Machine-Independent Optimizations

Compiler Design

CSE 504

1. Example
2. Dataflow Analysis
3. Common Optimizations
A Fragment of Quicksort

// a is an array
// a’s indices range from m to n
i = m-1; j = n; v = a[n];
while(1) {
 do i = i + 1; while (a[i]<v);
 do j = j - 1; while (a[j]>v);
 if (i >= j) break;
 x = a[i]; a[i] = a[j]; a[j] = x;
}
x = a[i]; a[i] = a[n]; a[n] = x;

Rearranges a such that elements in a[m..j] are all less than any element in a[i+1..n].
Three-Address Code for the Fragment

1. \(i = m-1 \)
2. \(j = n \)
3. \(t1 = 4*n \)
4. \(v = a[t1] \)
5. \(i = i+1 \)
6. \(t2 = 4*i \)
7. \(t3 = a[t2] \)
8. if \(t3 < v \) goto (5)
9. \(j = j-1 \)
10. \(t4 = 4*j \)
11. \(t5 = a[t4] \)
12. if \(t5 > v \) goto (9)
13. if \((i >= j) \) goto (23)
14. \(t6 = 4*i \)
15. \(x = a[t6] \)
16. \(t7 = 4*i \)
17. \(t8 = 4*j \)
18. \(t9 = a[t8] \)
19. \(a[t7] = t9 \)
20. \(t10 = 4*j \)
21. \(a[t10] = x \)
22. goto (5)
23. \(t11 = 4*i \)
24. \(x = a[t11] \)
25. \(t12 = 4*i \)
26. \(t13 = 4*n \)
27. \(t14 = a[t13] \)
28. \(a[t12] = t14 \)
29. \(t15 = 4*n \)
30. \(a[t15] = x \)
Common Subexpression Elimination — 1

\[B_3:\]
(9) \quad j = j - 1
(10) \quad t4 = 4 * j
(11) \quad t5 = a[t4]
(12) \quad \text{if } t5 > v \text{ goto (9)}

\[B_4:\]
(13) \quad \text{if } (i \geq j) \text{ goto (23)}

\[B_5:\]
(14) \quad t6 = 4 * i
(15) \quad x = a[t6]
(16) \quad t7 = 4 * i
(17) \quad t8 = 4 * j
(18) \quad t9 = a[t8]
(19) \quad a[t7] = t9
(20) \quad t10 = 4 * j
(21) \quad a[t10] = x
(22) \quad \text{goto (5)}
Common Subexpression Elimination — 1

B_3:
(9) \quad j = j - 1
(10) \quad t4 = 4 \times j
(11) \quad t5 = a[t4]
(12) \quad \text{if } t5 > v \text{ goto (9)}$

B_4:
(13) \quad \text{if } (i \geq j) \text{ goto (23)}$

B_5:
(14) \quad t6 = 4 \times i
(15) \quad x = a[t6]
(16) \quad t7 = 4 \times i
(17) \quad t8 = 4 \times j
(18) \quad t9 = a[t8]
(19) \quad a[t7] = t9
(20) \quad t10 = 4 \times j
(21) \quad a[t10] = x
(22) \quad \text{goto (5)}$
Common Subexpression Elimination — 1

\(B_3: \)
(9) \(j = j - 1 \)
(10) \(t4 = 4 \times j \)
(11) \(t5 = a[t4] \)
(12) \text{if } t5 > v \text{ goto (9)}

\(B_4: \)
(13) \text{if (i} \geq j \text{) goto (23)}

\(B_5: \)
(14) \text{t6 = 4\times i}
(15) \text{x = a[t6]}
(16) \text{t7 = 4\times i}
(17) \text{t8 = 4\times j}
(18) \text{t9 = a[t8]}
(19) \text{a[t7] = t9}
(20) \text{t10 = 4\times j}
(21) \text{a[t10] = x}
(22) \text{goto (5)}
Common Subexpression Elimination — 1

\[B_3: \]
(9) \(j = j-1 \)
(10) \(t4 = 4*j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if (i>=j) goto (23)

\[B_5: \]
(14) \(t6 = 4*i \)
(15) \(x = a[t6] \)
(16) \(t7 = 4*i \)
(17) \(t8 = 4*j \)
(18) \(t9 = a[t8] \)
(19) \(a[t7] = t9 \quad a[t6] = t9 \)
(20) \(t10 = 4*j \)
(21) \(a[t10] = x \quad a[t8] = x \)
(22) goto (5)
Common Subexpression Elimination — 2

