1 YES/NO questions

1. For any binary relation $R \subseteq A \times A$, R^* exists.

 \textbf{Justify:} definition

2. For any binary relation $R \subseteq A \times A$, R^{-1} exists.

 \textbf{Justify:} The set $R^{-1} = \{(b,a) : (a,b) \in R\}$ always exists.

3. For any function f from $A \neq \emptyset$ onto A, f has property $f(a) \neq a$ for certain $a \in A$.

 \textbf{Justify:} $f(x) = x$ is always "onto".

4. All infinite sets have the same cardinality.

 \textbf{Justify:} $|N| < |2^N|$ by Cantor Theorem and $N, 2^N$ are infinite

5. Set A is uncountable iff $R \subseteq A$ (R is the set of real numbers).

 \textbf{Justify:} $R, 2^R$ are both uncountable and R is not a subset of 2^R ($R \nsupseteq 2^R$) but $R \in 2^R$.

6. Let $A \neq \emptyset$ such that there are exactly 25 partitions of A. It is possible to define 20 equivalence relations on A.

 \textbf{Justify:} one can define up to 25 (as many as partitions) of equivalence classes

7. There is a relation that is equivalence and order at the same time.

 \textbf{Justify:} equality relation

8. Let $A = \{n \in N : n^2 + 1 \leq 15\}$. It is possible to define 8 alphabets $\Sigma \subseteq A$.

 \textbf{Justify:} A has 4 elements, so we have $2^4 > 8$ subsets

9. There is exactly as many languages over alphabet $\Sigma = \{a\}$ as real numbers.

 \textbf{Justify:} $|\Sigma^*| = \aleph_0, |2^{\Sigma^*}| = |R| = C$.

10. Let $\Sigma = \{a, b\}$. There are more than 20 words of length 4 over Σ.

 \textbf{Justify:} There are exactly $2^4 = 16$ words of length 4 over Σ and $16 < 20$.

11. $L^* = \{w_1...w_n : w_i \in L, i = 1, 2, ...n, n \geq 1\}$.

 \textbf{Justify:} $n \geq 0$.

 $L^+ = LL^*$.

 \textbf{Justify:} the problem is only with cases $e \in L$ or $e \notin L$. When $e \in L$, then $e \in L^+$, and always $e \in L^*$, hence $e \in LL^*$.

 When $e \notin L$, then $e \notin L^+$, and always $e \in L^*$, hence $e \in LL^*$ and $L^+ \neq LL^*$

12. $L^+ = L^* - \{e\}$.

 \textbf{Justify:} only when $e \notin L$. When $e \in L$ we get that $e \in L^+$ and $e \notin L^* - \{e\}$.
13. If \(L = \{ w \in \{0, 1\}^* : w \text{ has an unequal number of 0's and 1's} \} \), then \(L^* = \{0, 1\}^* \).

Justify: \(1 \in L, 0 \in L \) so \(\{0, 1\} \subseteq L \subseteq \Sigma^* \), hence \(\{0, 1\}^* \subseteq L^* \subseteq (\Sigma^*)^* = \Sigma^* = \{0, 1\}^* \) and \(L^* = \{0, 1\}^* \).

14. For any languages \(L_1, L_2 \), \((L_1 \cup L_2) \cap L_1 = L_1 \).

Justify: languages are sets and \((A \cup B) \cap A = A \).

15. For any languages \(L_1, L_2 \),
\[
L_1^* = L_2^* \text{ i f f } L_1 = L_2
\]

Justify: Consider \(L_1 = \{a, e\}, L_2 = \{a\} \). Obviously, \(L_1 \neq L_2 \) and \(L_1^* = L_2^* \).

16. For any languages \(L_1, L_2 \), \((L_1 \cup L_2)^* = L_1^* \).

Justify: languages are sets so it is true only when \(L_1 \subseteq L_2 \).

17. \((\emptyset^* \cap a) \cup b^* \cap \emptyset^* \) describes a language with only one element.

Justify: \(\emptyset \cup b^* = b^*, b^* \cap \{e\} = \{e\} \)

18. \((\emptyset^* \cap a) \cup b^* \cap a^* \) is a finite regular language.

Justify: \(b^* \cap a^* = \{e\} = 0^* \)

19. \((\{a\} \cup \{e\}) \cap \{ab\}^* \) is a finite regular language.

Justify: \((\{a\} \cup \{e\}) \cap \{ab\}^* = \{a, e\} \cap \{ab\}^* = \{e\} \cap \emptyset^* \)

20. Any regular language has a finite description.

Justify: by definition \(L = L(r) \) and \(r \) is a finite string.

