### CSE535 Asynchronous Systems Consensus and Agreement Algorithms

YoungMin Kwon

# Agreement

- Processes in a distributed system needs to reach a common agreement before taking actions.
- E.g. Transaction

- All processes either commit or abort a transaction

# Failure Models

- Among n processes in the system at most f processes can be faulty
- Fail-stop
  - A process may fail in the middle of a step
  - It may send a message to only a subset of destination set before crashing
- Byzantine failure
  - A process may behave arbitrarily

# Asynchronous Communication

- Suppose that a process p<sub>i</sub> expects a message from a process p<sub>i</sub>
  - p<sub>i</sub> cannot tell whether a non-arrival of a message is due to a failure in p<sub>i</sub> or a long message delay
- Impossibility of reaching an agreement in asynchronous system in any failure model

# **Other Assumptions**

- Sender Identification
  - Receiver of a message always knows the identity of the sender
  - Even with Byzantine behavior
- Channel reliability
  - The channels are reliable and only the processes may fail

## Byzantine War

- Multiple armies camp around the fort of Byzantine
- The attack is successful only when they attack together
- Generals send messengers to agree on the time of attack
  - Generals can be a traitor and may send a wrong time
  - Messengers can be caught



#### Byzantine Agreement Problem

- The problem
  - Designated process, called the source process, with an initial value
  - To reach agreement with other processes about its initial value
- Agreement
  - All non-faulty processes must agree on the same value
- Validity
  - If the source is non-faulty, the agreed upon value by all nonfaulty processes must be the initial value of the source
- Termination
  - Each non-faulty process must eventually decide on a value

# **Consensus Problem**

- The problem
  - Each process has an initial value
  - All the correct process must agree on a single value
- Agreement
  - All non-faulty processes must agree on the same value
- Validity
  - If all non-faulty processes have the same initial value, then the agreed upon value must be that same value
- Termination
  - Each non-faulty process must eventually decide on a value

# Interactive Consistency Problem

- The problem
  - Each process has an initial value
  - All the correct processes must agree upon a set of values with one value for each process.
- Agreement
  - All non-faulty processes must agree on the same array of values A[1..n]
- Validity
  - If  $p_i$  is non-faulty and its initial value is  $v_i$ , then all non-faulty processes has  $v_i$  on A[i].
  - If p<sub>i</sub> is faulty, all non-faulty processes agree on any value for A[j]
- Termination
  - Each non-faulty process must eventually decide on the array A

# Agreement in a Failure-Free System

• As simple as broadcasting a message with the initial value

### **Consensus Algorithm for Crash Failures**

(global constants)

integer: f; // maximum number of crash failures tolerated (local variables)

integer:  $x \leftarrow \text{local value};$ 

- (1) Process  $P_i$   $(1 \le i \le n)$  executes the consensus algorithm for up to f crash failures:
- (1a) for round from 1 to f + 1 do
- (1b) if the current value of x has not been broadcast then
- (1c) broadcast(x);
- (1d)  $y_j \leftarrow$  value (if any) received from process j in this round;
- (1e)  $x \leftarrow \min_{\forall j}(x, y_j);$
- (1f) output x as the consensus value.

#### n processes, up to f process may fail

## Consensus Algorithm for Crash Failures : Correctness

- Agreement
  - In the f+1 rounds, there is at least one round in which no process failed
- Validity
  - No process sends a fictitious value
- Termination
  - The algorithm runs for f+1 rounds.

# Complexity

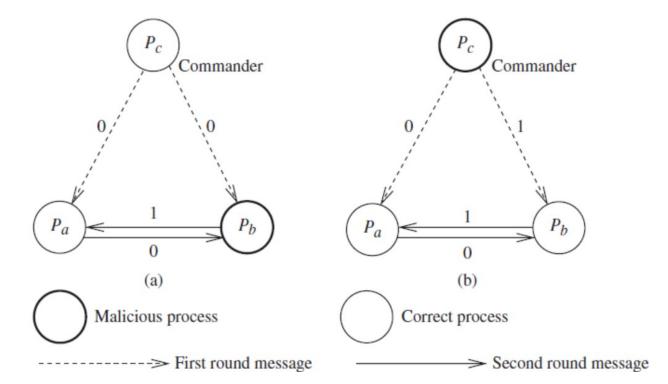
- The number of messages in each round is at most O(n<sup>2</sup>)
- There are f+1 rounds.
- Total O((f+1) x n<sup>2</sup>) messages

#### **Consensus Algorithms for Byzantine Failures**

- Upper bound on Byzantine processes
  - With n processes, the number of Byzantine processes f should satisfy  $f \leq \lfloor \frac{n-1}{3} \rfloor$