\[B_3: \]
(9) \(j = j-1 \)
(10) \(t_4 = 4j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5 > \text{v} \) goto (9)

\[B_4: \]
(13) if \((i \geq j) \) goto (23)

\[B_5: \]
(14) \(t_6 = 4i \)
(15) \(x = a[t_6] \)
(17) \(t_8 = 4j \)
(18) \(t_9 = a[t_8] \)
(19') \(a[t_6] = t_9 \)
(21') \(a[t_8] = x \)
(22) goto (5)
Common Subexpression Elimination — 2

B_3:
(9) $j = j - 1$
(10) $t_4 = 4 * j$
(11) $t_5 = a[t_4]$
(12) if $t_5 > v$ goto (9)

B_4:
(13) if ($i \geq j$) goto (23)

B_5:
(14) $t_6 = 4 * i$
(15) $x = a[t_6]$
(17) $t_8 = 4 * j$
(18) $t_9 = a[t_8]$
(19') $a[t_6] = t_9$
(21') $a[t_8] = x$
(22) goto (5)
Common Subexpression Elimination — 2

\[B_3: \]
(9) \(j = j-1 \)
(10) \(t4 = 4*j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if \((i >= j) \) goto (23)

\[B_5: \]
(14) \(t6 = 4*i \)
(15) \(x = a[t6] \)
(17) \(t8 = 4*j \)
(18) \(t9 = a[t8] \) \(t9 = a[t4] \)
(19') \(a[t6] = t9 \)
(21') \(a[t8] = x \) \(a[t4] = x \)
(22) goto (5)
Common Subexpression Elimination — 2

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t_4 = 4 \cdot j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5 > v \) goto (9)

\[B_4: \]
(13) if \(i \geq j \) goto (23)

\[B_5: \]
(14) \(t_6 = 4 \cdot i \)
(15) \(x = a[t_6] \)
(17) \(t_8 = 4 \cdot j \)
(18) \(t_9 = a[t_8] \)
(19') \(a[t_6] = t_9 \)
(21') \(a[t_8] = x \)
(22) goto (5)

\(t_8 = t_4 \)
Common Subexpression Elimination — 2

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t_4 = 4 \cdot j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5 > v \) goto (9)

\[B_4: \]
(13) if \((i \geq j) \) goto (23)

\[B_5: \]
(14) \(t_6 = 4 \cdot i \)
(15) \(x = a[t_6] \)
(17) \(t_8 = 4 \cdot j \)
(18) \(t_9 = a[t_8] \quad t_9 = a[t_4] \)
(19') \(a[t_6] = t_9 \quad a[t_6] = t_5 \)
(21') \(a[t_8] = x \quad a[t_4] = x \)
(22) goto (5)
Common Subexpression Elimination — 3

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t2 = 4 \times i \)
(7) \(t3 = a[t2] \)
(8) \text{if } t3 < v \text{ goto (5)}

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t4 = 4 \times j \)
(11) \(t5 = a[t4] \)
(12) \text{if } t5 > v \text{ goto (9)}

\[B_4: \]
(13) \text{if } (i \geq j) \text{ goto (23)}

\[B_5: \]
(14) \(t6 = 4 \times i \)
(15) \(x = a[t6] \)
(19') \(a[t6] = t5 \)
(21') \(a[t4] = x \)
(22) goto (5)
Common Subexpression Elimination — 3

\[B_2: \]
(5) \(i = i+1 \)
(6) \(t2 = 4*i \)
(7) \(t3 = a[t2] \)
(8) if \(t3 < v \) goto (5)

\[B_3: \]
(9) \(j = j-1 \)
(10) \(t4 = 4*j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if (i>=j) goto (23)

\[B_5: \]
(14) \(t6 = 4*i \)
(15) \(x = a[t6] \)
(19’) \(a[t6] = t5 \)
(21’) \(a[t4] = x \)
(22) goto (5)
Common Subexpression Elimination — 3

B_2: (5) $i = i + 1$
(6) $t_2 = 4 \cdot i$
(7) $t_3 = a[t_2]$
(8) if $t_3 < v$ goto (5)

B_3: (9) $j = j - 1$
(10) $t_4 = 4 \cdot j$
(11) $t_5 = a[t_4]$
(12) if $t_5 > v$ goto (9)