21. Any finite language is regular.

Justify: \(L = \{w_1\} \cup \ldots \cup \{w_1\} \) and \(\{w_1\} \) has a finite description \(w_i \)

22. Every deterministic automata is also non-deterministic.

Justify: any function is a relation

The set of all configurations of any non-deterministic state automata is always non-empty.

Justify: \(K \neq \emptyset \), because \(s \in K \). If \(\Sigma = \emptyset \) the set of all configuration of non-deterministic automata (book definition) is a subset of \(K \times \emptyset \cup \{e\} \neq \emptyset \) as it always contains \((s, e) \). For the lecture definition, the set of all configuration is a subset of \(K \times \Sigma^* \) and always \(e \in \Sigma^* \) hence always \((s, e) \in K \times \Sigma^* \).

23. Let \(M \) be a finite state automaton, \(L(M) = \{w \in \Sigma^* : (q, w) \xrightarrow{\Sigma, M} (s, e)\} \).

Justify: \(L(M) = \{w \in \Sigma^* : \exists q \in F((s, w) \xrightarrow{\Sigma, M} (q, e))\} \)

24. For any automata \(M \), \(L(M) \neq \emptyset \).

Justify: if \(\Sigma = \emptyset \) or \(F = \emptyset \), \(L(M) = \emptyset \)

25. \(L(M_1) = L(M_2) \) iff \(M_1, M_2 \) are deterministic.

Justify: Let \(M_1 \) be an automata over \(\{a, b\} \) with with \(\Delta = \{(q_0, ab, q_0)\} \), \(F = \{q_0\}, s = q_0 \) and let \(M_2 \) be an automata over \(\{a, b\} \) with with \(\Delta = \{(q_0, ab, q_0), (q_0, e, q_1)\} \), \(F = \{q_1\}, s = q_0 \).

\(L(M_1) = L(M_2) = (ab)^* \) and both are non-deterministic
26. DFA and NDFA compute the same class of languages.
 Justify: basic theorem

27. Let M_1 be a deterministic, M_2 be a nondeterministic FA, $L_1 = L(M_1)$ and $L_2 = L(M_2)$ then there is a deterministic automaton M such that $L(M) = (L^* \cup (L_1 - L_2)^*) L_1$
 Justify: the class of finite automata is closed under $\ast, \cup, -, \cap$

TWO DEFINITIONS OF NON DETERMINISTIC AUTOMATA

BOOK DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when
\[\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K \]

OBSERVE that Δ is always finite because K, Σ are finite sets.

LECTURE DEFINITION: $M = (K, \Sigma, \Delta, s, F)$ is non-deterministic when Δ is finite and
\[\Delta \subseteq K \times \Sigma^* \times K \]

OBSERVE that we have to say in this case that Δ is finite because Σ^* is infinite.

SOLVING PROBLEMS you can use any of these definitions.

2 Problems

Problem 1 Let L be a language defines as follows
\[L = \{ a^m b^n : \text{every } a \text{ is either immediately proceeded or followed by } b \} \]

1. Describe a regular expression r such that $L(r) = L$ (Meaning of r is L).
 Solution $L = (b \cup ab \cup ba \cup bab)^*$

2. Construct a finite state automata M, such that $L(M) = L$.
 Solution
 Components of M are:
 \[K = \{ s \}, \{ a, b \}, s, F = \{ s \}, \]
 \[\Delta = \{(s, b, s), (s, ab, s), (s, ba, s), (s, bab, s)\} \]
 Some elements of $L(M)$ are: $b, bb, baab, abab, abbba, bbabbbabbabb$

Problem 2

1. Let $M = (K, \Sigma, \delta, s, F)$ be a deterministic finite automaton. Under exactly what conditions $e \in L(M)$?
 Solution
 \[e \in L(M) \text{ iff } s \in F. \]

2. Let $M = (K, \Sigma, \Delta, s, F)$ be a non-deterministic finite automaton. Under exactly what conditions $e \in L(M)$?

Solution Now we have two possibilities: \(s \in F \) (computation of length 0) or there is a computation of length \(> 0 \) from \((s, e)\) to \((q, e)\) for \(q \in F \) when \(s \notin F \).

