
C for Java Programmers:
A Primer

Charlie McDowell

University of California, Santa Cruz

copyright 2000

ers
t is
ook
l. In
pro-

ing
rn C.
Preface

This primer is designed to be used as a quick introduction to C for programm
already familiar with Java. It is not a replacement for a reference book on C, bu
instead a supplement. For the programmer already familiar with Java, the typical b
on C requires the reader to wade through many details of already familiar materia
this primer, we quickly present the main concepts needed to begin writing serious
grams in C, highlighting the differences between C and Java.

This primer was motivated by the relatively new arrival of students that are learn
Java as a first programming language. Many of these students will also need to lea
This primer was designed to ease the transition from Java to C.

♦ 3

 3

36

5

8
62

2

0

Chapter 1

Introduction 1
1.1 Built-in types, local variables, loops and conditionals.
1.2 printf() 8
1.3 scanf() 14

Chapter 2

Passing parameters to functions 19
2.1 Declaring functions 20
2.2 Pointers 21
2.3 Call-By-Reference 26

Chapter 3

Arrays 33
3.1 One dimensional arrays 33
3.2 Multi-dimensional arrays 35
3.3 Passing arrays as parameters
3.4 Dynamic arrays 40

Chapter 4

Strings 45
4.1 Strings - arrays of characters 4
4.2 Manipulating strings 48
4.3 Reading strings with scanf() 52

Chapter 5

Structured data types 57
5.1 Declaring a structured data type 5
5.2 Passing structures as parameters
5.3 Pointers to structures 70
5.4 Dynamic allocation of structure values 7

Chapter 6

File I/O and multiple source files 79
6.1 File I/O and Command Line Arguments 8
6.2 Header Files 84

4 ♦

Chapter 1

Introduction
sually
lan-
ion of

ram,
. As
a.
For the language features that are common to both C and Java, the two languages u
have similar if not identical syntax. One of the major differences between the two
guages is that C is not objected oriented. This means that a program is not a collect
classes. Instead, a C program is a collection of functions.Functionsin C are very similar
to static methods in Java. In this chapter we introduce the basic structure of a C prog
including built-in types, variable declarations, simple output, conditionals, and loops
you will see, most of these features are nearly identical to their counterparts in Jav

Let’s begin with the classic “Hello, world!” program.

/* hello.c
 * Author - Jane Programmer
 * Purpose - print hello
 */
#include <stdio.h>

int main(void) {
 printf("Hello, world!\n");
 return 0;
}

2 Chapter 1♦ Introduction

fer-
nal

rt

cted.
mers
try

alue
Dissection of hello.c

• /* hello.c
 * Author - Jane Programmer
 * Purpose - print hello
 */

This is a comment, just as in Java. Most C compilers also allow the// single line com-
ment style.

• #include <stdio.h>

This is similar in purpose to the import in Java, however, the effect is somewhat dif
ent. The Java import statement tells the Java compiler where to look for additio
classes. The#include , is called a compiler directive. It tells the compiler to inse
the contents of the named file,stdio.h in this case, directly into the program before
doing the main phase of compilation. In this example the#include is used to include
information about the standard library routineprintf() . This will be discussed in
more detail when we discuss functions and parameters.

• int main(void) {

This declaresmain() to be a function that returns anint and has no parameters. The
keywordvoid is optional, and is used to emphasize that no parameters are expe
The body of the function is defined between braces, just as in Java. Many program
place this opening brace on a line by itself. Either style is fine, however, you should
to be consistent.

• printf("Hello, world!\n");

As used here,printf() is similar toSystem.out.print() in Java. We will dis-
cussprintf() in more detail later.

• return 0;

By convention, a return value of 0 frommain() indicates normal completion to the
operating system. If the program is terminating abnormally, a non-zero return v
should be used. This error value can be used by the operating system.

1.1 ♦ Built-in types, local variables, loops and conditionals. 3

e a

ava
sent

value

ini-
ared
To compile this program from a command line use:

Depending upon the configuration of your computer, instead of the commandgcc , you
may need to usecc or some other command to compile the program. This will creat
file hello, which can be executed by simply typing the name of the file.

1.1 Built-in types, local variables, loops and
conditionals.

Most Java primitive types have equivalent types in C. The only exception is the J
typeboolean . C does not contain a boolean type. Instead, C uses integers to repre
boolean values, interpreting the integer value zero as false and any other integer
as true.

Local variables for the built-in types in C are declared just as in Java. The same
tialization syntax is also allowed. The one difference is that variables must be decl
at the beginning of a block or compound statement.

os-prompt>gcc hello.c -o hello
os-prompt>

os-prompt>hello
Hello, world!
os-prompt>

Trouble spot: C has no typeboolean. Useint instead, interpreting
non-zero as true and zero as false.

4 Chapter 1♦ Introduction

sum-

n-zero
or, /,
t any
valu-

arity
C includes most of the same numeric, relational and boolean operators as Java,
marized in the following table.

The boolean operators operate on integer values, treating zero as false and no
as true. A boolean operator always results in a value of 0 or 1. The division operat
is the same as in Java. In particular, integer division truncates towards zero withou
warning. Also, as in Java, the boolean operators are short-circuit operators, only e
ating their second operand if necessary.

The syntax forif-else statements,for loops, andwhile loops is identical to
that of Java. The following program demonstrates the substantial syntactic simil
between C and Java.

Arithmetic operators+, - , * , / , %

Relational operators<, <=, >, >=, ==, !=

Boolean operators &&, || , !

Bitwise operators &, | , ^ , ! , <<, >>

Trouble spot: All variable declarations in a block must appear
before the first executable statement.

