CSE320 System Fundamentals Il
Virtual Memory 2

Integrating Caches and VM

CPU chip { il

| | L PTEA PTE
g hit
| PTEA pTEa| PTEA
| mis

Processor MMU E Memory
VA | PA m| PA

i miss
E PA Data

| | (hit
—— L1
Dat
—— Cache

= Whether to use Virtual or Physical addresses to access
the SRAM cache?

= Most system opt for physical addresses
= Easy for multiple processes to have blocks in the cache
= No need to deal with the memory protection

Translation Lookaside Buffer (TLB)

= A small cache of PTEs in MMU

= Use virtual address
= Each line holds a block consisting of a single PTE

= |f 3 TLB has T=2! sets,

= TLB Index (TLBI) consists of the t least significant bits
of the VPN

= TLB Tag (TLBT) consists of the remaining bits in VPN

n—1 p+t p+t—1 pp—1 0
TLB tag (TLBT) | TLB index (TLBI)| VPO

VPN

TLB Hit and Miss Operations

CPU chip

CPU chip
s TLB @
@ven| |PTEI() @ ven PTE L
@ ®
S ®) PTEA
Bicacac VA Tlal;?izsr;\ PA mcgrﬁ.':,?/y Processor »| Trans- .| Cache/
- VA lation PA memory.
@ D ’— Data |_
ata
®
TLB Hit TLB Miss

Multi-Level Page Table

" |ssue

= 32bit address space, 4KB pages, 4B PTEs
= 4MB page table in memory all the time

Virtual address
n-1 p p-1 0

Page table
bas;{-g%s'er » Virtual page number (VPN) Virtual page offset (VPO)
()

Valid _Physical page number (PPN)

L L Page
The VPN acts table
as index into

the page table

If valid = 0
then page
not in memory m-1 P -1 0
(page fault) Physical page number (PPN) | Physical page offset (PPO)

Physical address

Multi-Level Page Table

= Solution: hierarchy of page tables

= E.g. 2 level page tables:
= [evel 1 has a page table of 1024 PTEs (4KB)
= [evel 2 page tables have 1024 PTEs (4KB) each.

= Each PTE in level 1 is responsible for 4MB chunk of
address space

" If every page in chunkiis unallocated, PTE jin level 1
table is empty

" If at least 1 page in chunk / is allocated, PTE jin level 1
points to the base of level 2 page table

@ Korea_‘_m

2 Level Page Tables

Level 1 Level 2 Virtual
page table page tables memory
VPO
TN - o
PTEO PTEO VP 1023
licd - VP 1024
PTE 2 (null) PTE 1023 -
PTE 3 (null) VP 2047
PTE 4 (null) PTEO
PTE 5 (null) .o
PTE 6 (null) PTE 1023
PTE 7 (null) Gap
PTE 8 ’
1023 null
(1K-9) PTEs
null PTEs PTE 1023 1023
unallocated
pages

in memory

VP 9215

2K allocated VM pages

r for code and data

» 6K unallocated VM pages

4
4
> 1023 unallocated pages

4
} 1 allocated VM page
for the stack

If PTE in level 1 table is NULL, no need to have a level 2 table

Only the level 1 table needs to be in memory at all times

k-level Page Tables

Virtual address

n—1 p—1 0
¢ VPN 1 ¢ VPN2 ¢ VPN K VPO
\._\(_)
Level 1 Level 2 Level k
page table | page table page table
=
- -
- PPN |}
m—1 | p—-1 | 0
PPN PPO

Physical address

Intel Core i7 Memory System

32/64
CPU Result L2,L3, and
esu main memory
Virtual address (VA)
36 12
VPN VPO L1
L1 miss
hit
32 4
TLBT | TLBI
-cache
I L1id h
TLB (64 sets, 8 lines/set)
hit
LB
miss
—| | | | | I | I I [[Je—
L1 TLB (16 sets, 4 entries/set)
9 9 9 9 40 12 40 6| 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO | s—) @ Cl|CO
Physical
CR3 address
= PTEH*PTEL*PTEHL*PTE
Page tables

CR3 register: (PTBR) points to the level 1 page table
PTE: R/W bit (read, write), U/S (user, super user), XD (execute disable)

Address space: 48bit VA, 52bit PA @K

Linux Virtual Memory System

= Shared kernel virtual
memory

= Kernel’s code, global data
structure

= Virtual pages mapped directly
to physical pages

= Private kernel virtual
memory

= Page tables, kernel stacks,
task structs, mm structs, ...

Process-specific data
structures

Different for (e.g., page tables,
each process task and mm structs,
kemel stack)
P
Physical memory
Identical for
each process
Kernel code and data
L
. User stack
hesp —» i
Memory mapped region
for shared libraries
brk —» T

0x08048000 (32) _

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

0x40000000 (64)
0

..

~

Kernel

> virtual

memory

Process

> virtual

memory

@ Koream_

Linux Virtual Memory Areas

" Area

= A contiguous chunk of existing (allocated) virtual
memory whose pages are related

= E.g., code area, data area, heap, shared library
area, user stack

= Each existing virtual page is contained in some
area

= Any virtual page not contained in an area does not
exist and cannot be referenced

@ Korea_‘_m

Linux Virtual Memory Area

vm_area_struct

Process virtual memory

Shared libraries

N/ T

Data

Text

task_struct mm_struct

» vm_end
pgd vm_start
vm_prot
mmap vm_flags
pgd is loaded int ” mnet
CR3 registe y= =
vm_start
vm_prot
- vm_flags

r/w permission
[vm_next
shared/private, ...| e
vm_start
vm_prot
vm_flags
vm_next

= task struct for each task

= PID, program counter, mm, ...

