CSE320 System Fundamentals Il
Cache Memories

Cache Memories [}

Intel Core i7 cache hierarchy

ews " awes 7 m llcache
Regs = Cache memory below registers, access
| time: ~4 cycles
L1 L L1 u .
m?he '*'The Malme ‘" ; = Separate d-cache and i-cache
L2 unified cache L2 unified cache u L2 Ca C h e
P —— ; = Cache memory below L1 cache, access
. (shared by all cores) | time: ~10 cycles
Processor package = Unified cache: data and instructions
Main memory
= |3 cache
CPU chip = Cache memory below L2 cache, access
Register file time: ~50 cycles
Cache ALU = Shared by all cores
memories

System bus Memory bus

e
4 IO l Main
bridge memaory

Bus interface

@ Korea_m

Generic Cache Memory Organization

S: (=29%), # of cache sets

E: # of lines in a cache set
B: (=2°), # of bytes in a line
m: memory address bits

Valid bit: whether the line
contains a valid data

t: (= m - (b+s)), # of bits in a tag
C: (=B x ExS), cache size

1 valid bit ttag bits
per line perline

B = 2°bytes
per cact)e block

[Vaid] [Tag |[0 1 [- [B-1] ||

Set 0: > E lines
[Vaid] [Tag][0 [1 [--- [B-1] | | perset
Ivalid| | Tag |[[0 |1] --- [B1

Set 1:
Valid| [Tag |[[O [1 [--- [B—1
IValid| [Tag |[[O0 [1 [--- [B-1|

Set S—1:

Vaid| [Tag |[0] 1 [--- [B-1]

Cache size: C = B x E x S data bytes

t bits

(a)

s bits

b bits

Address: |

I

l

m-1

Tag

0
/

Set index Block offset

(b)

@ Koream_

Caches

= Classes of caches by E (# of lines per set)
" E=1:direct-mapped cache (1 line per set)
= 1 <E<C/B: set-associative cache
= E=C/B: fully-associative cache (1 set)

" Accessing the requested word from cache
= Set selection
" Line matching
= Word extraction

Direct-Mapped Cache

Set0:||Valid| | Tag || Cacheblock |
J Selected set_, get 1: \Valid| [Tag || Cacheblock |
tbits " sbits ' bbit :
| L | 030'81 | = | SetS-1: \Valid| | Tag || Cacheblock |
m-—1 0

Tag Set index Block offset

= Set selection

= Select the set using the set index as an index

Direct-Mapped Cache

=1? (1) The valid bit must be set.
1 B, % 2 & & K 8. 7

Selected set (i): 1 0110 Wo | Wy | Wo | W3
r)
+ / (3) If (1) and (2), then
(2) The tag bits in the =7 / cache hit, and
cache line must I / block offset selects
match the tag bits _ . PR S starting byte.
in the address. t bits s bits b bits
[0110 | i [100]
m—1 0

Tag Set index Block offset

" Line Matching

= A word is contained in the line iff the valid bit is set and
the tag of the line matches the tag of the address

= Word extraction
= Find the word in the line indexed by the block offset

@ Koream_

Direct-Mapped Cache (action)

(S,E,B,m)=(4,1,2,4)

Address bits
Address Tag bits Index bits Offset bits Block number
(decimal) =1) $=2) (b=1) (decimal)
0 0 00 0 0
1 0 00 1 0
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2
5 0 10 1 2
6 0 11 0 3
7 0 11 1 3
8 1 00 0 4
9 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7

Direct-Mapped Cache (action)

= Read from address O: cache miss
Set Valid Tag block[0] block|[1]
1 0 m|0] m|1]

W N =0

0
0
0

= Read from address 1: cache hit

= Read from address 13: cache miss
Set Valid Tag block|0] block[1]

1 0 m|0] m|1]

0
1 1 m|[12] m|13]
0

W N = O

@ Koreaw

Direct-Mapped Cache (action)

= Read from address 8: cache miss

Set Valid Tag block[0] block[1]
1 1 m|8] m|9]

0

1 0

2 1 1 m|[12] m|[13]
3 0

= Read from address O: cache miss

Set Valid Tag block|[0] block[1]
1 0 m|0] m|1]

0

1 0

2 1 1 m|12] m|13]
3 0

@ Koream_

Why set-index with the middle bits

= |f the high-order bits are

used as a set-index, then
some contiguous memory
blocks will be mapped to
the same cache set.

