NFA to DFA via Subset Construction

- ϵ-closure
- goto
- final states
Languages and Minimality

Finite Automata and Languages

Consider a finite automaton A.

- For state s and word w, let $s.w$ be the state reached from s by spelling w.
 Note that a word w is a sequence of (zero or more) alphabet symbols.
- We can associate two languages with each state in A:
 - **Suffix**: For state s, define $L_{s\rightarrow} = \{ w | s.w \text{ is a final state} \}$
 - **Prefix**: Let s be the start state of A. For a state t, define $L_{\rightarrow s} = \{ w | s.w = t \}$.
 - The language of A, denoted by \mathcal{L}_A can be seen as:
 - $L_{s\rightarrow}$ where s is the start state;
 - \bigcup_f is a final state $L_{\rightarrow f}$

Examples of Suffix and Prefix Languages (1)

- $L_{s0\rightarrow} = (ab)^+$
- $L_{s1\rightarrow} = b(ab)^*$
- $L_{s2\rightarrow} = (ab)^*$
- $L_{\rightarrow s1} = a(ba)^*$
- $L_{\rightarrow s2} = (ab)^+$
Languages and Minimality

Examples of Suffix and Prefix Languages (2)

The following automaton is not minimal:

\[L_{s_1} = (a|b)^* \]
\[L_{s_2} = (a|b)^* \]
\[L_{s_0} = a(a|b)^* \]
\[L_{s_2} = (a+)b(a|b)^* \]

The following automaton is minimal:

\[L_{s_0} = (ab)^+ \]
\[L_{s_1} = b(ab)^* \]
\[L_{s_2} = (ab)^* \]

Languages and Minimality

Equivalence and Minimality (1)

- An automaton is *minimal* if the suffix languages of all states are pairwise distinct.
- The following automaton is not minimal:

\[L_{s_1} = L_{s_2} = (a|b)^* \]

- The following automaton is minimal:

\[L_{s_0} = (ab)^+ \]
Languages and Minimality

Equivalence and Minimality (2)

Minimization approach: find the *coarsest* partition such that
- the suffix languages of states within a partition are identical; and
- states in distinct partitions have distinct suffix languages.

Original automaton:

```
Original automaton:
```

Minimized automaton:

```
Minimized automaton:
```

Partition Refinement

Partition Refinement

- Suffix languages of all final states are distinct from those of non-final states.
 - **Note**: ϵ, the empty string, is in the suffix language of a final state, and not in that of a non-final state.
- We start by partitioning the states into final and non-final states.
- At each step, we refine a partition P (if possible) if transitions on the same symbol from different states of P lead to states in different partitions.
- The process stops when no partition can be refined further.
Partition Refinement

DFA Minimization via Partition Refinement

- Minimization via Partition Refinement
- Initial partition:
 - Final states: \{d3, d4\}
 - Non-final states: \{d0, d1, d2\} (distinguished by \(\epsilon\))

- \(\text{goto}(d3, a) = d3 \in \{d3, d4\} \), but \(\text{goto}(d4, a) = d1 \notin \{d3, d4\} \).
 - i.e., \(a \in L_{d3 \rightarrow} \) but \(a \notin L_{d4 \rightarrow} \).

- New partitions:
 - \{d3\}; \{d4\}; \{d0, d1, d2\}

- \(\text{goto}(d1, a) = d3 \), but \(\text{goto}(\{d0, d2\}, a) = d1 \).
 - i.e., \(a \in L_{d1 \rightarrow} \) but \(a \notin L_{d2 \rightarrow} \).

- New partitions:
 - \{d3\}; \{d4\}; \{d1\}; \{d0, d2\}

Moore's Algorithm for DFA Minimization

- Let \(P \) be a partition of the set of states.
 - States \(s \) and \(s' \) are equivalent in \(P \) if \(s \) and \(s' \) are in the same set in \(P \).
- Two states \(s_1 \) and \(s_2 \) are equivalent in \(\alpha^{-1}.P \) if \(s_1.\alpha \) and \(s_2.\alpha \) are equivalent in \(P \).

