Automata

Compiler Design

CSE 504
NFA to DFA via Subset Construction

Diagram:

- Start state: 0
- States: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- Transitions:
 - From 0 to 1, 2, 3, 4, 5, 6, 7
 - From 1 to 2, 3, 4, 5, 6, 7
 - From 2 to 3
 - From 3 to 2, 3, 5
 - From 4 to 6, 7
 - From 5 to 6
 - From 6 to 3, 7
 - From 7 to 8, 9
 - From 8 to 9, 11
 - From 9 to 10, 11
 - From 10 to 12
 - From 11 to 12
 - From 12 to 13
 - From 13 to 10
 - From 8 to 7 (ε-transitions)

Final states: 9, 11, 13

NFA to DFA via Subset Construction

\[\epsilon \text{-closure} \]
NFA to DFA via Subset Construction

\[\epsilon \text{-closure} \]
NFA to DFA via Subset Construction
NFA to DFA via Subset Construction

\[\epsilon \text{-closure} \]
NFA to DFA via Subset Construction

ϵ-closure
NFA to DFA via Subset Construction

ω

goto

ω
NFA to DFA via Subset Construction

\[\begin{align*}
0 & \rightarrow 1 \\
1 & \rightarrow 2, 3 \\
2 & \rightarrow 4 \\
3 & \rightarrow 5 \\
4 & \rightarrow 6, 9 \\
5 & \rightarrow 6 \\
6 & \rightarrow 7, 8 \\
7 & \rightarrow 8 \\
8 & \rightarrow 9, 11, 13 \\
9 & \rightarrow 10, 11 \\
10 & \rightarrow 11, 12, 13 \\
11 & \rightarrow 12, 13 \\
12 & \rightarrow 13 \\
13 & \rightarrow 9, 11
\end{align*}\]
NFA to DFA via Subset Construction

\[\text{\(\varepsilon\)-closure} \]
NFA to DFA via Subset Construction

goto
NFA to DFA via Subset Construction

\[\varepsilon \text{-closure} \]
NFA to DFA via Subset Construction

- ε-closure
NFA to DFA via Subset Construction

goto
NFA to DFA via Subset Construction

\[\epsilon \text{-closure} \]
NFA to DFA via Subset Construction

\(\epsilon\)-closure

\[0, 1, 2, 3, 7\]
\[4, 8, 1, 2, 3, 6, 7, 9, 10\]
\[4, 8, 11, 1, 2, 3, 6, 7, 9, 10, 13\]
\[5, 1, 2, 3, 6, 7\]
\[5, 12, 1, 2, 3, 6, 7, 13\]
NFA to DFA via Subset Construction

goto
NFA to DFA via Subset Construction

Final states
Finite Automata and Languages

Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.

 Note that a word w is a sequence of (zero or more) alphabet symbols.
Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 Note that a word w is a sequence of (zero or more) alphabet symbols.
- We can associate two languages with each state in A:

Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 Note that a word w is a sequence of (zero or more) alphabet symbols.

- We can associate two languages with each state in A:
 - **Suffix:** For state s, define $L_{s \rightarrow} = \{ w | s.w \text{ is a final state} \}$
Finite Automata and Languages

Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 Note that a word w is a sequence of (zero or more) alphabet symbols.
- We can associate two languages with each state in A:
 - **Suffix**: For state s, define $L_s \rightarrow = \{ w | s.w \text{ is a final state} \}$
 - **Prefix**: Let s be the start state of A. For a state t, define $L_{\rightarrow s} = \{ w | s.w = t \}$.

Finite Automata and Languages

Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w. Note that a word w is a sequence of (zero or more) alphabet symbols.
- We can associate two languages with each state in A:
 - **Suffix**: For state s, define $L_s \rightarrow = \{ w | s.w \text{ is a final state} \}$
 - **Prefix**: Let s be the start state of A. For a state t, define $L_{\rightarrow s} = \{ w | s.w = t \}$.
- The language of A, denoted by L_A can be seen as:
Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 Note that a word w is a sequence of (zero or more) alphabet symbols.