B_4: (13) if ($i \geq j$) goto (23)

B_5: (14) $t_6 = 4 \cdot i$
(15) $x = a[t_6]$ $x = t_3$
(19) $a[t_6] = t_5$ $a[t_2] = t_5$
(21) $a[t_4] = x$
(22) goto (5)
Copy Propagation

\[B_2: \]
(5) \(i = i+1 \)
(6) \(t2 = 4*i \)
(7) \(t3 = a[t2] \)
(8) if \(t3 < v \) goto (5)

\[B_3: \]
(9) \(j = j-1 \)
(10) \(t4 = 4*j \)
(11) \(t5 = a[t4] \)
(12) if \(t5 > v \) goto (9)

\[B_4: \]
(13) if (i\geq j) goto (23)

\[B_5: \]
(15') \(x = t3 \)
(19') \(a[t2] = t5 \)
(21') \(a[t4] = x \)
(22) goto (5)
Copy Propagation

\[B_2: \]
\[
(5) \quad i = i + 1 \\
(6) \quad t_2 = 4 \times i \\
(7) \quad t_3 = a[t_2] \\
(8) \quad \text{if } t_3 < v \text{ goto (5)}
\]

\[B_3: \]
\[
(9) \quad j = j - 1 \\
(10) \quad t_4 = 4 \times j \\
(11) \quad t_5 = a[t_4] \\
(12) \quad \text{if } t_5 > v \text{ goto (9)}
\]

\[B_4: \]
\[
(13) \quad \text{if } (i \geq j) \text{ goto (23)}
\]

\[B_5: \]
\[
(15') \quad x = t_3 \\
(19') \quad a[t_2] = t_5 \\
(21') \quad a[t_4] = x \quad a[t_4] = t_3 \\
(22) \quad \text{goto (5)}
\]
Dead Code Elimination

B_2: (5) $i = i+1$
(6) $t2 = 4*i$
(7) $t3 = a[t2]$
(8) if $t3<v$ goto (5)

B_3: (9) $j = j-1$
(10) $t4 = 4*j$
(11) $t5 = a[t4]$
(12) if $t5>v$ goto (9)

B_4: (13) if $(i>=j)$ goto (23)

B_5: (15’) $x = t3$
(19’) $a[t2] = t5$
(21’) $a[t4] = t3$
(22) goto (5)

B_6: (24’) $x = t3$
(27’) $t14 = a[t1]$
(28’) $a[t2] = t14$
(30’) $a[t1]=t3$
Dead Code Elimination

B_2:
(5) $i = i + 1$
(6) $t_2 = 4 \times i$
(7) $t_3 = a[t_2]$
(8) if $t_3 < v$ goto (5)

B_3:
(9) $j = j - 1$
(10) $t_4 = 4 \times j$
(11) $t_5 = a[t_4]$
(12) if $t_5 > v$ goto (9)

B_4:
(13) if $(i \geq j)$ goto (23)

B_5:
(15') $x = t_3$
(19') $a[t_2] = t_5$
(21') $a[t_4] = t_3$
(22) goto (5)

B_6:
(24') $x = t_3$
(27') $t_{14} = a[t_1]$
(28') $a[t_2] = t_{14}$
(30') $a[t_1] = t_3$
Induction Variables and Strength Reduction

\begin{align*}
 B_2: & \quad (5) \quad i = i+1 \\
 & \quad (6) \quad t_2 = 4*i \\
 & \quad (7) \quad t_3 = a[t_2] \\
 & \quad (8) \quad \text{if } t_3 < v \text{ goto (5)} \\
 B_3: & \quad (9) \quad j = j-1 \\
 & \quad (10) \quad t_4 = 4*j \\
 & \quad (11) \quad t_5 = a[t_4] \\
 & \quad (12) \quad \text{if } t_5 > v \text{ goto (9)} \\
 B_4: & \quad (13) \quad \text{if } (i \geq j) \text{ goto (23)} \\
 B_5: & \quad (19') \quad a[t_2] = t_5 \\
 & \quad (21') \quad a[t_4] = t_3 \\
 & \quad (22) \quad \text{goto (5)} \\
 B_6: & \quad (27') \quad t_{14} = a[t_1] \\
 & \quad (28') \quad a[t_2] = t_{14} \\
 & \quad (30') \quad a[t_1] = t_3
\end{align*}
Induction Variables and Strength Reduction

