1 YES/NO questions

Circle the correct answer (each question is worth 2pt.) Write SHORT justification.

1. For any function \(f \) from \(A \neq \emptyset \) onto \(A \), \(f \) has property
\[\forall a \in A \exists b \in A(f(b) = a). \]

Justify: definition of "onto" function.

2. Some infinite sets have the same cardinality.

Justify: \(|N| = |2N| \) and \(N \) (natural numbers) and \(2N \) (even numbers) are infinite sets.

3. \(\{a,b\} \in \{a,b,\{a,b\}\} \)

Justify: \(\{a,b\} \subseteq \{a,b,\{a,b\}\} \) as \(\{a,b\} \in \{a,b,\{a,b\}\} \)

4. For any function \(R \subseteq A \times A \), \(R^{-1} \) exists.

Justify: Theorem: The inverse function \(R^{-1} \) exists iff \(R \) is 1 – 1 and "onto".

5. A language \(L \) is regular iff \(L = L(r) \) for some \(r \in \Sigma^* \).

Justify: only when \(r \) is a regular expression.

6. \(L^+ = L^* - \{e\} \).

Justify: only when \(e \not\in L \). When \(e \in L \) we get that \(e \in L^+ \) and \(e \not\in L^* - \{e\} \).

7. For any languages \(L_1, L_2, (L_1 \cup L_2) \cup L_1 = L_2 \).

Justify: languages are sets, so it holds only when only when \(L_1 \subseteq L_2 \).

8. \((\emptyset^* \cap b^*) \cup \emptyset^* \) describes a language with two elements.

Justify: the set \((\{e\} \cap b^*) \cup \{e\} = \{e\} \cup \{e\} = \{e\} \) has one element.

9. For any automata \(M \), \(L(M) = \emptyset \) iff the set \(F \) of its final states is empty.

Justify: Let \(M \) be such that \(\Sigma = \emptyset, F \neq \emptyset, s \not\in F \), we get \(L(M) = \emptyset \).
10. If \(M = (K, \Sigma, \Delta, s, F) \) is a non-deterministic as defined in the book, then \(M \) is also non-deterministic, as defined in the lecture.

\textbf{Justify:} \(\Sigma \cup \{e\} \subseteq \Sigma^* \)

11. Let \(M \) be a finite state automaton, \(L(M) = \bigcup_{q \in F} \{ w \in \Sigma^* : (s, w)^* \xrightarrow{M} (q, e) \} \).

\textbf{Justify:} \(w \in \bigcup_{g \in F} \{ w \in \Sigma^* : (s, w)^* \xrightarrow{M} (q, e) \} \) iff there is \(q \in F \) such that \((s, w)^* \xrightarrow{M} (q, e) \) iff \(w \in L \).

12. For any finite automats \(M_1, M_2 \), \(L(M_1) = L(M_2) \) iff \(M_1 \equiv M_2 \).

\textbf{Justify:} definition of automata equivalency.

13. DFA and NDFA recognize the same class of languages.

\textbf{Justify:} theorem proved in class

\section{Two definitions of a non-deterministic automaton}

\textbf{BOOK DEFINITION:} \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when \(\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K \)

\textbf{OBSERVE} that \(\Delta \) is always finite because \(K, \Sigma \) are finite sets.

\textbf{LECTURE DEFINITION:} \(M = (K, \Sigma, \Delta, s, F) \) is non-deterministic when \(\Delta \) is finite and \(\Delta \subseteq K \times \Sigma^* \times K \)

\textbf{OBSERVE} that we have to say in this case that \(\Delta \) is finite because \(\Sigma^* \) is infinite.

\textbf{SOLVING PROBLEMS} you can use any of these definitions.

\section{PROBLEMS}

\textbf{PROBLEM 1} Let \(\Sigma = \{a, b\} \). Show that \((a \cup b)^*a(a \cup b)^* = \Sigma^*a\Sigma^* \).

\textbf{Solution} Observe that \(\mathcal{L}(a \cup b)^* = (\{a\} \cup \{b\})^* = \{a, b\}^* = \Sigma^* \).

Hence \((a \cup b)^*a(a \cup b)^* = \Sigma^*a\Sigma^* \).