#### Upper bound on Byzantine processes

• With n = 3 and f = 1, the Byzantine agreement problem cannot be solved



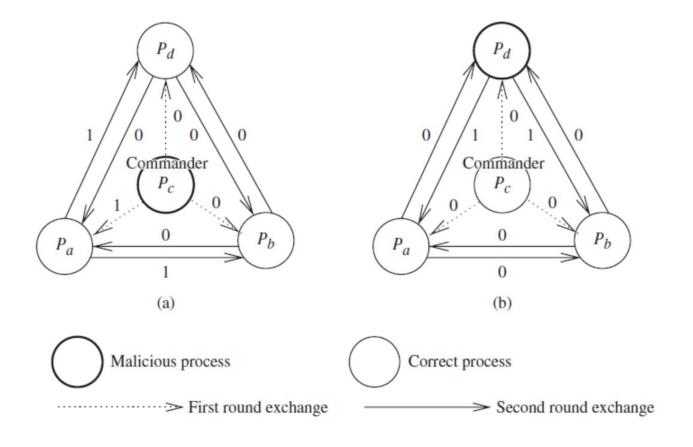
### Upper bound on Byzantine processes

- Definitions
  - Let Z(3,1) denote the Byzantine agreement problem with n=3 and f=1
  - Let Z(n $\leq$ 3f,f) denote the problem with n ( $\leq$ 3f) and f.
- Proof overview
  - A reduction from Z(3,1) to Z( $n \le 3f$ ,f) will be shown.
  - Because Z(3,1) is not solvable, Z(n≤3f,f) is not solvable either.

#### Upper bound on Byzantine processes

- In Z(n $\leq$ 3f,f), partition the n processes into three sets S<sub>1</sub>, S<sub>2</sub>, and S<sub>3</sub>, each of size  $\leq$  n/3
- In Z(3,1), P<sub>1</sub>, P<sub>2</sub>, and P<sub>3</sub> simulate the actions of the corresponding set S<sub>1</sub>, S<sub>2</sub>, and S<sub>3</sub>
  - Simulate actions (send events, receive events, intraset communication, inter-set communication)
- Because there is no algorithm for Z(3,1), no algorithm exists for Z(n≤3f,f)

### **Byzantine Agreement Tree Algorithm**



Example with n=4, f=1

#### **Byzantine Agreement Tree Algorithm**

(variables)

**boolean**:  $v \leftarrow$  initial value;

**integer**:  $f \leftarrow$  maximum number of malicious processes,  $\leq \lfloor (n-1)/3 \rfloor$ ;

(message type)

OM(v, Dests, List, faulty), where

v is a boolean,

Dests is a set of destination process i.d.s to which the message is sent,

*List* is a list of process i.d.s traversed by this message, ordered from most recent to earliest,

*faulty* is an integer indicating the number of malicious processes to be tolerated.

 $Oral\_Msg(f)$ , where f > 0:

- The algorithm is initiated by the commander, who sends his source value v to all other processes using a OM(v, N, (i), f) message. The commander returns his own value v and terminates.
- (2) [Recursion unfolding:] For each message of the form  $OM(v_j, Dests, List, f')$  received in this round from some process j, the process i uses the value  $v_j$  it receives from the source j, and using that value, acts as a *new* source. (If no value is received, a default value is assumed.)

To act as a new source, the process *i* initiates  $Oral\_Msg(f'-1)$ , wherein it sends

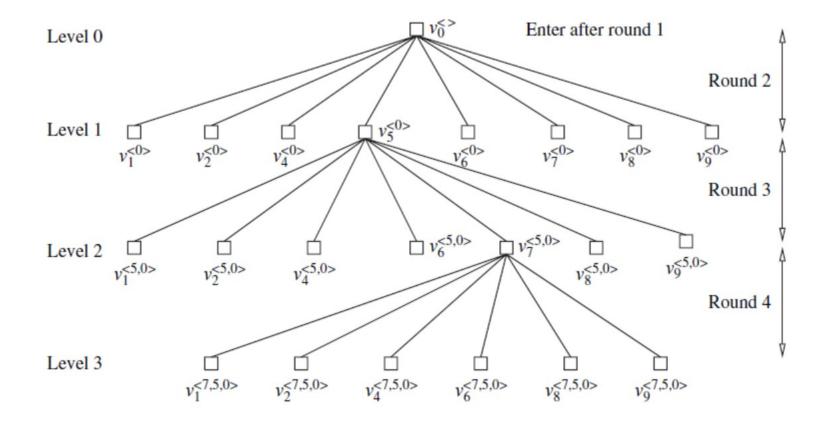
 $OM(v_j, Dests - \{i\}, concat(\langle i \rangle, L), (f' - 1))$ to destinations not in  $concat(\langle i \rangle, L)$ in the next round.