Problem 3 Let
\[
M = (K, \Sigma, s, \Delta, F)
\]
for \(K = \{q_0, q_1, q_2, q_3\} \), \(s = q_0 \)
\(\Sigma = \{a, b\} \), \(F = \{q_1, q_2, q_3\} \) and
\[
\Delta = \{(q_0, a, q_1), (q_0, b, q_3), (q_1, a, q_2), (q_1, b, q_1), (q_3, a, q_3), (q_3, b, q_2)\}
\]

1. List some elements of \(L(M) \).

Solution \(a, b, aa, bb, aba, abbba \)

2. Write a regular expression for the language accepted by \(M \). Simplify the solution.

Solution
\[
L(M) = ab^* \cup ab^*a \cup ba^*b = ab^*(e \cup a) \cup ba^*(e \cup b).
\]

3. Define a deterministic \(M' \) such that \(M \equiv M' \), i.e. \(L(M) = L(M') \).

Solution We complete \(M \) do a deterministic \(M' \) by adding a TRAP state \(q_4 \) and put
\[
\Delta' = \delta = \Delta \cup \{(q_2, a, q_4), (q_2, b, q_4), (q_4, a, q_4), (q_4, b, q_4)\}
\]

Justify why \(M \approx M' \).

Solution \(q_4 \) is a trap state, it does not influence \(L(M) \).

Problem 4 Let \(M \) be defined as follows
\[
M = (K, \Sigma, s, \Delta, F)
\]
for \(K = \{q_0, q_1, q_2, q_3\} \), \(s = q_0 \)
\(\Sigma = \{a, b, c\} \), \(F = \{q_0, q_2, q_3\} \) and
\[
\Delta = \{(q_0, abc, q_0), (q_0, a, q_1), (q_0, c, q_3), (q_1, bc, q_1), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\}.
\]

Find the regular expression describing the \(L(M) \). Simplify it as much as you can. Explain your steps. Does \(e \in L(M) \)?

Solution
\[
L = (abc)^*a(bc)^* \cup e \cup a^*ba^* \cup (abd)^*
\]

This is not the only solution.

Observe that \(e \in L \) as \(q_0 \in F \) and also \((q_0, e, q_3) \in \Delta \) and \(q_3 \in F \).

This is not the only solution.

Write down (you can draw the diagram) an automata \(M' \) such that \(M' \equiv M \) and \(M' \) is defined by the BOOK definition.

Solution
Solution We apply the "stretching" technique to \(M \) and the new \(M' \) is as follows.

\[
M' = (K \cup \{p_1, p_2, p_3\}, \Sigma, s = q_0, \Delta', F' = F)
\]

for \(K = \{q_0, q_1, q_2\}, s = q_0 \)
\(\Sigma = \{a, b\}, F = \{q_0, q_2, q_3\} \) and
\(\Delta' = \{(q_0, a, q_1), (q_0, e, q_3), (q_1, b, q_2), (q_2, a, q_2), (q_2, b, q_3), (q_3, a, q_3)\} \cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, c, q_0), (q_1, b, p_3), (p_3, b, q_1)\}

Problem 5 For \(M \) defined as follows

\[
M = (K, \Sigma, s, \Delta, F)
\]

for \(K = \{q_0, q_1, q_2, q_3\}, s = q_0 \)
\(\Sigma = \{a, b\}, F = \{q_2\} \) and
\(\Delta = \{(q_0, a, q_3), (q_0, e, q_3), (q_0, b, q_1), q_0, e, q_1), (q_1, a, q_2), (q_2, b, q_3), (q_2, e, q_3)\}\)

Write 2 steps of the general method of transformation the NDFA \(M \) defined above into an equivalent DFA \(M' \).

Step 1: Evaluate \(\delta(E(q_0), a) \) and \(\delta(E(q_0), b) \).

Step 2: Evaluate \(\delta \) on all states that result from step 1.

Reminder: \(E(q) = \{p \in K : (q, e) \stackrel{\star\rightarrow}{M} (p, e)\} \) and
\[
\delta(Q, \sigma) = \bigcup \{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}.
\]

Solution Step 1: First we need to evaluate \(E(q) \), for all \(q \in K \).
\[
E(q_0) = \{q_0, q_1, q_3\} = S, E(q_1) = \{q_1\}, E(q_2) = \{q_2, q_3\} \in F, E(q_3) = \{q_3\}
\]
\[
\delta(E(q_0), a) = \delta(\{q_0, q_1, q_3\}, a) = E(q_3) \cup E(q_2) \cup \emptyset = \{q_2, q_3\} \in F
\]
\[
\delta(E(q_0), b) = \delta(\{q_0, q_1, q_3\}, b) = E(q_1) \cup \emptyset \cup \emptyset = \{q_1\}
\]

Solution Step 2:
\[
\delta(\{q_2, q_3\}, a) = \emptyset \cup \emptyset = \emptyset
\]
\[
\delta(\{q_2, q_3\}, b) = E(q_3) \cup \emptyset = \{q_3\}
\]
\[
\delta(\{q_1\}, a) = E(q_2) = \{q_2, q_3\} \in F
\]
\[
\delta(\{q_1\}, b) = \emptyset
\]