\textbf{PROBLEM 2} Write a regular expression \(r \), such that \(L = \mathcal{L}(r) \) for \(L \) over \(\Sigma = \{a, b\} \) defined as \(L = \{w \in \Sigma^* : w \text{ has no more than three } a's\} \).
Solution

\[r = b^* \cup b^*ab^* \cup b^*ab^*ab^* \cup b^*ab^*ab^*ab^* \]

PROBLEM 3 Let \(L \) be a language defined as follows

\[L = \{ w \in \{a, b\}^* : \text{between any two } a's \text{ in } w \text{ there is an even number of consecutive } b's. \} \]

1. Describe a regular expression \(r \) such that \(L(r) = L \) (Meaning of \(r \) is \(L \)).

Solution Remark that 0 is an even number, hence \(a^* \in L \),

\[r = b^*a^*b^* \cup b^*(a(bb)^*a)^*b^* = (b^*a(bb)^*ab^*)^* \]

2. Construct a finite state automata \(M \), such that \(L(M) = L \).

Solution

Components of \(M \) are:

\[\Sigma = \{a, b\}, K = \{q_0, q_1, q_2, q_3\}, s = q_0, F = \{q_0, q_2, q_3\} \]

\[\Delta = \{(q_0, b, q_0), (q_0, a, q_3), (q_0, a, q_1), (q_1, bb, q_1), (q_1, a, q_2), (q_2, c, q_0), (q_2, b, q_2), (q_3, b, q_3), (q_3, e, q_0)\} \]

Some elements of \(L(M) \) as defined by the state diagram are:

\[b, a, aaaa, aabbb, bbbbaba, abbbaba, abbbabbb, ababbaaba, abbabababa, abababababa, \]

PROBLEM 4 Let

\[M = (K, \Sigma, s, \Delta, F) \]

for \(K = \{q_0\}, s = q_0, \Sigma = \{a, b\}, F = \{q_0\} \) and

\[\Delta = \{(q_0, aba, q_0), (q_0, ab, q_0)\} \]

1. List some elements of \(L(M) \).

Solution

\[e, ab, abab, ababa, ababaaba, ... \]

2. Write a regular expression for the language accepted by \(M \).

Solution

\[L = (ab \cup aba)^* \]

3. Use the Book Definition to define an automaton \(M' \) such that \(M' \equiv M \) (use the ”STRETCH” technique).

\[K' = K \cup \{p_1, p_2, p_3\}, \Delta' = \Delta_{\Sigma,e} \cup \{(q_0, a, p_1), (p_1, b, p_2), (p_2, a, q_0), (q_0, b, p_3), (p_3, b, q_0)\} \]

where \(\Delta_{\Sigma,e} \) denotes those elements of \(\Delta \) that involve only elements of \(\Sigma \cup e \).
PROBLEM 5 (20pts)

For M defined as follows

$$M = (K, \Sigma, s, \Delta, F)$$

for $K = \{q_0, q_1, q_2\}$, $s = q_0$

$\Sigma = \{a, b\}$, $F = \{q_1, q_2\}$ and

$$\Delta = \{(q_0, ab, q_1), (q_0, e, q_1), (q_0, b, q_2), (q_1, a, q_1), (q_2, bb, q_2), (q_1, e, q_2)\}$$

Write a regular expression describing $L(M)$.

$$aba^*(bb)^* \cup a^*(bb)^* \cup b(bb)^*$$

Write 5 steps of the general method of transformation the NDFA M, into an equivalent deterministic M'.

Reminder 1: $E(q) = \{p \in K : (q, e) \xrightarrow{M} (p, e)\}$ and

$$\delta(Q, \sigma) = \bigcup \{E(p) : \exists q \in Q, (q, \sigma, p) \in \Delta\}.$$

Reminder 2: The above definitions apply to the Book definition of non-deterministic automata.

The proper DIAGRAM of new (book definition - use "stretch" method) M is:

$K' = K \cup \{p_1, p_2\}$,

$\Delta' = \Delta_{\Sigma \cup e} \cup \{(g_0, a, p_1), (p_1, b, q_1), (q_2, b, p_2), (p_2, b, q_2)\}$

where $\Delta_{\Sigma \cup e}$ denotes those elements of Δ that involve only elements of $\Sigma \cup e$.

Solution: apply definition to M' defined above.