- We can associate two languages with each state in A:
 - **Suffix**: For state s, define $L_{s \rightarrow} = \{ w \mid s.w \text{ is a final state} \}$
 - **Prefix**: Let s be the start state of A. For a state t, define $L_{\rightarrow s} = \{ w \mid s.w = t \}$.

- The language of A, denoted by \mathcal{L}_A can be seen as:
 - $L_{s \rightarrow}$ where s is the start state;
Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 - Note that a word w is a sequence of (zero or more) alphabet symbols.
- We can associate two languages with each state in A:
 - **Suffix**: For state s, define $L_{s \rightarrow} = \{ w | s.w \text{ is a final state} \}$
 - **Prefix**: Let s be the start state of A. For a state t, define $L_{\rightarrow s} = \{ w | s.w = t \}$.
- The language of A, denoted by L_A can be seen as:
 - $L_{s \rightarrow}$ where s is the start state;
 - \bigcup_f is a final state $L_{\rightarrow f}$
Examples of Suffix and Prefix Languages (1)

- $L_{s_0\rightarrow} = (ab)^+$
- $L_{s_1\rightarrow} = b(ab)^*$
- $L_{s_2\rightarrow} = (ab)^*$
- $L_{\rightarrow s_1} = a(ba)^*$
- $L_{\rightarrow s_2} = (ab)^+$

Diagram:

- $s_0 \rightarrow a \rightarrow s_1 \rightarrow a \rightarrow b \rightarrow s_2$
Examples of Suffix and Prefix Languages (2)

\[L_{s_1} = (a|b)^* \]
\[L_{s_2} = (a|b)^* \]
\[L_{\rightarrow s_1} = a(a|b)^* \]
\[L_{\rightarrow s_2} = (a+)b(a|b)^* \]
An automaton is *minimal* if the suffix languages of all states are pairwise distinct.
An automaton is *minimal* if the suffix languages of all states are pairwise distinct.

The following automaton is not minimal:

\[
\begin{array}{c}
s_0 \xrightarrow{a} s_1 \xrightarrow{b} s_2 \xrightarrow{a} s_1 \\
L_{s_1} = L_{s_2} = (a|b)^*
\end{array}
\]
An automaton is \textit{minimal} if the suffix languages of all states are pairwise distinct.

The following automaton is \textbf{not minimal}:

![Diagram of an automaton with states s0, s1, and s2, labeled with transitions a and b.]

$L_{s_1 \rightarrow} = L_{s_2 \rightarrow} = (a|b)^*$

The following automaton is \textbf{minimal}:

![Diagram of a minimal automaton with states s0, s1, and s2, labeled with transitions a and b.]

The suffix languages of all states are distinct. Recall:

$L_{s_0 \rightarrow} = (ab)^+; \quad L_{s_1 \rightarrow} = b(ab)^*; \quad L_{s_2 \rightarrow} = (ab)^*$
Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that

- the suffix languages of states within a partition are identical; and
Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that

- the suffix languages of states within a partition are identical; and
- states in distinct partitions have distinct suffix languages.
Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that
- the suffix languages of states within a partition are identical; and
- states in distinct partitions have distinct suffix languages.
Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that
- the suffix languages of states within a partition are identical; and
- states in distinct partitions have distinct suffix languages.

Original automaton:

\[
\begin{align*}
L_{s_0} & = a(a|b)^*; \\
L_{s_1} & = L_{s_2} = (a|b)^*; \\
L_{s_0} & = a(a|b)^*
\end{align*}
\]
Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that
- the suffix languages of states within a partition are identical; and
- states in distinct partitions have distinct suffix languages.