- \(P_0: \) \{d3, d4\}; \{d0, d1, d2\}
- Observe:
 - \(a^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \)
 - \(b^{-1}.P_0 = \{d1, d3\}; \{d0, d2, d4\} \)

- \(P \land P' :: \) a partition such that two states are in same set iff they are in the same sets in \(P \) as well as \(P' \).

- \(P_1 = P_0 \land a^{-1}.P_0 \land b^{-1}.P_0 \)
 - \(= \{d0, d2\}; \{d1\}; \{d3\}; \{d4\} \)

- In general \(P_{i+1} = P_i \land \bigwedge_{\alpha \in \Sigma} \alpha^{-1}.P_i \)
- Repeat until \(P_{n+1} = P_n \)
Another Example of Moore’s Algorithm

- P_0: $s_0, a, b \rightarrow s_1, a, b \rightarrow s_2, a, s_3$

- $a^{-1}.P_0 = \{s_0, s_1\}; \{s_2, s_3\}$ and $b^{-1}.P_0 = \{s_0, s_1\}; \{s_2\}; \{s_3\}$

- P_1: $s_0, a, b \rightarrow s_1, a, b \rightarrow s_2, a, s_3$

- $a^{-1}.P_1 = \{s_0\}; \{s_1\}; \{s_2, s_3\}$ and $b^{-1}.P_0 = \{s_0\}; \{s_1\}; \{s_2\}; \{s_3\}$

- P_2: $s_0, a, b \rightarrow s_1, a, b \rightarrow s_2, a, s_3$

Yet Another Example of Moore’s Algorithm

- $P_0 = \{1, 2, 3, 4, 7\}; \{5, 6\}$

- $a^{-1}.P_0 = \{1, 2, 3, 4, 6\}; \{5, 7\}$
- $b^{-1}.P_0 = \{1, 2, 4, 5, 6, 7\}; \{3\}$

- $P_1 = \{1, 2, 4\}; \{3\}; \{5\}; \{6\}; \{7\}$

- $a^{-1}.P_1 = \{1\}; \{2, 3, 4\}; \{5, 7\}; \{6\}$
- $b^{-1}.P_1 = \{1, 7\}; \{2, 4, 5, 6\}; \{3\}$

- $P_2 = \{1\}; \{2, 4\}; \{3\}; \{5\}; \{6\}; \{7\}$

- $a^{-1}.P_2 = \{1\}; \{2, 3, 4\}; \{5, 7\}; \{6\}$
- $b^{-1}.P_2 = \{1, 7\}; \{2, 4, 5, 6\}; \{3\}$

- $P_3 = P_2$
Brzozowski’s Algorithm for DFA Minimization

- Let \(M = \text{subset}(\text{reverse}(\text{subset}(\text{reverse}(A)))) \)
- \(M \) is a minimal automaton equivalent to \(A \).

Brzozowski’s Algorithm: Why it works

- Let \(A \) be an NFA/DFA;
 Let \(B \) be an automaton generated by the subset construction algorithm (NFA to DFA) of \(\text{reverse}(A) \).
- Let \(s_1 \) and \(s_2 \) be two distinct states in \(B \).
 Then, \(L_{s_1} \cap L_{s_2} = \emptyset \).
- Now, in \(\text{reverse}(B) \), \(L_{s_1} \cap L_{s_2} = \emptyset \).
- Note that \(A \) and \(\text{reverse}(B) \) accept the same language.
 The catch is, \(\text{reverse}(B) \) may not be a DFA.
- If we run subset construction on \(\text{reverse}(B) \), then \(L_{s_1} \neq L_{s_2} \) for any pair of states in the resulting DFA.
- Thus the resulting DFA will be minimal and equivalent to \(A \).
Complexity Results

- Moore’s Algorithm runs in $O(n^2)$ time with appropriate data structures.
 (where n = number of states of input DFA)
- Brzozowski’s Algorithm is exponential in the worst case.
 - Consider $L = (a|b)^k a(a|b)^*$: words where the $k + 1$-th symbol is an a.
 - L can be recognized by an automaton of size $O(k)$.
 - Reverse of L: words where the $k + 1$-th symbol from the end is an a.
 - Smallest DFA that can recognize $\text{reverse}(L)$ is of size $\Omega(2^k)$.
- Hopcroft’s algorithm maintains a waiting set of splitters, and can be done in $O(n \log n)$ time.