1.1 ♦ Built-in types, local variables, loops and conditionals. 5

eral
, the
t to
hat-
/* basicSyntax.c
 * Author - Charlie McDowell
 * Purpose - demonstrate local variables,

* built-in types, if-else, and loops
 */
#include <stdio.h>

int main(void) {
 int num1 = 4, num2 = 10, i;
 double ratio;

 for(i = 1; i <= num1; i++)
 printf("%d ",i);
 printf("\n");

 while(num1 > 0) {
 printf("%d ",num1);
 num1--;
 }
 printf("\n");

 if(num1 != 0)
 ratio = num2 / num1;
 else
 ratio = num2 / 3.0;
 printf("%f\n",ratio);

 return 0;
}

Dissection of basicSyntax.c

• int num1 = 4, num2 = 10, i;
double ratio;

Here we declare three integer variables of typeint , and one floating point variable of
typedouble . Unlike Java, these types do not have a fixed size, however, in gen
they will be the same as the Java types. Two of the variables have been initialized
others contain undefined data. Unlike Java, C will not give an error if you attemp
use a local variable that has not been initialized. The C program will simply use w

6 Chapter 1♦ Introduction

any-

e

per-
Java.

ys
e
int.

ast

va
,

ever value is stored in the memory location for the variable. That value could be
thing.

• for(i = 1; i <= num1; i++)
printf("%d ",i);

printf("\n");

The syntax for thefor loop in C is nearly identical to that in Java. The one differenc
is that the loop index variable cannot be declared as part of thefor loop. In Java, you
could write:

for(int i = 1; i <= num1; i++)...

This is a syntax error in C. As shown in this example, Java includes the increment o
ator. It can be used either postfix or prefix, and has the exact same behavior as in
The for loop above uses an additional feature of theprintf() function. The string
passed to aprintf() can contain special formatting characters which are alwa
preceded by the character percent. The sequence%d, says that the next parameter to th
printf() should be converted from an integer to a string and inserted at this po
The space after the%d is used to separate the numbers in the output. The l
printf() above simply prints a newline.

• while(num1 > 0) {
printf("%d ",num1);
num1--;

}
printf("\n");

The syntax for thewhile loop in C is identical to that in Java. As shown here, Ja
also includes the decrement operator-- , which can be used as either prefix or postfix
having the exact same behavior as in Java.

Trouble spot: C compilers will not normally warn you about
uninitialized variables.

1.1 ♦ Built-in types, local variables, loops and conditionals. 7

.
result

er,

he
in

of an
• if(num1 != 0)
ratio = num2 / num1;

else
ratio = num2 / 3.0;

printf("%f\n", ratio);

The syntax forif statements andif-else statements is identical to that in Java
There is one important difference because C does not contain a boolean type. The
of the relational operators such as>, <= and== is a value of typeint . The value will
be 1 if the comparison is true and 0 if it is false. This will become important lat
because many C programmers use this fact. For example, the aboveif-else state-
ment could be rewritten equivalently as:

if(num1)
ratio = num2 / num1;

else
ratio = num2 / 3.0;

The format string%f in aprintf() statement indicates that the next parameter to t
printf() should be converted from a floating point value to a string and inserted
the output string at that point.

All of the rules about using braces to place blocks of statements in the branches
if-else statement are the same as in Java. Also, nesting ofif-else statements is
the same in C as in Java.

8 Chapter 1♦ Introduction

oes

n
o be

har-
ter

n
rac-

a

o

1.2 printf()

The standard output function in C isprintf() . The nameprintf is derived from
the fact that this function allows for formatted printing. The functionprintf() can
accept any number of arguments. This looks a bit like function overloading, but C d
not support function overloading. Instead, the functionprintf() is designed to
accept an arbitrary number of arguments.

The first argument toprintf() is always a format string. The format string is the
followed by zero or more additional parameters that contain the values that are t
printed, as part of the output string.

The format string contains both literal characters to be printed, and formatting c
acters. A sequence of formatting characters always begins with the special charac%
and ends with a conversion character. Between the%and the conversion character ca
be additional formatting characters. The following example shows how literal cha
ters and several conversion specifications can be combined in a singleprintf() .

Trouble spot: In Java the following is a syntax error:

 if(num1 = 0) ...

The expressionnum1 = 0 assigns zero tonum1 and the value of the expression
is 0. Zero is interpreted as false and the false branch of theif statement will be
taken. In Java this is a syntax error because the expression does not result in
boolean value. This is a particularly insidious error in C because it is so close to
what was probably intended:

 if(num1 == 0) ...

One approach used by many programmers to help catch such typing errors, is t
make a habit of writing

if(0 == num1) ...

instead. Then if the== is mistyped as=, a compile time error will be generated.

1.2 ♦ printf() 9

ints
l

/* printfExample.c
 * Author - Charlie McDowell
 * Purpose - simple use of printf
 */
#include <stdio.h>

int main(void) {
 int intVal = 10;
 double doubleVal = 1.234;

 printf("intVal = %d, doubleVal = %f\n", intVal,
doubleVal);

 return 0;
}

The output of this program is:

Notice how the values of the two variables were inserted into the output at the po
where the format conversion strings%dand%f appeared. The following table lists al
of the conversion characters forprintf() .

intVal = 10, doubleVal = 1.234

10 Chapter 1♦ Introduction

ious
sig-

This
The basic formatting specified by the conversion characters shown in the prev
table can be modified with additional formatting characters inserted between the %
naling a format string and the conversion character which ends the format string.

conversion
character

argument description

c char Print a single character.

d or i int Print an integer.

u int Print as an unsigned integer.

o int Print an integer in octal.

x or X int Print an integer in hexadecimal.

e or E
float or

double
Print in scientific notation.

f
float or

double
Print a floating point value.

g or G
float or

double
Same as e, E, or f, whichever uses fewest characters.

s char* Print a string.

p void* Print a pointer’s value in hexadecimal.

n int*
Nothing is printed, instead store into the argument the

number of characters printed so far.

% none Print a single %, there is no corresponding argument.

1.2 ♦ printf() 11

ld

sti-
in

ld
ed,
ces,

dth

te-
rs,
additional formatting information may include the following, in order: flags, fie
width, precision, and length modifier, as described below.

• flags - There are several optional flags that can be used to control left/right ju
fication, fill character and related formatting information. They are described
the following table.

• field width - Each converted argument is printed in a field. By default, the fie
is just wide enough to hold the converted value. When a field width is specifi
the output is padded on the left with zeros or spaces, or on the right with spa
depending on the flags. If the field width is too small, it is extended to the wi
of the converted argument.

• precision - A precision is specified by a period followed by a nonnegative in
ger. The precision is interpreted differently for different conversion characte

flag description

-
The output string will be left-justified in the field. The default is

right-justification.

