1 YES/NO questions

1. For any binary relation \(R \subseteq A \times A \), \(R^* \) exists.
 Justify: definition

2. For any binary relation \(R \subseteq A \times A \), \(R^{-1} \) exists.
 Justify: The set \(R^{-1} = \{(b,a) : (a,b) \in R\} \) always exists.

3. For any function \(f \) from \(A \neq \emptyset \) onto \(A \), \(f \) has property \(f(a) \neq a \) for certain \(a \in A \).
 Justify: \(f(x) = x \) is always "onto".

4. All infinite sets have the same cardinality.
 Justify: \(|N| < |2^N| \) by Cantor Theorem and \(N, 2^N \) are infinite

5. Set \(A \) is uncountable iff \(R \subseteq A \) (\(R \) is the set of real numbers).
 Justify: \(R, 2^R \) are both uncountable and \(R \) is not a subset of \(2^R \) (\(R \not\subseteq 2^R \)) but \(R \in 2^R \).

6. Let \(A \neq \emptyset \) such that there are exactly 25 partitions of \(A \). It is possible to define 20 equivalence relations on \(A \).
 Justify: one can define up to 25 (as many as partitions) of equivalence classes

7. There is a relation that is equivalence and order at the same time.
 Justify: equality relation

8. Let \(A = \{ n \in N : n^2 + 1 \leq 15 \} \). It is possible to define 8 alphabets \(\Sigma \subseteq A \).
 Justify: \(A \) has 4 elements, so we have \(2^4 > 8 \) subsets

9. There is exactly as many languages over alphabet \(\Sigma = \{ a \} \) as real numbers.
 Justify: \(|\Sigma^*| = \aleph_0 \), \(|2^{\Sigma^*}| = |R| = C \).

10. Let \(\Sigma = \{ a, b \} \). There are more than 20 words of length 4 over \(\Sigma \).
 Justify: There are exactly \(2^4 = 16 \) words of length 4 over \(\Sigma \) and \(16 < 20 \).

11. \(L^* = \{w_1...w_n : w_i \in L, i = 1, 2, ..., n, n \geq 1\} \).
 Justify: \(n \geq 0 \).
 \(L^+ = LL^* \).
 Justify: the problem is only with cases \(e \in L \) or \(e \not\in L \). When \(e \in L \), then \(e \in L^+ \), and always \(e \in L^* \), hence \(e \in LL^* \).
 When \(e \not\in L \), then \(e \not\in L^+ \), and always \(e \in L^* \), hence \(e \in LL^* \) and \(L^+ \neq LL^* \)

12. \(L^+ = L^* - \{e\} \).
 Justify: only when \(e \not\in L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \not\in L^* - \{e\} \).
13. If \(L = \{ w \in \{0, 1\}^* : w \) has an unequal number of 0’s and 1’s \}, then \(L^* = \{0, 1\}^* \).

Justify: \(1 \in L, 0 \in L \) so \(\{0, 1\} \subseteq L \subseteq \Sigma^* \), hence \(\{0, 1\}^* \subseteq L^* \subseteq (\Sigma^*)^* = \Sigma^* = \{0, 1\}^* \) and \(L^* = \{0, 1\}^* \).

14. For any languages \(L_1, L_2 \), \((L_1 \cup L_2) \cap L_1 = L_1 \).

Justify: languages are sets and \((A \cup B) \cap A = A \).

15. For any languages \(L_1, L_2 \),
\[L_1^* = L_2^* \text{ iff } L_1 = L_2 \]

Justify: Consider \(L_1 = \{a, e\}, L_2 = \{a\} \). Obviously, \(L_1 \neq L_2 \) and \(L_1^* = L_2^* \).

16. For any languages \(L_1, L_2 \), \((L_1 \cup L_2)^* = L_1^* \).

Justify: languages are sets so it is true only when \(L_1 \subseteq L_2 \).

17. \((\emptyset^* \cap a) \cup b^* \cap \emptyset^* \) describes a language with only one element.

Justify: \(\emptyset \cup b^* = b^*, b^* \cap \{e\} = \{e\} \)

18. \((\emptyset^* \cap a) \cup b^* \) is a finite regular language.

Justify: \(b^* \cap a^* = \{e\} = \emptyset^* \)

19. \(\{a\} \cup \{e\} \cap \{ab\}^* \) is a finite regular language.

Justify: \(\{a\} \cup \{e\} \cap \{ab\}^* = \{a, e\} \cap \{ab\}^* = \{e\} = \emptyset^* \)

20. Any regular language has a finite description.

Justify: by definition \(L = L(r) \) and \(r \) is a finite string.

21. Any finite language is regular.

Justify: \(L = \{w_1\} \cup \ldots \cup \{w_1\} \) and \(\{w_1\} \) has a finite description \(w_i \)

22. Every deterministic automata is also non-deterministic.

Justify: any function is a relation

The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: \(K \neq \emptyset \), because \(s \in K \). If \(\Sigma = \emptyset \) the set of all configuration of non-deterministic automata (book definition) is a subset of \(K \times \emptyset \cup \{e\} \neq \emptyset \) as it always contains \((s, e)\). For the lecture definition, the set of all configuration is a subset of \(K \times \Sigma^* \) and always \(e \in \Sigma^* \) hence always \((s, e) \in K \times \Sigma^* \).