//example: poor spatial locality
Q; i < n; i++)

for(i =

a[i]
//a[@] =
//a[1] =
//a[2] =

High-order
bit indexing

Four-set cache

00
01
10
11

= a[i+l];
a[1]

Middle-order
bit indexing

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0 i

@ EORRE =

Set Associative Cache

Set 0:
Selected set

» Set 1:

tbits * sbits bbits Set S—1:
| | 00001 | |
m—1 0

Tag Set index Block offset

= Set selection

= Use the set index to select the set

IValid| | Tag || Cache block
lvalid| | Tag || Cache block
|Valid| | Tag || Cache block
lvalid| | Tag || Cache block
|Valid| | Tag || Cache block
|Valid| | Tag || Cache block

Set Associative Cache

= 1? (1) The valid bit must be set.

A 4

h

1

1001

Selected set (i): .

0110

Wo [Wy [Wy | Ws

(2) The tag bits in one

of the cache lines
must match the tag
bits in the address.

= |Line Selection

v

(3) If (1) and (2), then
cache hit, and
block offset selects

starting byte.
t bits s bits b bits
[0110 | i [100 |
m-1 0
Tag Set index Block offset

= Within the set, find the valid line with the matching tag

= Word Selection

= Find the word in the line indexed by the block offset

Set Associative Cache
Line replacement on cache misses

= When a line is empty

= Copy the block to the memory

= Otherwise, follow the replacement policy

hoose a line at random

hoose the least frequently used (LFU) line

hoose the least recently used (LRU) line

Fully Associative Cache

Valid Tag Cache block

Valid Tag Cache block
Set 0:

Valid Tag Cache block

[E = C/B linesin
the one and only set

= No need to select a set: there is only 1 set

" Line matching and word selection work the
same way as the set associative cache

@ Koream_

Issues with Writes:
After a cache HIT

= Write-through

" Immediately write the word’s cache block to the next

lower level

= Causing a bus traffic for every write

= Write-back

= Defers the update as long as possible: updates the lower
level only when the data is evicted

= Needs a dirty bit

= Bus traffic is reduced at the cost of additional complexities

CPU chip
Register file
Z %
memaries |

Systembus Memory bus
L l
o Main
Bus interface I bridge memory

@ Koreaw

Issues with Writes:
After a cache MISS

= Write-allocate

= |Loads the block from the lower level and updates the
cache

= Exploits the spatial locality

= Every miss results in a block transfer
from the lower level

= No-write-allocate
= Bypass the cache and write directly to the lower level

@ Koream_

Issues with Writes

= Why write-back

Because of the larger transfer time, caches at lower level
of the memory hierarchy use write-back

It exploits the locality

As the logic density increases, the complexity of write-back
becomes less of an impediment

Write-back/write-allocate is symmetric to the way read is
handled

CPU chip
Register file
e %
System bus

yst Memory bus
- l
» .
o Main
Bus interface I bridge memory

@ Korea_m

Real Cache Hierarchy

Intel Core i7 cache hierarchy

L1 L1

i | | d-cache i-cache

L2 unified cache

L2 unified cache

L3 unified cache
(shared by all cores)

Processor package

Main memory

= |-cache: a cache for instructions
= d-cache: a cache for data

= unified-cache: a cache for both instructions and

data

Real Cache Hierarchy

Characteristics of the Intel Core i7 cache hierarchy

Cache type Access time (cycles) Cachesize (C) Assoc. (E) Blocksize (B) Sets(S)
L1 i-cache 4 32KB 8 64 B 64
L1 d-cache 4 32 KB 8 64 B 64
L2 unified cache 11 256 KB 8 64 B 512
L3 unified cache 3040 8 MB 16 64 B 8192

= What are the number of bits in a tag?

= |7 processors have 48 physical address bits and
52 virtual address bits

Cache Performance Metric

Miss rate: # of misses / # of references

Hit rate: 1 — miss rate

Hit time:

= Time to deliver a word in the cache to the CPU

= Includes the times for set identification, line
identification, and word selection

Miss penalty:

= Any additional time required because of a miss

@ Korea_‘_m

Performance Impact of Cache Parameters

" Impact of cache size: Large cache size
= |[ncreases hit rate
" |Increases hit time because of H/W complexity

" Impact of block size: Large block size

" [ncreases spatial locality

= Reduces # of lines = decreases temporal locality
* Think about two or more variables at different scopes