+

For conversions that might generate a minus sign for negative

values, the + is normally omitted for positive values. With this

flag, the + is included.

space

Inserts a space in front of non-negative numeric output when

using a conversion that might generate a minus sign. This is sim-

ilar to the+ flag. It is used to align the first digit when the output

includes both negative and positive values. If both the+ and

space flags are included the space flag is ignored.

#

The effect of this flag depends upon the conversion character.

With conversion charactero, a zero is printed at the front of the

output string. The leading zero indicates to the reader that this is

in octal format.

With conversion charactersx or X, the string0x or 0X is printed

at the front of the output string indicating hexadecimal to the

reader.

With conversion charactersg or G, trailing zeros are printed.

With conversion characterse, E, f , g, orG, a decimal point is

always printed.

0
Numeric conversions will use leading zeros instead of spaces to

pad the output to fill the specified field.

12 Chapter 1♦ Introduction

X
erted
ters
r G

, l
has

e fol-
as shown in the following table.

• length modifier - An l (that is the letter el) placed just before a d, i, o, u, x, or
conversion character indicates that the corresponding argument to be conv
is a long int . Similarly an h placed before those same conversion charac
indicates that the argument is a short int. An L placed before an e, E, f, g, o
indicates that the argument is along double .

To summarize, if we let f stand for flags, w for width of the field, p for precision
for length modifier and c for conversion character, we see that a conversion string
the general form:

%fw.plc

where only the % and the conversion character represented by c are required. Th
lowing example demonstrates a few of the many formatting possibilities.

Conversion
characters

Effect of precision specification

d, i , o, u,

x , X

The precision specifies the minimum number of digits that will

be printed. Leading zeros will be printed as necessary.

e, E, f
The precision specifies the number of digits that will be printed

to the right of the decimal point.

g, G
The precision specifies the maximum number of significant dig-

its that will be printed.

s
The precision specifies the maximum number of characters that

will be printed from the string.

1.2 ♦ printf() 13
/* printf.c
 * Author - Charlie McDowell
 * Purpose - demonstrate a few formatting possibilities
 */
#include <stdio.h>

int main(void) {
 int anInt = 123;
 float aFloat = 1.234567;

 printf("1234567890,1234567890\n");
 printf("%+10.4d,%-+10.4d\n", anInt, anInt);
 printf("%010d,%#x\n", anInt, anInt);
 printf("%-10.4f,%-+10.7f\n", aFloat, aFloat);
 return 0;
}

The output of this example is:

1234567890,1234567890
 +0123,+0123
0000000123,0x7b
1.2346 ,+1.2345670

14 Chapter 1♦ Introduction

t
s
s are
d are

ari-
e
. It is
1.3 scanf()

The functionscanf() is similar in form toprintf() but it is used for input instead
of for output. Here is a simple example that usesscanf() to read an integer, and a
floating point value from the standard input device, usually the keyboard.

/* scanfExample.c
 * Author - Charlie McDowell
 * Purpose - simple use of scanf
 */
#include <stdio.h>

int main(void) {
 int intVal;
 float floatVal;

 scanf("%d", &intVal);
 scanf("%f", &floatVal);

 printf("intVal = %d, floatVal = %f\n", intVal,
floatVal);

 return 0;
}

The format strings forscanf() are very similar to those forprintf() . In the
example above we use%dto indicate that anint is to be read from the standard inpu
device and%f to indicate that afloat is to be read. These input conversion string
will automatically skip over any white space characters. The white space character
newline, space and tab. Notice that the variables into which the data is to be store
preceded by the& character. The& is the “address of” operator. It will be explained in
more detail later. It must always be used when reading built-in types into simple v
ables. The functionscanf() needs to knowwhereto store the values read, hence th
function is passed the “address of” the variables where the values are to be stored
not possible in Java to write a function likescanf() that has multiple output parame-
ters that are primitive types.

1.3 ♦ scanf() 15

res-
ill
ust
ded

rs
ters
ch

.

.

y

re

s

The & in front of a variable or expression of type T changes the type of the exp
sion from the type T to type T*. The type T* is a pointer to a value of type T. We w
explain this in Chapter 2. In the following table when you see that the argument m
be type T*, then that is an indication that you can place a variable of type T, prece
by & in the corresponding argument position forscanf() . The following table lists
the conversion characters forscanf() ..

As with printf() , the basic formatting specified by the conversion characte
shown in the previous table can be modified with additional formatting charac
inserted between the%signaling a format string and the conversion character whi

conversion
character

argument description

c char* Read a single character.

d int* Read a decimal integer.

i int*
Read an integer in decimal, octal, or hexadecimal. Octal is

indicated by a leading 0, and hexadecimal by a leading 0x.

u unsigned* Read an unsigned decimal integer.

o unsigned* Read an octal integer. No leading 0 is required.

x or X int Read a hexadecimal integer. No leading 0x or 0X is required

e, E, f, g, G float* Read a floating point number.

s char*
Read a sequence of non-white characters. (Do not use this

with &c, where c is a simplechar variable. See Chapter 4.)

p void**
Read a pointer’s value in the same format as that created with

p in printf() .

n int* Store into the argument the number of characters read so far

% none Skip single % in the input.

[...] char*

Read characters as in conversion character s, except that onl

characters specified by the scan set between the brackets a

read. Any others terminate the input for this argument. The

scan set is discussed further in Chapter 4.

Trouble spot: If you forget the & in front of one of the parameters to scanf()
your program will most likely abort with some obscure message. On Unix sys-
tems the message will probably be something about a segmentation fault or bu
error.

16 Chapter 1♦ Introduction

w-

th-

ero is

se for

for
ue as
ends the format string. This additional formatting information may include the follo
ing flags, in order: assignment suppression (*), field width (an integer), and length
modifier (one ofh, l , orL), as described below.
.

Summary

• A C program is a collection of functions. Functions are very similar to static me
ods in Java. C program execution begins in the functionmain() .

• Comments are indicated with// or /* */ , just as in Java.

• The standard C types include the Java primitive types except for boolean.

• C represents boolean values as integers. Zero is interpreted as false, non-z
interpreted as true.

