1. All questions have REGULAR points assigned to them- as in a regular FINAL test.

2. TAKE YOUR TEST at home - for NOT LONGER then 2.5 hours- time allocated for your FINAL.

3. GRADE your test according to these points and write down the final GRADE POINTS you would get on the real test. Write the (with the TOTAL sum of POINTS on front page of the test.

4. WRITE correct solutions for problems you didn’t solve or got it wrong and bring it to class together with graded TEST on THURSDAY, May 5 to class.

5. You will get up to 25 extra points for the corrections - or for the test- in a case there was no need for corrections. The GRADE you assign to yourself is there only for you to KNOW how you would have done; it will not influence the EXTRA CREDIT POINTS!

There are 50 yes/no questions and 6 Problems and 1 extra credit Problem.

Write CAREFUL solutions to all of them and don’t forget justifications for yes/no questions.

PART 1: Yes/No Questions (2pts each question)

Circle the correct answer. Write ONE-SENTENCE justification.

No justification- no credit

1. Set A is uncountable iff $R \subseteq A$ (R is the set of real numbers)

 Justify: $\begin{array}{ll} y & n \end{array}$

2. All infinite sets have the same cardinality

 Justify: $\begin{array}{ll} y & n \end{array}$

3. $R^* = R \cup \{(a, b) : \text{there is a path from a to b}\}$

 Justify: $\begin{array}{ll} y & n \end{array}$
4. \((ab \cup a^*b)^*\) is a regular language

Justify: y n

5. Let \(\Sigma = \phi\), there is \(L \neq \phi\) over \(\Sigma\)

Justify: y n

6. There are uncountably many languages over \(\Sigma = \{a\}\)

Justify: y n

7. Let \(R\) be a set of regular expressions and \(L\) be a function that maps \(R\) into set of all subsets of \(\Sigma^*\). Then the following it true.
 \(L \subseteq \Sigma^*\) is a regular language if \(L = L_r\) for some \(r \in R\)

Justify: y n

8. \(L^* = \{w \in \Sigma^* : \exists q \in F(s, w) \vdash_M^* (q, e)\}\)

Justify: y n

9. \((a^*b \cup \phi^*)\) is a regular expression

Justify: y n

10. \(\{a\}^*\{b\} \cup \{ab\}\) is a regular language

Justify: y n

11. Let \(L\) be a language defined by \((a^*b \cup ab)\), i.e (shorthand) \(L = a^*b \cup ab\). Then \(L \subseteq \{a, b\}^*\)

Justify: y n

12. \(\Sigma = \{a\}\), there are c (continuum) languages over \(\Sigma\)

Justify: y n

13. \(L^* = L^+ - \{e\}\)

Justify: y n

14. \(L^* = \{w_1 \ldots w_n, w_i \in L, i = 1, \ldots, n\}\)

Justify: y n
15. For any languages $L_1, L_2, L_3 \subseteq \Sigma^*$
 $L_1 \cup (L_2 \cap L_3) = (L_1 \cup L_2) \cap (L_1 \cup L_3)$

 Justify: y n

16. For any languages $L_1, L_2 \subseteq \Sigma^*$,
 if $L_1 \subseteq L_2$, then $(L_1 \cup L_2)^* = L_2^*$

 Justify: y n

17. $((\phi^* \cap a) \cup (\phi \cup b^*)) \cap \phi^*$ represents a language $L = \phi$

 Justify: y n

18. $L(M) = \{ w \in \Sigma^* : (q, w) \vdash^* M (s, e) \}$

 Justify: y n

19. For every i deterministic automaton M, $L(M) \neq \phi$

 Justify: y n

20. If M is a nondeterministic FA, then $L(M) \neq \emptyset$

 Justify: y n

21. $L(M_1) = L(M_2)$ iff M_1 and M_2 are finite automata

 Justify: y n

22. A language is regular iff $L = L(M)$ and M is a deterministic automaton

 Justify: y n

23. If M is a deterministic automaton, then there is a nondeterministic N, such that $L(N) = L(M)$

 Justify: y n

24. Any finite language is CF

 Justify: y n

25. Intersection of any two regular languages is a CF language

 Justify: y n
26. Union of a regular and a CF language is a CF language

 Justify: y n

27. \(L_1 \) is regular, \(L_2 \) is CF and \(L_1, L_2 \subseteq \Sigma^* \), then \(L_1 \cap L_2 \subseteq \Sigma^* \) is a CF language