= mm_struct for virtual memory

= pgd (PTBR), mmap pointing to v area struct list

Linux Page Fault Exception

= Suppose that MMU triggers a page fault while
translating a virtual address A. The kernel page fault
handler does

Process virtual memory 1. Is virtual address A |ega|?
Vvin_area_struct
va_end — segmentation fault
vm_start
r/o
- 2. Is attempted access legal?
= T Segmentation fault: 1 1
E 3 Cﬁ accessing a non-eiisting page = protectlon exceptlon
vVio_en ——
vm_start \
Eh \ — B e 3. Otherwise
[—— s = swap out/in the page and
|) () e restart the faulting instruction
vm_start ext o
r/o \
vm_next
0

@ Koream_

Memory Mapping

" Memory mapping

= |nitialize the contents of virtual memory area by associating

it with an object on disk

= Regular file in the Linux file system
= File section is divided into page-size pieces
= Demand paging = pages are loaded only when
they are used

= Anonymous file

= Afile, created by the kernel, that contains all
binary zeros

= No data are actually transferred between disks
and memory

= Swap file

hesp

Kernel

User stack

v

'
t

Memory mapped region
for shared libraries

t

v

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)_
Program text (. text)

= Once a virtual page is initialized, it is swapped back and forth

between a special swap file

@ Koreaw

Memory Mapping

#include <sys/mman.h>

//Creates a mapping in the virtual address space (start)

void *mmap(void *start, size t length, int prot, int flags,
int fd, off t offset);

prot:

PROT_EXEC, PROT_READ, PROT_WRITE, ..

flags:

MAP_SHARED, MAP_PRIVATE, MAP_ANONYMOUS, MAP_FILE, ..

//Deletes the mapping

int munmap(void *start, size t length);
length (bytes)
< start
length (bytes) (or address
chosen by the
offset
(bytes) — kernel)
0 0
Disk file specified by Process

file descriptor £d virtual memory
e

Shared Objects

= Many processes have identical read-only code areas
" Linux shell programs have identical code area
= Standard C library such as printf are common
= Wasteful if each process keeps a duplicate copy

= Shared object (e.g. libc.so)

= |f 3 process writes to an area mapped to a shared object,
the change is visible to other processes that mapped the
shared object to their virtual memory

" The shared object on disk is also updated

" Private object

* Changes made to an area mapped to a private object are
not visible to other processes

" The original object on disk is not updated

@ Korea_‘_m

Process 1
virtual memory

Physical

memory

Shared Objects

Process 2
virtual memory

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

@Kefsah,n

Copy-on-Write

" Private objects are mapped into virtual memory
like shared objects except that

= Page table entries are flagged as read-only
= Area struct is flagged as private copy-on-write (cow)

= When a process tries to write to some private
areas

= A protection fault is triggered

= The fault handler checks that the fault is from the
private cow area

= Creates a new copy of the page, updates the page table
entry and restores the permissions to the page

@Koreaw ‘

Process 1
virtual memory

Physical
memory

- -
_,r" ey
--- -"h
F—’
—"-
-
. - -
- -
Y LT .
L) - e
L) -,w“ -,
X
o .
\
. \
N W
. “
. .
\ .
b " ¥
) b} 4
. ' s
1 . [
\ L 4
“ . ’
L b [
% . s ’
Y LY s s
" Y ¢ s
Y L) [} P
L)] ’ ’
. L 4 s
) % ’]
' ¥
5 \ 4 K
LY L 4 i
1) ! 4 ¢
L) ¢
' &
a ¢
] ¢
. *
. &
% ¢
Y [+

Private
copy-on-write object

Copy-on-Write

Process 2
virtual memory

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

Write to private

l«— copy-on-write

I‘.‘ e
- -
'.' \.‘
- ~
copy-on-write
-
- ~ ",
-
- - ™
- ~,
‘_r"‘ \.\ “
ol -, ‘\
~ -
"\.
- &
wal. e
------ 48
- s
.- ,
% S,
. 4 -
. #
. g f
LY ’
LY 4 4
s #
A} F >
Y F r.
. 1) / ¢
. \ Fi ¥
\ L) s ’
. LY # '
. . # ¢
, L] # #
. L ¢ }
% b ’ #
» . / &
. . 4 7
\ b P
p #
L) #
L] ,
y i/
A &
A ¢
#
\ /

Private
copy-on-write object

page

Fork function

= \WWhen fork is invoked

= Kernel creates data structures for the new process
= To create a virtual memory for the new process

= The current process’ mm_struct, area structs and page
tables are copied

= Flag each page in both processes as read-only

= Flag each area struct in both processes as private copy-on-
write

= Both processes have exactly the same virtual memory

= As processes write, new pages are created by the cow

@Koreaw ‘

Execve

Delete existing user areas

Map private areas

= Create new area structs for code, data, bss, stack

= All areas are flagged as private cow

" Code and data areas are mapped to .text and .data

" Bss areais demand-zero, mapped to an anonymous file

whose size is in the executable file
" Heap and stack are demand-zero, of 0 length

Map shared areas

= Shared objects (e.g. libc.so) are dynamically linked into the

program and mapped into the shared region

Set the program counter (PC)

@ Korea_m

How the Loader Maps the Areas

User stack } Private, demand-zero
libc.so T
.data » Memory mapped region Shared. file-backed
text > for shared libraries ’
Run-time heap (via malloc) } Private, demand-zero
Uninitialized data (. bss) } Private, demand-zero
a.out
»| [Initialized data (.data
e i A | | et Mo ackad
-text *| Program text (. text)
0