Original automaton:

![Original automaton diagram](image)

Minimized automaton:

![Minimized automaton diagram](image)
Partition Refinement

- Suffix languages of all final states are distinct from those of non-final states.
 - **Note:** ϵ, the empty string, is in the suffix language of a final state, and not in that of a non-final state.
- We start by partitioning the states into final and non-final states.
- At each step, we refine a partition P (if possible) if transitions on the same symbol from different states of P lead to states in different partitions.
- The process stops when no partition can be refined further.
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement

Diagram:

- States: d0, d1, d2, d3, d4
- Transitions:
 - d0 → a → d1 → a → d3
 - b → d2 → b
 - a → d1 → a
 - a → d3
 - b → d2 → b
 - b → d4 → b

Initial partition: {d0, d2}, {d1}, {d3}, {d4}

Final states: {d3, d4}

Non-final states: {d0, d1, d2}

(distinguished by ϵ)

- goto (d3, a) = d3 ∈ {d3, d4}
 - but goto (d4, a) = d1 \̸∈ {d3, d4}.

i.e., a ∈ Ld3 → but a \̸∈ Ld4 →.

New partitions:

- {d3}
- {d4}
- {d0, d2, d1}

- goto (d1, a) = d3,
 - but goto ({d0, d2}, a) = d1.

i.e., a ∈ Ld1 → but a \̸∈ Ld2 →.

New partitions:

- {d3}
- {d4}
- {d1}
- {d0, d2}
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \(\{d3, d4\} \)
 - Non-final states: \(\{d0, d1, d2\} \)
 - (distinguished by \(\epsilon \))
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \{d3, d4\}
 - Non-final states: \{d0, d1, d2\}
 (distinguished by \(\epsilon\))
- \(\text{goto}(d3, a) = d3 \in \{d3, d4\}\), but \(\text{goto}(d4, a) = d1 \notin \{d3, d4\}\).
 i.e., \(a \in L_{d3}\) but \(a \notin L_{d4}\).
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \{d_3, d_4\}
 - Non-final states: \{d_0, d_1, d_2\}
 - (distinguished by \(\epsilon\))
- \(\text{goto}(d_3, a) = d_3 \in \{d_3, d_4\}\),
 - but \(\text{goto}(d_4, a) = d_1 \not\in \{d_3, d_4\}\).
 - i.e., \(a \in L_{d_3}\rightarrow\) but \(a \not\in L_{d_4}\rightarrow\).
- New partitions:
 - \{d_3\}; \{d_4\}; \{d_0, d_1, d_2\}
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \{d3, d4\}
 - Non-final states: \{d0, d1, d2\}
 (distinguished by \(\epsilon\))
 - goto(d3, a) = d3 \(\in\) \{d3, d4\}, but goto(d4, a) = d1 \(\not\in\) \{d3, d4\}.
 i.e., a \(\in\) \(L_{d3\rightarrow}\) but a \(\not\in\) \(L_{d4\rightarrow}\).
- New partitions:
 - \{d3\}; \{d4\}; \{d0, d1, d2\}
 - goto(d1, a) = d3, but goto(\{d0, d2\}, a) = d1.
 i.e., a \(\in\) \(L_{d1\rightarrow}\) but a \(\not\in\) \(L_{d2\rightarrow}\).
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \{d3, d4\}
 - Non-final states: \{d0, d1, d2\}
 - (distinguished by \(\epsilon\))

- \(\text{goto}(d3, a) = d3 \in \{d3, d4\}\), but \(\text{goto}(d4, a) = d1 \not\in \{d3, d4\}\).
 - i.e., \(a \in L_{d3\rightarrow}\) but \(a \not\in L_{d4\rightarrow}\).
- New partitions:
 - \{d3\}; \{d4\}; \{d0, d1, d2\}