• In general, the built-in operators for the standard C types are the same as tho
the corresponding Java primitive types.

• Expressions involving relational operators evaluate to one for true and zero
false. The boolean operators operate on integers treating any non-zero val
true.

flag description

* The read value is discarded. There is no corresponding argument.

an integer
This specifies the maximum number of characters that will be

scanned for the current argument.

h

The length modifier h can precede a d, i, o, u, x, or X conversion

character. It indicates that the corresponding argument is a

short int* , orunsigned short int* .

l

Same as h but the corresponding argument is along int* , or

unsigned long int* . In addition l can precede e, E, f, g, or

G in which case the argument is adouble* .

L
The length modifier L can precede e, E, f, g, or G. The corre-

sponding argument should be along double* .

♦ Exercises 17

sion

gle,
eIn-

s

you
and

f the
nts

the
• The syntax of bothfor andwhile loops is the same as in Java.

• The syntax ofif-else statements is the same, except that any integer expres
can be used as the conditional expression.

• The standard C print function isprintf() .

• The standard C input function isscanf() .

Exercises

1 Write a program that reads in two integers for the width and height of a rectan
then prints the area of the rectangle. A Java solution is the program Simpl
put.java from Section 2.6 of JBD.

2 Write a program to compute the area of a circle given its radius. Letradius be a vari-
able of typedouble and usescanf() to read in its value. Be sure that the output i
understandable. If you include the header filemath.husing#include <math.h> ,
then you can use the predefined constantM_PI to get the value ofπ.

3 Write a program that asks for the number of quarters, dimes, nickels, and pennies
have. Then compute the total value of your change and print the number of dollars
the remaining cents. The output format should be$X.YY.

4 Write a program that prompts for the length of three line segments as integers. I
three lines could form a triangle, the program prints “Is a triangle.” Otherwise, it pri
“Is not a triangle.” Recall that the sum of the lengths ofanytwo sides of a triangle must
be greater than the length of the third side. For example, 20, 5, and 10 can’t be
lengths of the sides of a triangle because 5 + 10 is not greater than 20.

5 Write a program that will print out a box drawn with asterisks, as shown

* *
* *

18 Chapter 1♦ Introduction

d in
box

row.

hat
am
n a

ere

m-
For

uare

the

om-
Use a loop so that you can easily draw a larger box. Modify the program to rea
a number from the user specifying how many asterisks high and wide the
should be.

6 Write a program that reads in numbers until the same number is typed twice in a
Modify it to go until three in a row are typed. Modify it so that it first asks for “how
many in a row should I wait for?” and then it goes until some number is typed t
many times. For example, for two in a row, if the user typed “1 2 5 3 4 5 7” the progr
would still be looking for two in a row. The number 5 had been typed twice, but not i
row. If the user then typed 7, that would terminate the program because two 7s w
typed, one directly after the other.

7 Write a program that prints all the prime numbers in 2 through 100. A prime nu
ber is an integer that is greater than 1 and is divisible only by 1 and itself.
example, 2 is the only even prime. Why?

Pseudocode for finding primes

for n = 2 until 100
for i = 2 until the square root of n

if n % i == 0 the number is divisible by i
otherwise n is prime

Can you explain or prove why the inner-loop test only needs to go up to the sq
root ofn?

8 Write a program that generates an approximation of the real numbere. Use the for-
mula

wherek! meansk factorial = 1 * 2 * . . . *k. Keep track of term 1/k! by using a
double . Each iteration should use the previous value of this term to compute
next term, as in

Run the computation for 20 terms, printing the answer after each new term is c
puted

e 1 1
1!
----- 1

2!
----- 1

3!
----- … 1

k!
---- …+ + + + + +≈

Tk 1+ Tk
1

k 1+
------------×=

Chapter 2

Passing parameters to
functions
of the
cause
r can-

veral
om-
Java and C both pass parameters using pass-by-value. This means that the value
actual parameter is copied and stored in the corresponding formal parameter. Be
the value of the actual parameter is copied, the value stored in the actual paramete
not be modified by the function.

In Java you can get several results from a function by passing references to se
objects and then modifying the objects in the function. In C the same thing is acc
plished by passing pointers.

20 Chapter 2♦ Passing parameters to functions

ons,

r-
efini-
e
the

ters.

at is
pro-
e

2.1 Declaring functions

Below is a simple example of parameter passing and a program with two functi
main() andmin() .

/* min.c
 * Author - Charlie McDowell
 * Purpose - simple function definition/call
 */
#include <stdio.h>

int min(int x, int y) {
 if(x < y)
 return x;
 else
 return y;
}

int main(void) {
 int num1, num2;

 printf("Enter two integers.\n");
 scanf("%d%d", &num1, &num2);

 printf("The smaller is %d\n", min(num1, num2));
 return 0;
}

The functionmin() is essentially identical to its counterpart in Java. The only diffe
ence is that there is no keyword static. In the example above, we have placed the d
tion of min() before its use inmain() . C requires that the signature of a function b
known before the first call to the function. Recall that the signature is the name of
function, along with its return type and the type and number of the formal parame
Stylistically many programmers prefer to havemain() be the first function instead of
the last. When you wish to call a function that has not yet been defined, or one th
defined in another file (see Section 6.2), you must precede the call with a function
totype. A function prototype is like a function definition with no body. Below is th
above program rearranged withmain() first, by using a function prototype.

2.2 ♦ Pointers 21

late
itive
other
rs to

per-

tain

r * is
ble is
/* min2.c
 * Author - Charlie McDowell
 * Purpose - simple function definition/call
 * using a prototype to allow main() to be first
 */
#include <stdio.h>

int min(int x, int y);

int main(void) {
 int num1, num2;

 printf("Enter two integers.\n");
 scanf("%d%d", &num1, &num2);

 printf("The smaller is %d\n", min(num1, num2));
 return 0;
}

int min(int x, int y) {
 if(x < y)
 return x;
 else
 return y;
}

2.2 Pointers

One of the most important differences between C and Java is C’s ability to manipu
pointers to data. In Java, it is not possible to create a pointer or reference to a prim
type. Java only allows pointers to objects and these pointers can never be changed
than assigning one pointer to another. To emphasize this distinction, in Java pointe
objects are called references.