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t_2 = 4 \times i \)
(7) \(t_3 = a[t_2] \)
(8) if \(t_3 < v \) goto (5)

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t_4 = 4 \times j \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5 > v \) goto (9)

\[B_4: \]
(13) if (\(i \geq j \)) goto (23)

\[B_5: \]
(19') \(a[t_2] = t_5 \)
(21') \(a[t_4] = t_3 \)
(22) goto (5)

\[B_6: \]
(27') \(t_{14} = a[t_1] \)
(28') \(a[t_2] = t_{14} \)
(30') \(a[t_1] = t_3 \)
Induction Variables and Strength Reduction

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t2 = 4 \times i \quad t2 = t2 + 4 \)
(7) \(t3 = a[t2] \)
(8) \(\text{if } t3 < v \text{ goto (5)} \)

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t4 = 4 \times j \quad t4 = t4 - 4 \)
(11) \(t5 = a[t4] \)
(12) \(\text{if } t5 > v \text{ goto (9)} \)

\[B_4: \]
(13) \(\text{if } (i \geq j) \text{ goto (23)} \)

\[B_5: \]
(19') \(a[t2] = t5 \)
(21') \(a[t4] = t3 \)
(22) \(\text{goto (5)} \)

\[B_6: \]
(27') \(t14 = a[t1] \)
(28’) \(a[t2] = t14 \)
(30’) \(a[t1] = t3 \)
Induction Variables and Strength Reduction

\[B_2: \]
(5) \(i = i + 1 \)
(6) \(t_2 = 4 \cdot i \quad t_2 = t_2 + 4 \)
(7) \(t_3 = a[t_2] \)
(8) if \(t_3 < v \) goto (5)

\[B_3: \]
(9) \(j = j - 1 \)
(10) \(t_4 = 4 \cdot j \quad t_4 = t_4 - 4 \)
(11) \(t_5 = a[t_4] \)
(12) if \(t_5 > v \) goto (9)

\[B_4: \]
(13) if (\(i \geq j \)) goto (23)

\[B_5: \]
(19') \(a[t_2] = t_5 \)
(21') \(a[t_4] = t_3 \)
(22) goto (5)

\[B_6: \]
(27') \(t_{14} = a[t_{11}] \)
(28') \(a[t_2] = t_{14} \)
(30') \(a[t_1] = t_3 \)
Induction Variables and Strength Reduction

\[B_2: \]
1. \(i = i+1 \)
2. \(t2 = 4 \times i \)
3. \(t2 = t2+4 \)
4. \(t3 = a[t2] \)
5. If \(t3 < v \) goto (5)

\[B_3: \]
1. \(j = j-1 \)
2. \(t4 = 4 \times j \)
3. \(t4 = t4-4 \)
4. \(t5 = a[t4] \)
5. If \(t5 > v \) goto (9)

\[B_4: \]
1. If \(i \geq j \) and \(t2 \geq t4 \) goto (23)

\[B_5: \]
1. \(a[t2] = t5 \)
2. \(a[t4] = t3 \)
3. Goto (5)

\[B_6: \]
1. \(t14 = a[t1] \)
2. \(a[t2] = t14 \)
3. \(a[t1] = t3 \)
Final Steps

B_2: (5) $i = i+1$
(6’) $t2 = t2+4$
(7) $t3 = a[t2]$
(8) if $t3 < v$ goto (5)

B_3: (9) $j = j-1$
(10’) $t4 = t4-4$
(11) $t5 = a[t4]$
(12) if $t5 > v$ goto (9)

B_4: (13’) if $(t2>=t4)$ goto (23)

B_5: (19’) $a[t2] = t5$
(21’) $a[t4] = t3$
(22) goto (5)

B_6: (27’) $t14 = a[t1]$
(28’) $a[t2] = t14$
(30’) $a[t1] = t3$
Final Steps

B_2:
(5) $i = i + 1$ \textit{dead code}
(6') $t_2 = t_2 + 4$
(7) $t_3 = a[t_2]$
(8) if $t_3 < v$ goto (5)

B_3:
(9) $j = j - 1$ \textit{dead code}
(10') $t_4 = t_4 - 4$
(11) $t_5 = a[t_4]$
(12) if $t_5 > v$ goto (9)

B_4:
(13') if $(t_2 \geq t_4)$ goto (23)