- \(\text{goto}(d1, a) = d3\),
 - but \(\text{goto}(\{d0, d2\}, a) = d1\).
 - i.e., \(a \in L_{d1\rightarrow}\) but \(a \not\in L_{d2\rightarrow}\).
- New partitions:
 - \{d3\}; \{d4\}; \{d1\}; \{d0, d2\}
DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \(\{d3, d4\} \)
 - Non-final states: \(\{d0, d1, d2\} \)
 (distinguished by \(\epsilon \))
 - \(\text{goto}(d3, a) = d3 \in \{d3, d4\} \),
 but \(\text{goto}(d4, a) = d1 \notin \{d3, d4\} \).
 i.e., \(a \in L_{d3} \rightarrow \) but \(a \notin L_{d4} \rightarrow \).
- New partitions:
 - \(\{d3\}; \{d4\}; \{d0, d1, d2\} \)
 - \(\text{goto}(d1, a) = d3, \)
 but \(\text{goto}(\{d0, d2\}, a) = d1 \).
 i.e., \(a \in L_{d1} \rightarrow \) but \(a \notin L_{d2} \rightarrow \).
- New partitions:
 - \(\{d3\}; \{d4\}; \{d1\}; \{d0, d2\} \)
Moore’s Algorithm for DFA Minimization

Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

![Diagram](image-url)
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states.
 States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

\[P_0: \{d3, d4\}; \{d0, d1, d2\} \]
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

- P_0: $\{d3, d4\}; \{d0, d1, d2\}$
- Observe:
Moore’s Algorithm for DFA Minimization

Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.

Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

- P_0: \{d3, d4\}; \{d0, d1, d2\}
- Observe:
 - $a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\}$
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

- P_0: $\{d3, d4\};\{d0, d1, d2\}$
- Observe:
 - $a^{-1}.P_0 = \{d1, d3\};\{d0, d2, d4\}$
 - $b^{-1}.P_0 = \{d1, d3\};\{d0, d2, d4\}$
Moore’s Algorithm for DFA Minimization

- Let \(P \) be a partition of the set of states.
 States \(s \) and \(s' \) are equivalent in \(P \) if \(s \) and \(s' \) are in the same set in \(P \).
- Two states \(s_1 \) and \(s_2 \) are equivalent in \(\alpha^{-1}.P \) if \(s_1.\alpha \) and \(s_2.\alpha \) are equivalent in \(P \).

\[P_0: \{d3, d4\}; \{d0, d1, d2\} \]

Observe:
- \(a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \)
- \(b^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \)

\(P \land P' :: \) a partition such that two states are in same set iff they are in the same sets in \(P \) as well as \(P' \).
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

- P_0: $\{d3, d4\}; \{d0, d1, d2\}$
- Observe:
 - $a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\}$
 - $b^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\}$
- $P \land P'$:: a partition such that two states are in same set iff they are in the same sets in P as well as P'.
- $P_1 = P_0 \land a^{-1}.P_0 \land b^{-1}.P_0$
 - $= \{d0, d2\}; \{d1\}; \{d3\}; \{d4\}$
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

\[
P_0: \{d3, d4\}; \{d0, d1, d2\}
\]

Observe:

- $a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\}$
- $b^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\}$

$P \land P' ::$ a partition such that two states are in same set iff they are in the same sets in P as well as P'.

$P_1 = P_0 \land a^{-1}.P_0 \land b^{-1}.P_0$

$= \{d0, d2\}; \{d1\}; \{d3\}; \{d4\}$

- In general $P_{i+1} = P_i \land_{\alpha \in \Sigma} \alpha^{-1}.P_i$
Moore’s Algorithm for DFA Minimization

- Let P be a partition of the set of states. States s and s' are equivalent in P if s and s' are in the same set in P.
- Two states s_1 and s_2 are equivalent in $\alpha^{-1}.P$ if $s_1.\alpha$ and $s_2.\alpha$ are equivalent in P.

\[P_0: \{d3, d4\}; \{d0, d1, d2\} \]

- Observe:
 \[a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \]
 \[b^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \]

- $P \land P'$:: a partition such that two states are in same set iff they are in the same sets in P as well as P'.

\[P_1 = P_0 \land a^{-1}.P_0 \land b^{-1}.P_0 = \{d0, d2\}; \{d1\}; \{d3\}; \{d4\} \]