In C you can create a pointer to any variable. This is done using the address-of o
ator&, as shown briefly in the example withscanf() in Section 1.3. Once you have a
pointer to a variable (actually a pointer to some arbitrary memory location), you ob
the value that the pointer points to using the indirection operator *.

The following example introduces these two operators. Notice that the characte
used both to access the location pointed to by a pointer, and to declare that a varia

22 Chapter 2♦ Passing parameters to functions

lares
e of

tored
iable.

get
actually a pointer. Prepending a variable with a * in a declaration statement, dec
that the variable will be a pointer to the indicated type instead of a regular variabl
that type. This can be seen in the declaration ofpointerOne andpointerTwo
below. Prepending a variable with a * in an expression says don’t use the value s
in the variable, instead use the value pointed to by the address stored in the var
This can be seen in the first assignment toy in the example below.

/* pointer.c
 * Author - Charlie McDowell
 * Purpose - introduce pointers
 */
#include <stdio.h>

int main(void) {
int x = 123, y;
int *pointerOne, *pointerTwo;

pointerOne = &x;
y = *pointerOne;
printf("x = %d, y = %d\n", x, y);

pointerTwo = pointerOne;
*pointerTwo = 99;
printf("x = %d, y = %d\n", x, y);

pointerTwo = &y;
printf("*pointerOne = %d, *pointerTwo = %d\n",

*pointerOne, *pointerTwo);

printf("pointerOne = %u, pointerTwo = %u\n",
pointerOne, pointerTwo);

 return 0;
}

Here is the output from the above program. If you run it on your system you may
different values for the numbers in the last line of output.

x = 123, y = 123
x = 99, y = 123
*pointerOne = 99, *pointerTwo = 123
pointerOne = 4026529588, pointerTwo = 4026529584

2.2 ♦ Pointers 23

ese

each

lt is

o the
Dissection of pointer.c

• int x = 123, y;

Here we declare two simple variables. We will manipulate the values stored in th
variables using pointers.

• int *pointerOne, *pointerTwo;

Here we declare two variables that are pointers to integers. Notice the * preceding
variable.

• pointerOne = &x;

Here we are storing the address of variablex (remember& is the address of operator)
into the variablepointerOne . The variablepointerOne is now pointing at the
same memory location as that referred to by the variablex .

• y = *pointerOne;
printf("x = %d, y = %d\n", x, y);

The assignment stores the value pointed to bypointerOne , into the variabley. Here
the* is the indirection operator. It says thatpointerOne does not directly refer to
the value of interest, but refers to it indirectly, i.e. it points to the value. The resu
that the value stored in variablex is copied into variabley as shown in the following
figure. In the figure, variables that contain pointers are depicted as arrows leading t
memory that the pointer points to.

123

123

contents variable

pointerOne

y

x

24 Chapter 2♦ Passing parameters to functions

is

t
ll
em-
very

the
start

sses in
• pointerTwo = pointerOne;
*pointerTwo = 99;
printf("x = %d, y = %d\n", x, y);

In this sequence, we first assignpointerTwo to point to the same location as
pointerOne . Then we use*pointerTwo as the destination of an assignment. Th
says store into the location pointed to bypointerTwo . From the previous statements
we can determine thatpointerTwo is pointing to the variablex (as ispointer-
One). The following figure shows the result.

• pointerTwo = &y;
printf("*pointerOne = %d, *pointerTwo = %d\n",

*pointerOne, *pointerTwo);
printf("pointerOne = %u, pointerTwo = %u\n",

pointerOne, pointerTwo);

We now changepointerTwo to point to y. Then we print both the valuesstored in
the two pointers and the valuespointed toby the two pointers. Looking at the output, i
may seem strange that the addresses ofx andy are such large numbers for such a sma
program. This is because most operating systems today use what is called virtual m
ory. Virtual memory allows a program to use some very small addresses and some
big addresses without actually requiring physical computer memory for all of
addresses in between. It is common for the memory allocated for local variables to
at the upper end of the usable virtual address space, hence the very large addre

123

99

contents variable

pointerTwo

pointerOne

y

x

2.2 ♦ Pointers 25

am-

about
l to
ear-
this example. Below is a figure showing the layout of the variables in the above ex
ple at the end of the program.

In general we do not know or care about the actual address values. We only care
what locations pointers are pointing to. For this reason, it is generally more usefu
depict pointer values as arrows pointing to the appropriate location as we did in the
lier figures. Using this notation, the above figure would become:

4026529584

4026529588

123

99

4026529576

4026529580

4026529584

4026529588

address contents variable

pointerTwo

pointerOne

y

x

123

99

contents variable

pointerTwo

pointerOne

y

x

26 Chapter 2♦ Passing parameters to functions

tance
refer-
using
e effect
2.3 Call-By-Reference

In Java, if what is being passed is actually a reference to an object, then the ins
variables inside of the referenced object can be changed, but the actual parameter
encing the object is not changed. In C, although parameters are always passed
pass-by-value, because the value that is passed can be an address, C can get th
of pass-by-reference. Consider the following example:

/* swap.c
 * Author - Charlie McDowell
 * Purpose - call-by-reference
 */
#include <stdio.h>

void swap(int *x_p, int *y_p) {
 int temp;

 temp = *x_p;
 *x_p = *y_p;
 *y_p = temp;
}

int main(void) {
 int num1, num2;

 printf("Enter two integers.\n");
 scanf("%d%d", &num1, &num2);
 printf("num1 = %d, num2 = %d\n", num1, num2);

 swap(&num1, &num2);

 printf("num1 = %d, num2 = %d\n", num1, num2);
 return 0;
}

The output of this program with the input 99 and 123 is

2.3 ♦ Call-By-Reference 27

f-

ction
Dissection of swap.c

• void swap(int *x_p, int *y_p)

The functionswap() does not return a value, indicated by the return type ofvoid .
The function expects two parameters, each of which is a pointer to anint . This effec-
tively makesswap() a function with twoint parameters that are passed, call-by-re
erence. A good programming style is to always append_p to the end of variables that
are actually pointers. This can help you remember that you need to use the indire
operator * when accessing the variable, unless you actually want the address.