B_5:
(19') $a[t_2] = t_5$
(21') $a[t_4] = t_3$
(22) goto (5)

B_6:
(27') $t_{14} = a[t_1]$
(28') $a[t_2] = t_{14}$
(30') $a[t_1] = t_3$
End Result

\(B_1: \)
1. \(i = m - 1 \)
2. \(t_1 = n \ll 2 \)
3. \(v = a[t_1] \)
4. \(t_2 = i \ll 2 \)
5. \(t_4 = t_1 \)

\(B_2: \)
6. \(t_2 = t_2 + 4 \)
7. \(t_3 = a[t_2] \)
8. \(\text{if } t_3 < v \text{ goto (5)} \)

\(B_3: \)
9. \(t_4 = t_4 - 4 \)
10. \(t_5 = a[t_4] \)
11. \(\text{if } t_5 > v \text{ goto (9)} \)

\(B_4: \)
12. \(\text{if } (t_2 \geq t_4) \text{ goto (23)} \)

\(B_5: \)
13. \(a[t_2] = t_5 \)
14. \(a[t_4] = t_3 \)
15. \(\text{goto (5)} \)

\(B_6: \)
16. \(t_{14} = a[t_1] \)
17. \(a[t_2] = t_{14} \)
18. \(a[t_4] = t_3 \)
Code Motion (via Another Example)

```c
for (i=0; i<n; i++)
    for (j = 0; j < n; j ++)
        c[i][j] = 0.0;
```
Code Motion (via Another Example)

for (i=0; i<n; i++)
 for (j = 0; j < n; j++)
 c[i][j] = 0.0;

(1) i = 0
(2) if (i >= n) goto (12)
(3) j = 0
(4) if (j >= n) goto (10)
(5) t1 = i*n
(6) t2 = c+t1
(7) t2[j] = 0.0
(8) j = j+1
(9) goto (4)
(10) i = i+1
(11) goto (2)
(12) ...
Code Motion (via Another Example)

```c
for (i=0; i<n; i++)
    for (j = 0; j < n; j++)
        c[i][j] = 0.0;

(1) i = 0
(2) if (i >= n) goto (12)
(3) j = 0
(4) if (j >= n) goto (10)
(5) t1 = i*n
(6) t2 = c+t1
(7) t2[j] = 0.0
(8) j = j+1
(9) goto (4)
(10) i = i+1
(11) goto (2)
(12) ...
```
Code Motion (via Another Example)

for (i=0; i<n; i++)
 for (j = 0; j < n; j ++)
 c[i][j] = 0.0;

(1) i = 0
(2) if (i >= n) goto (12)
(3) j = 0
(4) if (j >= n) goto (10)
(5) t1 = i*n
(6) t2 = c+t1
(7) t2[j] = 0.0
(8) j = j+1
(9) goto (4)
(10) i = i+1
(11) goto (2)
(12) ...

⇒

(1) i = 0
(1a) t2 = c-n
(2) if (i >= n) goto (12)
(3) j = 0
(5') t2 = t2+n
(6') if (j >= n) goto (10)
(7) t2[j] = 0.0
(8) j = j+1
(9) goto (6')
(10) i = i+1
(11) goto (2)
(12) ...
Reaching Definitions

- An assignment of the form $x = e$ for some expression e is said to define x.
- A definition at statement s_1 reaches another statement s_2 if:
 - there is some control flow path from s_1 to s_2, such that
 - there is no other definition of x on the path from s_1 to s_2.
- Let $\text{In}(s)$ be the set of all definitions that reach s.
- Let $\text{Out}(s)$ be the set of all definitions that reach all the immediate successors of s.
- Then $\text{Out}(s) = \text{gen}(s) \cup (\text{In}(s) - \text{kill}(s))$, where
 - $\text{gen}(s)$ is the set of definitions generated by s, and
 - $\text{kill}(s)$ is the set of definitions with the same lhs variables as those in s.
- $\text{In}(s) = \bigcup_{t \in \text{pred}(s)} \text{Out}(t)$
Reaching Definitions vs. Live Variables

- **Live Variables:** \(\text{In} \) and \(\text{Out} \) are the smallest sets such that

\[
\text{In}(s) = \text{use}(s) \cup (\text{Out}(s) - \text{def}(s))
\]

\[
\text{Out}(s) = \bigcup_{t \in \text{succ}(s)} \text{In}(t)
\]

