
CSE535 Asynchronous Systems
Paxos

YoungMin Kwon



Paxos

• Paxos: a crash-fault tolerant distributed 
consensus algorithm in asynchronous 
communication channels



The Consensus Problem

• What about Fisher’s impossibility result of a 
crash-fault tolerant consensus in 
asynchronous communication channels?

• Paxos satisfies the safety requirements, but 
not the liveness requirements.



The Problem

• The consensus problem
– A collection of processes can propose values
– A consensus algorithm ensures that a single one 

among the proposed values is chosen
– If no value is proposed no value is chosen
– If a value is chosen, processes should be able to 

learn the chosen value



The Problem

• Safety Requirements
– Only a value that has been proposed may be 

chosen
– Only a single is chosen
– A process never learns that a value has been 

chosen unless it actually has been

• Liveliness
– The algorithm may not terminate



Three Classes of Agents

• Proposer
– Proposes a value

• Acceptor
– Accepts a proposed value
– A value is chosen when a majority of acceptors accept 

the value
• Learner

– Learns the chosen value

• A single process may act as more than one agent



Choosing a Value

• A Naïve solution
– Have a single acceptor and let it choose a value
– Failure of the agent will stop the protocol

• Have multiple acceptors
– An agent may accept a proposed value
– A value is chosen when a majority of acceptors 

accept the value



Choosing a Value

• Extended proposal
– To keep track of different proposals, a proposal is 

extended with a proposal number and a value
– Different proposals have different numbers

• 3 Message types
– Prepare(n): request acceptors not to accept proposals 

whose number is less than n
– Promise(n, m, v): response to proposers that the 

acceptor won’t accept any proposals less than n; m, v
are from the accepted proposal if it already did

– Accept(n, v): request accepts to accept the proposal 
with the number n and the value v



Choosing a Value

• Phase1 (Proposer)
– Selects a proposal number n and sends Prepare(n)

to a majority of acceptors

• Phase1 (Acceptor: on receiving Prepare(n))
– If n > k then send Promise(n, m, v), where

k: the highest proposal number it has promised 
m, v: the number and value of the accepted 
proposal if it already accepted one



Choosing a Value

• Phase 2 (Proposer)
– If Promise(n,mi,vi) is received from the majority of 

acceptors, send Accept(n,v) where
v: vi of the highest mi or any value if all mi, vi are 
invalid

• Phase 2 (Acceptor: on receiving Accept(n,v))
– Accepts the proposal unless it already sent 

Promise(m,k,u) for m > n



Choosing a Value

• A proposer can make multiple proposals
• A proposer can abandon a proposal at any 

time

• An acceptor can ignore prepare or accept 
requests because it already promised for a 
higher number
– However, sending reject messages to the 

proposers will speed up the protocol 



Learning a Chosen Value

• To learn that a value has been chosen, a 
learner must find out that a proposal has been 
accepted by a majority of acceptors

• An algorithm
– Make acceptors send messages to all learners 

every time they accept a proposal
– # of messages: # of acceptors times # of learners



Learning a Chosen Value

• Improved Algorithm
– Make acceptors send messages to a set of designated 

learners
– The designated learners send message to other 

learners only when a value is chosen

• Message loss
– A value could be chosen with no learner finding out
– A learner can make a proposer propose so that the 

chosen value can be announced again



Progress

• A scenario where the protocol does not end
– Two proposers keep issuing proposals and none of 

which are ever chosen
– p1 sends Propose(n1) to acceptors
– In between acceptors send Promise(n1,mi,vi) and 

receive Accept(n1,v1) from p1,
p2 sends Promise(n2) to acceptors with n2>n1

– In between acceptors send Promise(n2,n1,v1) and 
receive Accept(n2,v2) from p2,
p1 sends Promise(n3) to acceptors with n3>n2

– And so on



Progress

• To guarantee progress,
– A distinguished proposer must be selected as the 

only one to try issuing proposals
– However, the impossibility result by Fisher et al 

attests its unfeasibility
– Randomized or real time (using timeouts) 

algorithms can ensure the progress