• int temp;

temp = *x_p;

The value pointed to byx_p , is stored intemp . The expression*x_p , represents the
value stored in the location pointed to byx_p . See the figure below.

• *x_p = *y_p;

Store the value stored in the location pointed to byy_p , into the location pointed to by
x_p .

• *y_p = temp;

Store the value stored in the variabletemp , into the location pointed to byy_p .

Enter two integers.
99 123
num1 = 99, num2 = 123
num1 = 123, num2 = 99

28 Chapter 2♦ Passing parameters to functions

rs.
or-

. By
ability

m

• int main(void) {
 int num1, num2;

 printf("Enter two integers.\n");
 scanf("%d%d", &num1, &num2);
 printf("num1 = %d, num2 = %d\n", num1, num2);

 swap(&num1, &num2);

In main() when we callswap() we need to pass pointers to integers, not intege
The address-of operator,&, does the job. We are passing pointers to the locations st
ing the values fornum1 andnum2. The result is thatnum1, andnum2 are output
parameters. Their values are changed by the execution ofswap() .

Notice that the call toscanf() also uses the address-of operator,&, with all but the
first parameter. This is for the same reason that we used& with swap() . The
scanf() function needs to be able to change the values stored innum1 andnum2.
Without the&, we would be passing the values stored innum1 andnum2, and
scanf() would not be able to change them - remember, C uses pass-by-value
passing an address as the value, we get the effect of pass-by-reference, and the
to have output parameters.

The following figure shows the memory contents just before the return fro
swap().

123

99

contents variable

x_p in swap

y_p in swap

num1 in main

num2 in main

. . .

temp in swap123

♦ Summary 29

ni-

ng an

ys

r

Summary

• Values of built-in types are passed by-value, just like Java primitive types.

• Function syntax is essentially the same as a static method in Java.

• C requires a function prototype if a function call appears in a file before the defi
tion of the function.

• In addition to passing values, C can pass the address of any variable, achievi
effect similar to passing references to objects in Java.

Trouble spot: A major source of errors in C programs, is the failure to prop-
erly use * and &.

For example, if we forgot to use the * in the assignment totemp in swap() like
this:

temp = x_p;

we would be attempting to store not theint value pointed to byx_p (num1 in
our example), but would instead be storing the contents ofx_p (the actual
address ofnum1) into temp . Fortunately, any good C compiler should generate
a warning message in this situation. In the case ofscanf() , the problem is a bit
different. If you forget to use the & with one of the variables passed to
scanf() , you may only get a warning if you ask the compiler to be very strict.
For most C compilers you can do this by using the flag-Wall , which means
generate all possible warning message. We highly recommend that you alwa
use this flag. The reasonscanf() is a bit different is becausescanf() uses a
special C notation that indicates it doesn’t really know what type of paramete
will be passed except for the first, which is the format string. The contents of the
format string determine what are appropriate types for the other parameters.

30 Chapter 2♦ Passing parameters to functions

e
ers

ven
have
e in

yer
2, or
ram
ram
er of
ction

ram

g

both
func-
a

• The expression&x is the address ofx ; a reference to the location containing th
value of x. All non-primitive variables in Java are references. C allows for point
(references) to both built-in types such as int, and user defined types.

• The expression*x evaluates not to the value in variablex , but to the value in the
memory location whose address is in variablex . In this case, x is like a Java refer-
ence variable.

• Using the address-of operator (&) and the indirection operator (*), C can pass e
built-in types such as int, using pass-by-reference. This makes it possible to
multiple output parameters that are values of built-in types. This is not possibl
Java without using wrapper classes.

Exercises

1 Write a program to play the game of Twenty-One Pickup. This is a two-pla
game that starts with a pile of 21 stones. Each player takes turns removing 1,
3 stones from the pile. The player that removes the last stone wins. The prog
will play against a person and the person always gets to move first. The prog
should allow the person to play a series of games, keeping track of the numb
games won by the person. A Java solution to this problem is presented in Se
4.9 of JBD.

2 Modify Exercise 5, on page 17, in Chapter 1, to have a functiondrawBox() that takes
the width and height of the box in asterisks as formal parameters. Modify the prog
further to include three functions:drawLine() , drawSides() , anddrawBox() .
The functiondrawLine() will take two parameters: the length of the line and a strin
that will be printed length times to draw the line. The functiondrawSides() will take
three parameters: the height of the sides, the width of the box that will be formed (
lines must be drawn at the same time), and a string used to represent a side. The
tion drawBox() will take three parameters: the width and height of the box and

♦ Exercises 31

d to
s, the
your
func-

t
ue of

yed
se”

p 1.

and

e the
tarts

the
you
iden-
cifi-
ith?
string used to represent the sides. For example, if called asdrawBox(5,4,"Cis-

Fun") , the output would be

3 Write a function that can be used to sort three integers. The function will nee
have three parameters that are pointers to integers. When the function return
three parameters should be in ascending order. Provide a program to test
function by asking the user to enter three integers, pass those integers to the
tion and then print them after the function returns.

4 Write a program to print the values of for the range . Prin
the values in this range at a step size of 0.01. Also find the largest and smallest val
F(x) in this interval.

5 Write a program that allows the user to play the game of Craps, which is pla
with two dice. A simple version of the game between one player and “the hou
can be described as follows.

1 The player bets some amount of money.

2 The player throws the dice.

3 If the dice total 2 or 12 the player loses the bet and play starts again at ste

4 If the dice total 7 or 11 the player wins the amount of the bet from the house
play starts again at step 1.

5 If the dice total any other value, this value is called the point.

6 The player continues to roll the dice until they total either 7 or the point.

7 If the dice total is 7 the player loses the bet; otherwise, the player has mad
point and wins the amount of the bet from the house. In either case, play s
again at step 1.

Play continues until the player indicates that he or she wants to quit or until
player runs out of money. Before you begin to write the code for this program,
should develop a design. Convert the description of play to pseudocode and
tify the primary methods that you’ll need. You may even need to refine the spe
cation some more first. For example, how much money does the player start w

CisFunCisFunCisFunCisFunCisFun
CisFun CisFun
CisFun CisFun
CisFunCisFunCisFunCisFunCisFun

F x() x
2

2–= 0 x 10< <

32 Chapter 2♦ Passing parameters to functions

ch
uffi-

r, n,
oss
4.7

n-

han
To simulate the roll of the dice, place#include <stdlib.h> at the top of
your source file, then the following expression

rand()%6 + 1

will evaluate to a random integer of 1 through 6. You must simulate rolling ea
die separately. Generating a random number in the range 2 through 12 isn’t s
cient.