= Loading large blocks = increases the miss penalty

@ Ko rea

Performance Impact of Cache Parameters

" Impact of Associativity: Increasing E

= Decrease the conflict misses

" |ncreases the cost and complexity = increased hit
time

= Complexity in choosing a victim line = increased miss
penalty

" Impact of Write Strategy

= Write-through: simpler to implement
= Use write buffer = read misses are less expensive

= \Write-back: fewer transfers

Cache-Friendly Code

= Average miss count:
= Stride-k reference pattern (in terms of words)

= Block sizeis B

= min(1, (wordsize - k) / B) misses per loop

int sumvec(int v[N])

= Example {
int i, sum = O;
= Words are 4 bytes,
= Cache blocks are 4 words for (i = 0; i < N; i+t)
sum += v[i];
return sSum,
}
v[i] i=0 i=1 i=2 i=3 i=4 i=5 i=6 i="7

Access order, [h]it or [m]iss

[[m] | 2[h] [3[h] |4[h]|S[m]]|6[h]|7][h]|8][h]

@ Korea_‘_.!.

Cache-Friendly Code

= Repeated reference to local variables are good
= Compiler can cache them in the register file
" Temporal locality

= Stride-1 reference pattern is good

= Caches at all levels of the memory hierarchy store
data as contiguous blocks

= Spatial locality

Cache-Friendly Code

int sumarrayrows(int a[M] [N])

{
int i, j, sum = 0;
for (1 = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] [j];
return sum;
}
ali] [j] j=0 =1 J=2 . J=3 j=4 Fe=3 =8 F=1
i=0 | m] 2 [h] 3 |h] 4 [h] 5 |m] 6 [h] 7 [h] 8 [h]
= Olm] | 10[h] | 11[h] | 12[h] | 13 [m] | 14[h] | 15[h] | 16[h]
i=2 17[m] | 18[h] | 19[h] | 20[h] | 21 [m] | 22[h] | 23 [h] | 24 [h]
=3 25Im] | 26[h] | 27[h] | 28 [h] | 29 [m] | 30 [h| | 31[h] | 32[h]

Cache-Friendly Code

int sumarraycols(int a[M] [N])

{
int i, j, sum = O;
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[il [j];
return sum;
}
giailil g=0 Jj=1 Jj=d j=3 j=4 J=23 j=6 j=1
i=0 Ilm] | Sm] | 9]|m] 13/m] | 17m] | 21 m] | 25 |m] | 29 [m]
§ = 2Im] | 6fm] [10|m] | 14[m] | I8S|m] | 22 |m] | 26 [m] | 30 |m]
i=2 3Im] | 7im] [I1|m] | ISm] | 19|m] | 23|m] | 27 |m] | 31 [m]
=3 Adim] | Sim] | 12|m] [16 [m] | 20fm] | 24 |m] | 28 |m] | 32 |m]

The Memory Mountain

= Read throughput (read bandwidth)

*= The rate that a program reads data from the memory
system

= Reads n bytes over a period of s seconds = n/s

= Smaller size of data set
= Results in a smaller working set
= Better temporal locality

= Smaller stride
= Results in better spatial locality

Read throughput (MB/s)

Slopes
of spatial
locality

The Memory Mountain

Stride (x8 bytes)

1
S 28m

32m

—T

/;;k 128k

2m

Size (bytes)

=T

Core i7 Haswell
2.1 GHz

8 MB L3 cache
64 B block size

32 KB L1 d-cache
256 KB L2 cache

of temporal
locality
o _________Intel Core i7 cache hierarchy
Core 0 Core 3
L1 L1 L1 L1
d-cache i-cache

L3 unified cache
(shared by all cores)

Read throughput vs working set size

Main L3 L2 L1
memaory cache cache cache
region region region region
14000
12000
mn
o 10000
3
2 8000
K =
o
S
2 6000
&
®
e 4000 —
2000 u

oA & & pF @t
ng,& Q}bsi‘ @& & S q}o\@,b: AN RO I O VS

Working set size (bytes)

Read throughput (MB/s)

Read throughput vs stride

12000

10000

8000

6000

4000

2000 -

One access per cache line

s1 s2 s3 s4 sb5 s6 s7

Stride (x8 bytes)

A
. N |
s8 | s9 | s10 | s11

Exploiting Locality
= Focus on the inner loop

= Try to maximize the spatial locality
= Reading data objects sequentially with stride 1

= Try to maximize the temporal locality

= Use a data object as often as possible once it has
been read from memory

@ Korea_m