(3) [Recursion folding:] For each message of the form OM(v<sub>j</sub>, Dests, List, f') received in step 2, each process i has computed the agreement value v<sub>k</sub>, for each k not in List and k ≠ i, corresponding to the value received from P<sub>k</sub> after traversing the nodes in List, at one level lower in the recursion. If it receives no value in this round, it uses a default value. Process i then uses the value majority<sub>k∉List,k≠i</sub>(v<sub>j</sub>, v<sub>k</sub>) as the agreement value and returns it to the next higher level in the recursive invocation.

Oral\_Msg(0):

- [Recursion unfolding:] Process acts as a source and sends its value to each other process.
- (2) [Recursion folding:] Each process uses the value it receives from the other sources, and uses that value as the agreement value. If no value is received, a default value is assumed.

## **Byzantine Agreement Algorithm**



Message tree from  $P_3$ 's perspective (n=10, f=3) Round 1: received 1 message from  $P_0$ , Round 2: 8, Round 3: 56=7\*8, Round 4:336=6\*56

### **Byzantine Agreement Algorithm**

 $P_3$  revises its estimate of  $v_7^{(5,0)}$  by taking *majority*  $(v_7^{(5,0)}, v_1^{(7,5,0)}, v_2^{(7,5,0)}, v_2^{(7,5,0)}, v_4^{(7,5,0)}, v_8^{(7,5,0)}, v_9^{(7,5,0)})$ . Similarly for the other nodes at level 2 of the tree.

 $P_3$  revises its estimate of  $v_5^{\langle 0 \rangle}$  by taking *majority*  $(v_5^{\langle 0 \rangle}, v_1^{\langle 5,0 \rangle}, v_2^{\langle 5,0 \rangle}, v_4^{\langle 5,0 \rangle}, v_6^{\langle 5,0 \rangle}, v_7^{\langle 5,0 \rangle}, v_8^{\langle 5,0 \rangle}, v_9^{\langle 5,0 \rangle})$ . Similarly for the other nodes at level 1 of the tree.  $P_3$  revises its estimate of  $v_0^{\langle \rangle}$  by taking *majority* $(v_0^{\langle \rangle}, v_1^{\langle 0 \rangle}, v_2^{\langle 0 \rangle}, v_2^{\langle 0 \rangle}, v_4^{\langle 0 \rangle}, v_5^{\langle 0 \rangle}, v_6^{\langle 0 \rangle}, v_7^{\langle 0 \rangle}, v_8^{\langle 0 \rangle})$ . This is the consensus value.

### Correctness (Loyal commander case)

- Oral\_Msg(x) is correct if there are at least 2f+x processes
  - When x = 0, Oral\_Msg(0) is executed and processes simply use the (loyal) commander's value as their consensus value
  - When x>0, let's assume the above as an induction hypothesis
  - For Oral\_Msg(x+1), there are 2f+x+1 processes
    - Each loyal process invokes Oral\_Msg(x); As there are 2f+x processes, by the induction, there is agreement (at loyal processes)
    - The majority taken on 2f+x values is loyal because x > 0

### Correctness

(No assumption about the commander)

- Oral\_Msg(x) is correct if x ≥ f and there are at least 3x+1 processes
- When x = 0, Oral\_Msg(0) is executed with f=0.
- For Oral\_Msg(x+1), there are at least 3x+4 processes
  - If the commander is loyal, because there will be more than
    2(f+1) + (x+1) processes, we can apply the previous loyal commander case
  - If the commander is malicious, there are at most x traitors and 3x+3 total processes (excluding the commander).
     From the induction hypothesis, each loyal process can compute the consensus value using the majority function.

• Impossibility of reaching an agreement even with a single process crash failure (Fisher et al)

- v(GS), where GS is a global state:
  - The set of possible values that can be agreed upon in some global sate reachable from GS
- Valency: |v(GS)|
- A global state GS can be monovalent if |v(GS)|=1
  - 1-valent if v(GS) = {1}
  - 0-valent if v(GS) = {0}
- A global state GS can be bivalent if |v(GS)|=2
  - A 1-valent or 0-valent state can be reachable from a bivalent state

- Every correct consensus protocol has a bivalent initial state
  - Transforming the input assignment from the all 0 case to all 1 case,
    - there are input assignments I<sub>a</sub> and I<sub>b</sub> that are 0-valent and 1-valent, respectively, and they differ at only one process, say P<sub>i</sub>
  - If a 1-crash-failure tolerant consensus protocol exists
    - 1) Staring from I<sub>a</sub>, if P<sub>i</sub> fails immediately, the other processes must agree on 0
    - 2) Staring from  $I_b$ , if  $P_i$  fails immediately, the other processes must agree on 1
  - Contradiction: execution 1) and 2) should be identical and they must agree on the same value

- Critical step
  - A step that moves from a bivalent state to a monovalent state
- In the face of a potential process crash, it is not possible to distinguish a crash or a long channel delay
  - It is not possible to take a critical step