6 Write a program to compute the probability that we can toss some numbe
heads in a row using a coin. Compute the probability by simulating the coin t
with a random number. A Java solution to this problem is presented in Section
of JBD. The functionrand() mentioned in the previous exercise returns a ra
dom integer in the rand0 to RAND_MAX, which is defined instdlib.h . You can
simulate a coin toss by treating a return value from rand() that is less t
RAND_MAX/2 as a head and treating any other value as a tail.

Chapter 3

Arrays
how-
g the

llo-
iable

e JBD
the
Syntactically, arrays in C appear very similar to arrays in Java (see JBD Chapter 5),
ever, they are in fact quite different. In Java, all arrays are created dynamically usin
new operator. In C, arrays can be created both dynamically, and statically.

3.1 One dimensional arrays

Let’s first look at statically allocated arrays. The following statement declares and a
cates an array of 10 integers. Notice the placement of the brackets after the var
name, not after the element type,int .

int smallArray[10];

The elements of this array can be accessed using array indexing, just as in Java (se
Section 5.1). For example, the following code fragment will print the elements of
above array.

int i;

for(i = 0; i < 10; i++)
printf("%d\n",smallArray[i]);

34 Chapter 3♦ Arrays

coun-
ds of

th i
ays

reas-
nge

an
es are

are
s a

laces
There are several important differences between the above example, and its Java
terpart. First, C does not check to make sure that the array index is within the boun
the array. The following will compile and run, giving unpredictable results.

/* arrayBounds.c
 * Author - Charlie McDowell
 * Purpose - exceed array bounds without an error
 */
#include <stdio.h>

int main(void)
{
 int smallArray[10];
 int i;

 for(i = 0; i < 10; i++)
 smallArray[i] = i*10;

 for(i = 0; i <= 10; i++)
 printf("%d\n",smallArray[i]);

 return 0;
}

If you look closely, you will notice that the second loop executes eleven times wi
ranging from 0 to 10 inclusive, but the bounds of the array are 0 to 9 inclusive. Arr
in C do not carry around their length as they do in Java.

Another difference between arrays in C and arrays in Java, is that you cannot
sign an array variable to point to a new array. This also implies that you cannot cha
the size of an array. There is no way in the example above to changesmallArray to
refer to a larger array, after the initial declaration. As we will show below, you c
dynamically create arrays and use variables to reference them, but those variabl
actually pointers, not arrays.

Statically allocated arrays in C can also be created using array initializers which
syntactically identical to array initializers in Java. The following statement create
static array of five integers, initialized to the values 100 through 500.

int x[] = { 100, 200, 300, 400, 500 };

This statement is legal in both C and Java. Although the preferred Java syntax p
the brackets with the type int, as in

int[] x = { 100, 200, 300, 400, 500 }; // not legal C

3.2 ♦ Multi-dimensional arrays 35

re-

y can
ntire

rack-
to 1.
3.2 Multi-dimensional arrays

Multi-dimensional arrays are created using multiple bracket pairs. The following c
ates a two-dimensional array of integers.

int matrix[10][20];

The above declaration allocates storage for 200 integers. The elements of this arra
be accessed just as in Java (see JBD Section 5.9). The following will initialize the e
array to 0.

for(i = 0; i < 10; i++)
for(j = 0; j < 20; j++)

matrix[i][j] = 0;

Unlike Java, an array declared as a local variable will not be initialized to zero.
o

Higher dimensional arrays are created and accessed by adding more pairs of b
ets. The following declares a three-dimensional array, and initializes all elements

int space[10][20][30];
int i, j, k;

for(i = 0; i < 10; i++)
for(j = 0; j < 20; j++)

for(k = 0; i < 30; k++)
space[i][j][k] = 1;

Trouble spot: Most C compilers will not give you any indication if you fail to
initialize the values of an array before using them.

The results will be that you will get unpredictable values when accessing an
uninitialized array.

36 Chapter 3♦ Arrays

rray
it
l for
ple:
3.3 Passing arrays as parameters

An array variable in C is actually a pointer to the first element of the array. For an a
of integers, it is just like a pointer to anint , except that you cannot change where
points. Thinking of the name of an array as a pointer to the first element, is essentia
understanding how arrays are passed as parameters. Consider the following exam

/* arrayParams.c
 * Author - Charlie McDowell
 * Purpose - passing arrays as parameters
 */
#include <stdio.h>

void fillIt(int someArray[]);

int main(void) {
 int smallArray[10];
 int i;

 fillIt(smallArray);

 for(i = 0; i < 10; i++)
 printf("%d ",smallArray[i]);
 printf("\n");

 return 0;
}

void fillIt(int someArray[]) {
 int i;

 for(i = 0; i < 10; i++)
 someArray[i] = 100 + i;
}

The output of this program is

100 101 102 103 104 105 106 107 108 109

3.3 ♦ Passing arrays as parameters 37

ition
an
f the

lways

own

could
case.

llow-
Dissection of arrayParams

• void fillIt(int someArray[]);

We place a function prototype (see Section 2.1) at the beginning so that the defin
of the functionmain() can appear first. An array parameter is declared just like
array variable. The one difference is that for one dimensional arrays, the size o
array is irrelevant and not required. For this reason, the functionfillIt() will work
with any array of integers.

• int main(void) {
 int smallArray[10];
 int i;

 fillIt(smallArray);

To pass an array as a parameter, just use the name of the array. Remember, C a
uses pass-by-value. The value of the expressionsmallArray , is the address of the
first element of the array. In this way, the functionfillIt() will have a pointer to the
first element, and can thus change any of the elements of the array.