 Justify: y n

28. If \(L \) is regular, then there is a PDA \(M \) such that \(L = L(M) \)

 Justify: y n

29. If \(L \) is regular, then there is a CF grammar \(G \), such that \(L = L(G) \)

 Justify: y n

30. \(L = \{ a^n b^n c^n : n \geq 0 \} \) is CF

 Justify: y n

31. \(L = \{ a^n b^n : n \geq 0 \} \) is CF

 Justify: y n

32. Let \(\Sigma = \{ a \} \), then for any \(w \in \Sigma^* \), \(w^R w \in \Sigma^* \)

 Justify: y n

33. \(A \rightarrow Ax, A \in V, x \in \Sigma^* \) is a rule of a regular grammar

 Justify: y n

34. Regular grammar has only rules \(A \rightarrow xA, A \rightarrow x, x \in \Sigma^* \), \(A \in V - \Sigma \)

 Justify: y n

35. Let \(G = (\{S, (,)\}, \{, \}, R, S) \) for \(R = \{ S \rightarrow SS \mid (S) \} \)

 \(L(G) \) is regular

 Justify: y n

36. \(L = \{ w \in \{ a, b \}^* : w = w^R \} \) is regular

 Justify: y n
37. We can always show that \(L \) is regular using Pumping Lemma

Justify:

38. \((p, e, \beta), (q, \gamma)\) \(\in\) \(\Delta\) means: read nothing, move from \(p\) to \(q\)

Justify:

39. \(L = \{a^nb^mc^n : n, m \in \mathbb{N}\} \) is CF

Justify:

40. If \(L \) is not regular, then there is a CF grammar \(G \), such that \(L = L(G) \)

Justify:

41. There is countably many non CF languages over \(\Sigma \neq \emptyset \)

Justify:

42. Every subset of a regular language is a language

Justify:

43. Any regular language is accepted by some PD automata

Justify:

44. \(\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*) \) is a transition relation of a pushdown automaton

Justify:

45. Let \(M \) be a pushdown automaton

\[
L(M) = \{w \in \Sigma^* : (s, w, e) \Rightarrow^*_M (f, e, e)\}
\]

Justify:

46. There is uncountably many regular languages

Justify:

47. Every subset of a regular language is a regular language.

Justify:

48. A CF language is a regular language.

Justify: \(L = \{a^n b^n : n \geq 0\} \) is CF and not regular
49. A regular language is a CF language.

 Justify: y n

50. Every subset of a regular language is a regular language.

 Justify: y n

PART 2: PROBLEMS (100pts + 15 extra pts)

QUESTION 1 (10pts)

Let \(\Sigma \) be any alphabet, \(L_1, L_2 \) two languages over \(\Sigma \) such that \(e \in L_1 \) and \(e \in L_2 \). Show that

\[
(L_1 \Sigma^* L_2)^* = \Sigma^*
\]
QUESTION 2 (15pts)

Let L be a language defines as follows

$L = \{ w \in \{a,b\}^* : \text{every } a \text{ is either immediately proceeded or followed by } b \}$

Part 1

Describe a regular expression r such that $L(r) = L$

Part 2

Construct a finite state automata M, such that $L(M) = L$.

1. Draw a diagram of M

2. List some elements of $L(M)$
QUESTION 3 (15pts)

Given a Regular grammar \(G = (V, \Sigma, R, S) \), where

\[
V = \{a, b, S, A\}, \quad \Sigma = \{a, b\}, \quad R = \{S \rightarrow aS \mid A \mid \epsilon, \quad A \rightarrow abA \mid a \mid b\}.
\]

Part 1

Use the construction in the proof of L-GTheorem:

Language L is regular if and only if there exists a regular grammar G such that \(L = L(G) \)

to construct a finite automaton \(M \), such that \(L(G) = L(M) \).

Diagram of M

Part 2 Trace a transitions of \(M \) that lead to the acceptance of the string \(aaaababa \), and compare with a derivation of the same string in \(G \)

The accepting computation of \(aaaababa \) is:

\(G \) derivation of \(aaaababa \) is:
QUESTION 4 (15pts)

Define a grammar G such that $L(G) = \{a^kB^j : k < j \}$

Justify your construction

QUESTION 5 (15pts)

Prove that the Class of context-free languages is NOT closed under intersection
QUESTION 6 (15pts)

Construct a pushdown automaton M such that

$$L(M) = \{ w \in \{a, b\}^* : w = w^R \}$$

Draw a DIAGRAM of M

M components are

Trace a transitions of M that lead to the acceptance of the string $ababa$.
QUESTION 7 (15pts)

Construct a PD automaton M, such that

$$L(M) = \{b^n a^{2n} : n \geq 0\}.$$

Draw a DIAGRAM

Explain the construction. Write motivation.

Trace formal transitions of M that leads to the acceptance of the string $bbaaa$, i.e complete:

$$(s, bbaaa, e) \vdash_M$$
QUESTION 9 (EXTRA CREDIT - 15pts)

Use closure under union for CF languages to show that

\[L = \{ a^n b^n : n \neq m \} \]

is a CF language