CSE320 System Fundamentals Il

YoungMin Kwon

Process: C Programming

C Programming

#include <stdio.h>

int main(int argc, char** argv) {
printf("Hello World");
return 0;

Compilation
hello.c Pre- | hello.i | Compiler | hello.s
processor (eel)
Source (cpp) Modified Assembly
program source program
(text) program (text)
(text)

= gcc hello.c

gcc —E hello.c —o hello.i
gcc =S hello.c

= gcc hello.s

printf.o

hello.o

Relocatable
object
programs
(binary)

Assembler
(as)

L

Linker hello
(1d)
Executable
object
program
(binary)

@Korea B

Process: Run-time Environments

= \/ariables

Mermory
Kernel memory IL?SV(IE?IE(ljedteO
= Flow control ey
(created at run time) ,
. 7 «— Yesp (stack pointer)
= Function calls)
M - d ion f
= Structures S e
" Pointers i o

Run-time heap

[| Dyn a m i C m e m O ry (created by malloc)

Read/write segment }

Loaded from the
executable file

a | Iocation Re(a.d(i::/,s-:::w)ent
" Run-time env.

(.init, .text, .rodata)
0x08048000

0

@Korea

#include <stdio.h>
void foo(

int

char* msg)

int a = 100;
printf(
"%s %d\n",
msg,
a);

main(
int argc,
char** argv)

foo("Hello World");
return 0;

.section
.LCO: .string
.LC1: .string

.text
.globl
foo:
pushq
movq
subq
movq
movl
mov1l
movq
movq
movl
mov1l
call
leave
ret
main:
pushq
movq
subq
mov1l
movq
movl
call
mov1l
leave
ret

.rodata
"%s %d\n"
"Hello World"

foo, main

%rbp

%rsp, %rbp

$32, %rsp

%rdi, -24(%rbp)
$100, -4(%rbp)
-4(%rbp), %edx
-24(%rbp), %rax
%»rax, %rsi
$.LCO, %edi

$0, %eax
printf

%rbp

%rsp, %rbp

$16, %rsp

%edi, -4(%rbp)
%rsi, -16(%rbp)
$.LC1, %edi
foo

$0, %eax

@ Korea

Using OS: System Calls

Time

v from read

read e

Disk interrupt s

Return =

Process A

{

Process B

y

/

/

User code

Context
Kernel code [guitch

User code

Context
Kernel code [switch

User code

= User mode code cannot access resources directly
= Ask the OS to handle the request
" read, write, fork, execv, exit,

@Korea

Using OS: Networks

Internet client host Internet server host

Client i User code i| Server E

Sockets interface e y .._________i__ ! yy i
(system calls) ~ 1 v i | v i
TCP/IP || Kernel code i| TcPip |

Hardware interface o 1 __________i__ E 'y i
(interrupts) \ | y |
Network i Eardiiins il Network i

adapter | adapter |:

—— — S—

h A\ 4
[Global IP Internet]

= (Client-Server Model
= Socket programming

@Korea B

Using OS: Threads and Locks

Request
Acceptor Connection Processing
Threads Queue Threads

If two processes are printing A S e I 5
simultaneously without
coordination...

#include <stdio.h>
void foo(Repetition Is not generality. Repetition and generality
char* msqg)

r

Web Server

{
int amust be distinguished in several ways. Every formula
which = 100; implies their

printf("'%s %d\n", confusion is regrettable:

msg, a); : 52 X
; & =
for example, when we say that two things are as alike as int éﬁfp
main(two drops of water; or when we identify “there is only a
science of the general’

int with argc,

“there is only a science of that which is repeated.’char** argv)
Repetition and resemblance are different in kind — extremely so.

foo(""Hello World™);
return O;

} @)
Koreawm

OS Inside: Memory

= Memory Hierarchy

A
Smaller, CPU registers hold words
faster, retrieved from cache memory.
and L1: / L1 cache
costlier (SRAM) L1 cache holds cache lines
(per byte) retrieved from L2 cache.
storage Lo- L2 cache
devices (SRAM) L2 cache holds cache lines
retrieved from L3 cache.
L3: L3 cache
Larger, (SRAM) L3 cache holds cache lines
slower. . retrieved from memory.
and L4: Main memory
cheaper (DRAM) Main memory holds disk blocks
(per byte) retrieved from local disks.
storage L5: Local secondary storage
devices (local disks) Local disks hold files
retrieved from disks on
\ L6: Remote secondary storage remote network servers.
(distributed file systems, Web servers)

= Magic?

" | bought a PC with 8GB of memory, but | got 100
processes running each with 4GB of memory.

@ Korea

OS Inside: Memory Mapping & Linking

printf.o
hello.c Pre- hello.i Compiler hello.s |Assembler|] hello.o Linker
pr?(c::esa;,or (cc1) | (as) (1d)
Source PP’} Modified Assembly | Relocatable | Executable
program ~ source program object - object
(text) program (text) programs program
(text) (binary) (binary)
main.c swap.c Source files
Translators Translators

(cpp, ccl, as) || (cpp, ccl, as)

! I

main.o swap.o HRelocatable
l l object files

Linker (1d)

P Fully linked
executable object file @
L

Questions?