- **Reaching Definitions:** \(\text{In} \) and \(\text{Out} \) are the smallest sets such that

\[
\text{In}(s) = \bigcup_{t \in \text{pred}(s)} \text{Out}(t)
\]

\[
\text{Out}(s) = \text{gen}(s) \cup (\text{In}(s) - \text{kill}(s))
\]

The form of equations is identical, and they can be computed using the same procedure, except:

- Live Variables are best computed backwards through the flow graph (information goes from successors to predecessors).
- Reaching Definitions are best computed forwards through the flow graph (information goes from predecessors to successors).
Available Expressions

- An expression e is *available* at statement s if, on *every path* from entry to s, there is *some* statement s' where e is evaluated, and variables in e are not redefined between s' and s.

- Let $\text{In}(s)$ be the set of all expressions available immediately before s is evaluated.

- Let $\text{Out}(s)$ be the set of all expressions available immediately after s is evaluated.

- Then $\text{Out}(s) = \text{gen}(s) \cup (\text{In}(s) - \text{kill}(s))$, where
 - $\text{gen}(s)$ is the set of all expressions evaluated in s, and
 - $\text{kill}(s)$ is the set of all expressions that use the lhs variables defined in s.

- $\text{In}(s) = \bigcap_{t \in \text{pred}(s)} \text{Out}(t)$

- In and Out are the **greatest sets** that satisfy the above equations.
Data-Flow Analysis Framework

The 3 data-flow problems discussed so far (liveness, reaching definitions, and available expressions) can be seen as instances of a general data-flow analysis framework, specified by:

- **Direction of data flow** (forwards or backwards)
- **A semilattice** \((V, \wedge)\):
 - \(V\) is a non-empty set that contains a special element \(\top\).
 - “\(\wedge\)” is a binary operator, called *meet*, that is closed over \(V\) and is *associative*, *commutative*, and *idempotent* (i.e. \(x \wedge x = x\), for all \(x \in V\))
 - For all \(x \in V\), \(x \wedge \top = x\).
- **A family of transfer functions** from \(V \rightarrow V\) such that
 - \(F\) contains the identity function
 - \(F\) is closed w.r.t. to composition. I.e., if \(f_1, f_2 \in F\), then \(f_3\) defined as \(f_3(x) = f_2(f_1(x))\) is also in \(F\).
DFA Frameworks (contd.)

- **Liveness Analysis:**
 - Backwards analysis.
 - $V = \mathcal{P}(X)$, where X is the set of variables in the program;
 - Meet operator is set union.
 - \top in V is the empty set.
 - Transfer functions are of the form $f(x) = G \cup (x - K)$ for constants G and K.

- **Available Expression Analysis:**
 - Forwards analysis.
 - $V = \mathcal{P}(E)$, where E is the set of expressions in the program.
 - Meet operator is set intersection.
 - \top in V is the universal set (\overline{E})
 - Transfer functions are of the form $f(x) = G \cup (x - K)$ for constants G and K.
Define $x \leq y$ iff $x \land y = x$. It can be shown that “≤” is a partial order.

(Here, “∧” is the meet operator)

- **Monotone Frameworks:**
 - Every f in F is monotone: $x \leq y \Rightarrow f(x) \leq f(y)$.
 - Alternatively: $f(x \land y) \leq f(x) \land f(y)$

- **Distributive Frameworks:**
 - $f(x \land y) = f(x) \land f(y)$
 - Note: distributivity implies monotonicity
Generic DFA Algorithm

Given below for a Forward analysis:

1. \(Out(entry) = v_{entry} \)
2. \(Out(b) = \top, \text{ for each } b \neq entry \)
3. While no change to any \(Out \):
 - For each \(b \neq entry \)
 - \(In(b) = \land_{a \in \text{predecessor}(b)} Out(a) \)
 - \(Out(b) = f_b(In(b)) \)

- Computes the Maximum Fixed Point (MFP) for monotone frameworks.
- If the framework is monotone and the height of the semilattice is finite, then the algorithm terminates.
- If and when the algorithm terminates, it computes a solution to the data-flow equations.
MOP and MFP solutions

- **Ideal**: The property computed over all feasible execution paths:

\[
\text{Ideal}(B) = \bigwedge_{P \text{ feasible execution path}} f_P(v_{\text{entry}})
\]

