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Agreement

• Processes in a distributed system needs to 
reach a common agreement before taking 
actions.

• E.g. Transaction
– All processes either commit or abort a transaction



Failure Models

• Among n processes in the system at most f
processes can be faulty

• Fail-stop
– A process may fail in the middle of a step
– It may send a message to only a subset of destination 

set before crashing

• Byzantine failure
– A process may behave arbitrarily



Asynchronous Communication

• Suppose that a process pi expects a message 
from a process pj

– pi cannot tell whether a non-arrival of a message is 
due to a failure in pj or a long message delay

• Impossibility of reaching an agreement in 
asynchronous system in any failure model



Other Assumptions

• Sender Identification
– Receiver of a message always knows the identity 

of the sender
– Even with Byzantine behavior

• Channel reliability
– The channels are reliable and only the processes 

may fail



Byzantine War
• Multiple armies camp around the fort of Byzantine
• The attack is successful only when they attack together
• Generals send messengers to agree on the time of 

attack 
– Generals can be a traitor and may send a wrong time
– Messengers can be caught



Byzantine Agreement Problem

• The problem
– Designated process, called the source process, with an initial 

value
– To reach agreement with other processes about its initial value

• Agreement
– All non-faulty processes must agree on the same value

• Validity
– If the source is non-faulty, the agreed upon value by all non-

faulty processes must be the initial value of the source
• Termination

– Each non-faulty process must eventually decide on a value



Consensus Problem

• The problem
– Each process has an initial value
– All the correct process must agree on a single value

• Agreement
– All non-faulty processes must agree on the same value

• Validity
– If all non-faulty processes have the same initial value, then 

the agreed upon value must be that same value
• Termination

– Each non-faulty process must eventually decide on a value



Interactive Consistency Problem
• The problem

– Each process has an initial value
– All the correct processes must agree upon a set of values with one 

value for each process.

• Agreement
– All non-faulty processes must agree on the same array of values 

A[1..n]
• Validity

– If pi is non-faulty and its initial value is vi, then all non-faulty processes 
has vi on A[i]. 

– If pj is faulty, all non-faulty processes agree on any value for A[j]
• Termination

– Each non-faulty process must eventually decide on the array A



Agreement in a Failure-Free System

• As simple as broadcasting a message with the 
initial value



Consensus Algorithm for Crash Failures

n processes, up to f process may fail



Consensus Algorithm for Crash Failures
: Correctness

• Agreement
– In the f+1 rounds, there is at least one round in 

which no process failed

• Validity
– No process sends a fictitious value

• Termination
– The algorithm runs for f+1 rounds.



Complexity

• The number of messages in each round is at 
most O(n2)

• There are f+1 rounds.

• Total O((f+1) x n2) messages



Consensus Algorithms for Byzantine Failures

• Upper bound on Byzantine processes
– With n processes, the number of Byzantine 

processes f should satisfy 



Upper bound on Byzantine processes

• With n = 3 and f = 1, the Byzantine agreement 
problem cannot be solved



Upper bound on Byzantine processes

• Definitions
– Let Z(3,1) denote the Byzantine agreement problem 

with n=3 and f=1
– Let Z(n≤3f,f) denote the problem with n (≤3f) and f.

• Proof overview
– A reduction from Z(3,1) to Z(n≤3f,f) will be shown.
– Because Z(3,1) is not solvable, Z(n≤3f,f) is not solvable 

either.



Upper bound on Byzantine processes

• In Z(n≤3f,f), partition the n processes into three 
sets S1, S2, and S3, each of size ≤ n/3

• In Z(3,1), P1, P2, and P3 simulate the actions of the 
corresponding set S1, S2, and S3
– Simulate actions (send events, receive events, intra-

set communication, inter-set communication)

• Because there is no algorithm for Z(3,1), no 
algorithm exists for Z(n≤3f,f)



Byzantine Agreement Tree Algorithm

Example with n=4, f=1



Byzantine Agreement Tree Algorithm







Byzantine Agreement Algorithm

Message tree from P3’s perspective (n=10, f=3)
Round 1: received 1 message from P0,
Round 2: 8, Round 3: 56=7*8, Round 4:336=6*56



Byzantine Agreement Algorithm



Correctness
(Loyal commander case)

• Oral_Msg(x) is correct if there are at least 2f+x 
processes
– When x = 0, Oral_Msg(0) is executed and processes 

simply use the (loyal) commander’s value as their 
consensus value

– When x>0, let’s assume the above as an induction 
hypothesis

– For Oral_Msg(x+1), there are 2f+x+1 processes
• Each loyal process invokes Oral_Msg(x); As there are 2f+x 

processes, by the induction, there is agreement (at loyal 
processes)

• The majority taken on 2f+x values is loyal because x > 0



Correctness
(No assumption about the commander)

• Oral_Msg(x) is correct if x ≥ f and there are at least 
3x+1 processes

• When x = 0, Oral_Msg(0) is executed with f=0. 
• For Oral_Msg(x+1), there are at least 3x+4 processes

– If the commander is loyal, because there will be more than 
2(f+1) + (x+1) processes, we can apply the previous loyal 
commander case

– If the commander is malicious, there are at most x traitors 
and 3x+3 total processes (excluding the commander). 
From the induction hypothesis, each loyal process can 
compute the consensus value using the majority function.



Asynchronous channels with failures

• Impossibility of reaching an agreement even 
with a single process crash failure (Fisher et al)



Asynchronous channels with failures

• v(GS), where GS is a global state:
– The set of possible values that can be agreed upon in 

some global sate reachable from GS
• Valency: |v(GS)|
• A global state GS can be monovalent if |v(GS)|=1

– 1-valent if v(GS) = {1}
– 0-valent if v(GS) = {0}

• A global state GS can be bivalent if |v(GS)|=2
– A 1-valent or 0-valent state can be reachable from a 

bivalent state



Asynchronous channels with failures

• Every correct consensus protocol has a bivalent initial 
state
– Transforming the input assignment from the all 0 case to 

all 1 case,
• there are input assignments Ia and Ib that are 0-valent and 1-

valent, respectively, and they differ at only one process, say Pi

– If a 1-crash-failure tolerant consensus protocol exists
1) Staring from Ia, if Pi fails immediately, the other processes must 

agree on 0
2) Staring from Ib, if Pi fails immediately, the other processes must 

agree on 1
– Contradiction: execution 1) and 2) should be identical and 

they must agree on the same value



Asynchronous channels with failures

• Critical step
– A step that moves from a bivalent state to a 

monovalent state

• In the face of a potential process crash, it is 
not possible to distinguish a crash or a long 
channel delay
– It is not possible to take a critical step


