \{a, b, c\}$, $F = \{q_3\}$ and $\Delta = \{(q_0, abc, q_0), (q_0, ab, q_1), (q_1, bb, q_3), (q_0, b, q_2), (q_2, aa, q_3)\}$.

1. Find the regular expression describing the $L(M)$. Simplify it as much as you can. Explain your steps.

Solution

$L(M) = (abc)^* abbb \cup abbb (abc)^* baa \cup ba = (abc)^* abbb \cup (abc)^* baa (abc)^* (abbb \cup baa)$.

We used the property:

$$LL_1 \cup LL_2 = L(L_1 \cup L_2)$$

2. Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution

We apply the "stretching" technique to M and the new M' is as follows.

$$M' = (K \cup \{p_1, p_2, ..., p_5\}, \Sigma, s = q_0, \Delta', F' = F)$$

for $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_3\}$ and $\Delta' = \{(q_0, b, q_2), (q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_0, a, p_3), (p_3, b, q_1), (q_1, b, p_4), (p_4, b, q_3), (q_0, b, q_2), (q_2, a, p_5), (p_5, a, q_3)\}$.

QUESTION 5 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2\}$, $s = q_0$, $\Sigma = \{a, b\}$, $F = \{q_0, q_2\}$ and $\Delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_1, b, q_0), (q_2, a, q_0)\}$.
Write 4 steps of the general method of transformation a NDFA M, into an equivalent M^\prime, which is a DFA. Reminder: $E(q) = \{ p \in K : (q, e)^{\ast} M(p, e) \}$ and

$$\delta(Q, \sigma) = \bigcup \{ E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta \}.$$

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step i+1: Evaluate δ on all states that result from step i.

Solution

Step 1:

$$E(q_0) = \{ q_0 \}, \ E(q_1) = \{ q_1 \}, \ E(q_2) = \{ q_2 \}$$

$$\delta(\{ q_0 \}, a) = E(q_1) = \{ q_1 \} \quad \delta(\{ q_0 \}, b) = \emptyset$$

Step 2:

$$\delta(\emptyset, a) = \emptyset, \ \delta(\emptyset, a) = \emptyset, \delta(\{ q_1 \}, a) = \emptyset, \delta(\{ q_1 \}, b) = E(q_0) \cup E(q_2) = \{ q_0, q_2 \} \in F^\prime$$

Step 3:

$$\delta(\{ q_0, q_2 \}, a) = E(q_1) \cup E(q_0) = \{ q_0, q_1 \}, \ \delta(\{ q_0, q_2 \}, b) = \emptyset$$

Step 4:

$$\delta(\{ q_0, q_1 \}, a) = \emptyset \cup E(q_1) = \{ q_1 \}, \ \delta(\{ q_0, q_1 \}, b) = \emptyset \cup E(q_0) \cup E(q_2) = \{ q_0, q_2 \} \in F^\prime$$