- **MOP**: (Meet over all paths) The property computed over all possible paths in the control flow graph:

\[
\text{MOP}(B) = \bigwedge_{P \text{ control flow path}} f_P(v_{\text{entry}})
\]

- Note that \(\text{MOP}(x) \leq \text{Ideal}(x)\) from monotonicity.
- \(\text{MFP}(x) \leq \text{MOP}(x)\) in general.
- \(\text{MFP}(x) = \text{MOP}(x)\) if the framework is distributive.
Constant Propagation

In terms of the DFA framework, constant propagation is a forward analysis:

- V: Assignment to each variable in the program, one of the following:
 - a specific constant c, not a constant “NAC” or undefined “$UNDEF$”.
- \wedge: For each element in the assignment, the meet is defined as follows:
 - $UNDEF \wedge v = v$; $NAC \wedge v = NAC$.
 - $c \wedge c = c$
 - $c_1 \wedge c_2 = NAC$ if $c_1 \neq c_2$

Then $m_1 \wedge m_2 = m_3$ if $m_3(v) = m_1(v) \wedge m_2(v)$ for each v.

- Transfer functions, as in next slide
Transfer Function for Constant Propagation

If s is not an assignment, then f_s is the identity function.

If s is an assignment of the form $x = rhs$, then $f_s(m) = m'$ such that

- $m'(v) = m(v)$ for all $v \neq x$
- $m'(x)$ as follows.
 - RHS is a single constant c, then $m'(x) = c$.
 - RHS is a single variable y, then $m'(x) = m(y)$.
 - RHS is an expression of the form $y \oplus z$, then

$$m'(x) = \begin{cases}
m(y) \oplus m(z) & \text{if } m(y) \text{ and } m(z) \text{ are constants} \\
NAC & \text{if either } m(y) \text{ or } m(z) \text{ is NAC} \\
UNDEF & \text{otherwise}
\end{cases}$$
Constant Propagation Optimization

- Compute m using the DFA algorithm for constant propagation.
- If $l: \quad t \leftarrow e$ is an assignment (in the intermediate code):
 - If $e = s$, and $m(s) = c$, then replace the assignment with $l: \quad t \leftarrow c$
 - If $e = s_1 \oplus s_2$, $m(s_1) = c_1$ and $m(s_2) = c_2$, then replace assignment with $l: \quad t \leftarrow c$, where $c = c_1 \oplus c_2$.
Copy Propagation

- Perform reaching definitions analysis
- If $l_1 : t \leftarrow z$ and $l_2 : y \leftarrow t \oplus x$ are two statements such that
 - l_1 reaches l_2
 - No other definition of t reaches l_2
 - There is no definition of z along any path from l_1 to l_2

Then replace $l_2 : y \leftarrow t \oplus x$ with $l_2 : y \leftarrow z \oplus x$
Common Subexpression Elimination

- Perform available expressions and reaching definitions analyses.
- If \(l_1 : \ t \leftarrow x \oplus y \) is a statement where expression \(x \oplus y \) is available, and
 - Find statements of the form \(l_2 : \ z \leftarrow x \oplus y \) such that \(l_2 \) reaches \(l_1 \), and \(x, y \) are not redefined on any path from \(l_2 \) to \(l_1 \).
 - Generate a new temporary name \(w \).
 - Replace \(l_2 \) with the following two statements:
 \[
 l_2 : \ w \leftarrow x \oplus y \\
 l_{2'} : \ z \leftarrow w
 \]
- Replace \(l_1 \) with \(l_1 : \ t \leftarrow w \).
- Copy propagation can later remove the extra assignments (or better, coalesce the temporaries during register allocation).
Loops

A loop in a control flow graph is a set of nodes L such that
- L has a unique header node h
- There is a path from h to every node in L
- From every node in L there is a path to h
- There is no edge in any node outside L to any node in $L - \{h\}$.

Corollary: A loop may have multiple exits, but have a single entry (h).
Loop Invariants

A definition $l_1 : t ← a_1 ⊕ a_2$ inside loop L is invariant in L if one of the following conditions hold:

- a_i’s are constants
- all definitions of a_1 and a_2 that reach l_1 are outside L
- only one definition for each a_i reaches l_1 and that definition is loop invariant in L.

We can hoist an invariant assignment $l_1 : t ← a_1 ⊕ a_2$ out of loop L if all of the following conditions hold:

- l_1 dominates all loop exits at which t is live-out
- There is only one definition of t in L