23. Let \(M \) be a finite state automaton, \(L(M) = \{ w \in \Sigma^* : (q, w) \xrightarrow{s, M} (s, e) \} \).

Justify: \(L(M) = \{ w \in \Sigma^* : \exists q \in F((s, w) \xrightarrow{s, M} (q, e)) \} \)

24. For any automata \(M \), \(L(M) \neq \emptyset \).

Justify: if \(\Sigma = \emptyset \) or \(F = \emptyset \), \(L(M) = \emptyset \)

25. \(L(M_1) = L(M_2) \) iff \(M_1, M_2 \) are deterministic.

Justify: Let \(M_1 \) be an automata over \(\{a, b\} \) with with \(\Delta = \{(q_0, ab, q_0)\}, F = \{q_0\}, s = q_0 \) and let \(M_2 \) be an automata over \(\{a, b\} \) with with \(\Delta = \{(q_0, ab, q_0), (q_0, e, q_1)\}, F = \{q_1\}, s = q_0 \). \(L(M_1) = L(M_2) = (ab)^* \) and both are non-deterministic
26. DFA and NDFA compute the same class of languages.
 Justify: basic theorem

27. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*)L_1$
 Justify: the class of finite automata is closed under $\ast, \cup, -, \cap$

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when
 $\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$

 OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and
 $\Delta \subseteq K \times \Sigma^* \times K$

 OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

2 Problems

Problem 1 Let L be a language defines as follows
 $L = \{w \in \{a, b\}^* : \text{every } a \text{ is either immediately proceeded or followed by } b\}.$

1. Describe a regular expression r such that $L(r) = L$ (Meaning of r is L).
 Solution $L = (b \cup ab \cup ba \cup bab)^*$

2. Construct a finite state automata M, such that $L(M) = L$.
 Solution
 Components of M are:
 $K = \{s\}, \{a, b\}, \ s, \ F = \{s\},$
 $\Delta = \{(s, b, s), (s, ab, s), (s, ba, s), (s, bab, s)\}$

Some elements of $L(M)$ are: $b, bb, baab, abab, abbab, bbbababababb$

Problem 2

1. Let $M = (K, \Sigma, \delta, s, F)$be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?
 Solution
 $e \in L(M) \iff s \in F.$

2. Let $M = (K, \Sigma, \Delta, s, F)$ be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?
Solution Now we have two possibilities: $s \in F$ (computation of length 0) or there is a computation of length > 0 from (s, e) to (q, e) for $q \in F$ when $s \notin F$.

Problem 3 Let

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_1, q_2, q_3\}$ and

$$\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}$$

1. List some elements of $L(M)$.

Solution $a, b, aa, bb, aba, abba$

2. Write a regular expression for the language accepted by M. Simplify the solution.

Solution $$L(M) = ab^* \cup ab^*a \cup ba^*b = ab^*(e \cup a) \cup ba^*(e \cup b).$$

3. Define a deterministic M' such that $M \equiv M'$, i.e. $L(M) = L(M')$.

Solution We complete M do a deterministic M' by adding a TRAP state q_4 and put

$$\Delta' = \delta = \Delta \cup \{(q_2, a, q_4), (q_2, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}$$

Justify why $M \equiv M'$.

Solution q_4 is a trap state, it does not influence $L(M)$.

Problem 4 Let M be defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b, c\}$, $F = \{q_0, q_2, q_3\}$ and

$$\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, e, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}.$$

Find the regular expression describing the $L(M)$. Simplify it as much as you can. Explain your steps. Does $e \in L(M)$?

Solution $$L = (abc)^*a(bc)^* \cup e \cup a^*ba^* \cup (abd)^*$$

This is not the only solution.

Observe that $e \in L$ as $q_0 \in F$ and also $(q_0, e, q_3) \in \Delta$ and $q_3 \in F$.

This is not the only solution.

Write down (you can draw the diagram) an automata M' such that $M' \equiv M$ and M' is defined by the BOOK definition.

Solution
Solution We apply the "stretching" technique to M and the new M' is as follows.

$$M' = (K \cup \{p_1, p_2, p_3\} \quad \Sigma, \quad s = q_0, \quad \Delta', \quad F' = F)$$

for $K = \{q_0, q_1, q_2\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_0, q_2, q_3\}$ and

$\Delta' = \{(q_0, a, q_1), (q_0, e, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\}$

Problem 5 For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2, q_3\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_2\}$ and

$\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), (q_0, c, q_0), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}$

Write 2 steps of the general method of transformation the NDFA M defined above into an equivalent DFA M'.

Step 1: Evaluate $\delta(E(q_0), a)$ and $\delta(E(q_0), b)$.

Step 2: Evaluate δ on all states that result from step 1.

Reminder: $E(q) = \{p \in K : (q, e) \xrightarrow{M} (p, e)\}$ and

$$\delta(Q, \sigma) = \bigcup\{E(p) : \exists q \in Q, \ (q, \sigma, p) \in \Delta\}.$$