- In general $P_{i+1} = P_i \land_{\alpha \in \Sigma} \alpha^{-1}.P_i$
- Repeat until $P_{n+1} = P_n$
Another Example of Moore’s Algorithm

P_0: $s_0 \xrightarrow{a,b} s_1 \xrightarrow{a,b} s_2 \xrightarrow{a} s_3$
Another Example of Moore’s Algorithm

- P_0:

 - $a^{-1}.P_0 = \{s0, s1\}; \{s2, s3\}$ and $b^{-1}.P_0 = \{s0, s1\}; \{s2\}; \{s3\}$
Another Example of Moore’s Algorithm

- P_0: $P_0 = \{s_0, s_1\}; \{s_2, s_3\}$ and $a^{-1}.P_0 = \{s_0, s_1\}; \{s_2, s_3\}$
- P_1: $P_1 = \{s_0, s_1\}; \{s_2\}; \{s_3\}$
Another Example of Moore’s Algorithm

- \(P_0: \)
 \[
 s_0 \xrightarrow{a,b} s_1 \xrightarrow{a,b} s_2 \xrightarrow{a} s_3
 \]
 \(a^{-1}.P_0 = \{s_0, s_1\}; \{s_2, s_3\} \) and \(b^{-1}.P_0 = \{s_0, s_1\}; \{s_2\}; \{s_3\} \)

- \(P_1: \)
 \[
 s_0 \xrightarrow{a,b} s_1 \xrightarrow{a,b} s_2 \xrightarrow{a} s_3
 \]
 \(a^{-1}.P_1 = \{s_0\}; \{s_1\}; \{s_2, s_3\} \) and \(b^{-1}.P_0 = \{s_0\}; \{s_1\}; \{s_2\}; \{s_3\} \)
Another Example of Moore’s Algorithm

- P_0: $s_0 \xrightarrow{ab} s_1 \xrightarrow{ab} s_2 \xrightarrow{a} s_3$

 $a^{-1}.P_0 = \{s_0, s_1\}; \{s_2, s_3\}$ and $b^{-1}.P_0 = \{s_0, s_1\}; \{s_2\}; \{s_3\}$

- P_1: $s_0 \xrightarrow{ab} s_1 \xrightarrow{ab} s_2 \xrightarrow{a} s_3$

 $a^{-1}.P_1 = \{s_0\}; \{s_1\}; \{s_2, s_3\}$ and $b^{-1}.P_0 = \{s_0\}; \{s_1\}; \{s_2\}; \{s_3\}$

- P_2: $s_0 \xrightarrow{ab} s_1 \xrightarrow{ab} s_2 \xrightarrow{a} s_3$

 $a^{-1}.P_1 = \{s_0\}; \{s_1\}; \{s_2, s_3\}$ and $b^{-1}.P_0 = \{s_0\}; \{s_1\}; \{s_2\}; \{s_3\}$
Yet Another Example of Moore’s Algorithm

\[P_0 = \{1, 2, 3, 4, 7\}; \{5, 6\} \]
\[a^{-1}.P_0 = \{1, 2, 3, 4, 6\}; \{5, 7\} \]
\[b^{-1}.P_0 = \{1, 2, 4, 5, 6, 7\}; \{3\} \]

\[P_1 = \{1, 2, 4\}; \{3\}; \{5\}, \{6\}, \{7\} \]
\[a^{-1}.P_1 = \{1\}; \{2, 3, 4\}; \{5, 7\}; \{6\} \]
\[b^{-1}.P_1 = \{1, 7\}; \{2, 4, 5, 6\}; \{3\} \]

\[P_2 = \{1\}; \{2, 4\}; \{3\}; \{5\}, \{6\}, \{7\} \]
\[a^{-1}.P_2 = \{1\}; \{2, 3, 4\}; \{5, 7\}; \{6\} \]
\[b^{-1}.P_2 = \{1, 7\}; \{2, 4, 5, 6\}; \{3\} \]

\[P_3 = P_2 \]
Brzozowski’s Algorithm for DFA Minimization

- Let $M = \text{subset}(\text{reverse}(\text{subset}(\text{reverse}(A))))$
- M is a minimal automaton equivalent to A.
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 - Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.
- Let s_1 and s_2 be two distinct states in B.
 Then, $L \rightarrow_{s_1} \cap L \rightarrow_{s_2} = \emptyset$.
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.
- Let s_1 and s_2 be two distinct states in B.
 Then, $L_{s_1} \cap L_{s_2} = \emptyset$.
- Now, in $\text{reverse}(B)$, $L_{s_1} \cap L_{s_2} = \emptyset$.

Note that A and $\text{reverse}(B)$ accept the same language. The catch is, $\text{reverse}(B)$ may not be a DFA. If we run subset construction on $\text{reverse}(B)$, then $L_{s_1} \neq L_{s_2}$ for any pair of states in the resulting DFA. Thus the resulting DFA will be minimal and equivalent to A.

Compiler Design

Languages and Minimality

Partition Refinement

Other Minimization Strategies
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.

- Let s_1 and s_2 be two distinct states in B.
 Then, $L_{s_1} \cap L_{s_2} = \emptyset$.

- Now, in $\text{reverse}(B)$, $L_{s_1} \cap L_{s_2} = \emptyset$.

- Note that A and $\text{reverse}(B)$ accept the same language.
 The catch is, $\text{reverse}(B)$ may not be a DFA.
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.
- Let s_1 and s_2 be two distinct states in B.
 Then, $L_{\rightarrow s_1} \cap L_{\rightarrow s_2} = \emptyset$.
- Now, in $\text{reverse}(B)$, $L_{s_1\rightarrow} \cap L_{s_2\rightarrow} = \emptyset$.
- Note that A and $\text{reverse}(B)$ accept the same language.
 The catch is, $\text{reverse}(B)$ may not be a DFA.
- If we run subset construction on $\text{reverse}(B)$, then $L_{s_1\rightarrow} \neq L_{s_2\rightarrow}$ for any pair of states in the resulting DFA.
Brzozowski’s Algorithm: Why it works

- Let A be an NFA/DFA;
 Let B be an automaton generated by the subset construction algorithm (NFA to DFA) of $\text{reverse}(A)$.

- Let s_1 and s_2 be two distinct states in B.
 Then, $L_{s_1} \cap L_{s_2} = \emptyset$.

- Now, in $\text{reverse}(B)$, $L_{s_1} \cap L_{s_2} = \emptyset$.

- Note that A and $\text{reverse}(B)$ accept the same language.
 The catch is, $\text{reverse}(B)$ may not be a DFA.

- If we run subset construction on $\text{reverse}(B)$, then $L_{s_1} \neq L_{s_2}$ for any pair of states in the resulting DFA.

- Thus the resulting DFA will be minimal and equivalent to A.
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where $n =$ number of states of input DFA)
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where $n =$ number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where $n =$ number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
 Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.

Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where $n =$ number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
 - Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.
 - L can be recognized by an automaton of size $O(k)$.
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where $n =$ number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
 - Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.
 - L can be recognized by an automaton of size $O(k)$.
 - Reverse of L: words where the $k + 1$-th symbol from the end is an a.
Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.

(Where $n = \text{number of states of input DFA}$)

Brzozowski’s Algorithm is exponential in the worst case.

- Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.
- L can be recognized by an automaton of size $O(k)$.
- Reverse of L: words where the $k + 1$-th symbol from the end is an a.
- Smallest DFA that can recognize $\text{reverse}(L)$ is of size $\Omega(2^k)$.
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures. (where $n =$ number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
 - Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.
 - L can be recognized by an automaton of size $O(k)$.
 - Reverse of L: words where the $k + 1$-th symbol from the end is an a.
 - Smallest DFA that can recognize $\text{reverse}(L)$ is of size $\Omega(2^k)$.
- Hopcroft’s algorithm maintains a waiting set of splitters, and can be done in $O(n \log n)$ time.