• void fillIt(int someArray[]) {
 int i;

 for(i = 0; i < 10; i++)
 someArray[i] = 100 + i;
}

The preferred way to write a function that expects an array parameter is as sh
above. You must remember that the value that is passed in this case isnot the value of
the entire array, but is only the address of the first element. The above declaration
lead you to believe that it is the array that is being passed by-value. This is not the

To emphasize the fact that an array parameter is simply a pointer, consider the fo
ing variation on the example above. In the example below,main() is identical to
main() in arrayParams.c above.

38 Chapter 3♦ Arrays

sed as

he
/* arrayParams2.c
 * Author - Charlie McDowell
 * Purpose - show array is really a pointer
 */
#include <stdio.h>

void fillIt(int *someArray);

int main(void) {
 int smallArray[10];
 int i;

 fillIt(smallArray);

 for(i = 0; i < 10; i++)
 printf("%d ",smallArray[i]);
 printf("\n");

 return 0;
}

void fillIt(int *someArray) {
 int i;

 for(i = 0; i < 10; i++) {
 *someArray = 100 + i;
 someArray++;
 }
}

Notice that in this example,fillIt() has been declared to have a pointer toint as
its only parameter, instead of an array ofint . The call tofillIt() remains
unchanged. This works because, as we said above, the name of an array, when u
an expression, is simply a pointer to the first element of the array.

The statement infillIt() :

*someArray = 100 + i;

presents nothing new. It says, store the value100 + i into the location pointed to by
someArray . Initially someArray is pointing to the first element of the arraysmal-
lArray in main() . The next statement is a key feature of C not found in Java. T
statement

someArray++;

3.3 ♦ Passing arrays as parameters 39

ib-

to

at is,
ter to
y, the
is incrementing the value of a pointer. This type of pointer arithmetic is strictly proh
ited in Java. In C, this statement causes the address stored insomeArray to be incre-
mented. RemembersomeArray stores an address which is interpreted as a pointer
some other location storing an integer. Incrementing the address causessomeArray
to point to the next memory location. Because arrays are allocated contiguously, th
array elements are placed in consecutive memory locations, incrementing a poin
an array element, causes the pointer to point to the next array element. In this wa
variablesomeArray , points to each of the elements ofsmallArray , as the loop
executes.

40 Chapter 3♦ Arrays

ve, C
the
tely
spec-

is

he
the
3.4 Dynamic arrays

In addition to having statically allocated arrays, such as those discussed abo
allows for dynamic allocation of arrays. When using dynamically allocated arrays,
thin disguise of array variables as something other than pointers is comple
removed. The following example dynamically creates an array based upon a user
ified value.

/* dynamicArray.c
 * Author - Charlie McDowell
 * Purpose - create an array dynamically
 */
#include <stdio.h>
#include <stdlib.h>

int main(void) {
 int *array_p;
 int size, i;

 printf("How many elements will be in the array?\n");
 scanf("%d", &size);

 array_p = calloc(size, sizeof(int));

 for(i = 0; i < size; i++) {
 array_p[i] = 100 + i;
 }

 for(i = 0; i < size; i++)
 printf("%d ", array_p[i]);
 printf("\n");
 return 0;
}

In the example above,array_p is the “array variable”, although as you can see, it
in fact a pointer to an integer. The array is created by the call to the functioncal-
loc() which is part of the standard C libraries. The function prototype forcal-
loc() is in stdlib.hwhich is included at the beginning of the above program. T
functioncalloc() takes two parameters. The first is the number of elements in
array being allocated, and the second is the size of each element.

3.4 ♦ Dynamic arrays 41

ax of

ory

nger

the
n the

ese
uto-
As you can see from the above example, we can use the array indexing synt
square brackets, with a pointer to anint . In fact, the following two statements are
identical for all practical purposes.

*array_p = x;
array_p[0] = x;

The loop that fills the array above could have been written like this:

temp_ptr = array_p;
for(i = 0; i < size; i++) {

*temp_ptr = 100 + i;
temp_ptr++;

}

assumingtemp_ptr was declared earlier to be a pointer to an integer.
In Java, dynamically allocated memory (created usingnew) is automatically

reclaimed using what is called garbage collection. In C, dynamically allocated mem
must be manually reclaimed by the programmer. If an array such asarray_p above
was allocated as part of a larger program, when the storage for the array is no lo
needed, the programmer must deallocate the memory usingfree() . You pass
free() the pointer that was returned from the call tocalloc() ;

array_p = calloc(size, sizeof(int));
...
// when done with the array
free(array_p);

Failing to free memory can result in what is called amemory leak. A long running pro-
gram the continues to allocate more memory will eventually run out of memory. On
other hand, prematurely freeing memory can result in unpredictable results, whe
program continues to try and use memory that has been deallocated usingfree() . A
pointer variable that points to memory that has been deallocated is called adangling
pointer. Any attempt to use such a pointer is called a dangling pointer error. Th
types of problems with memory allocation are why languages like Java provide a
mated memory management with garbage collection.

42 Chapter 3♦ Arrays

lic-
re-

y of

() is

ment
ed in

.8.1

m 2
n or
ve

to
Summary

• Static arrays in C have no direct counterpart in Java. Memory is allocated imp
itly and the size of the array is part of the declaration. For example, int x[10], c
ates a static array of ten integers. This variable x will always refer to this arra
ten integers.

• Array elements are indexed just like arrays in Java.

• Dynamic arrays are allocated using calloc(). The memory returned from calloc
initialized to contain all zeros.

• Unlike Java, there is no bounds checking on array indicies.

• Array variables are actually just pointers to the first element of the array.

• There is no direct support for determining the length of an arbitrary array.

• Arrays are passed to functions by-reference. Only the address of the first ele
of the array is passed. This is essentially equivalent to how arrays are pass
Java.

Exercises

1 Write a program based on thesieve of Eratosthenesto compute the prime numbers
between 2 and 100. A Java solution to this problem can be found in Section 5
of JBD.

2 Generalize the sieve algorithm in Section 5.8.1, on page 160, of JBD to go fro
throughn. In the general case, you need only strike out multiples that are less tha
equal to the square root ofn. You also need only strike out factors for values that ha
not been set to false. For example, striking out multiples of 2 strikes outisPrime[4] .
Striking out multiples of 4 won’t strike out any elements not already out. Try
improve your solution to the previous exercise with these ideas.

♦ Exercises 43

api-
ples

s

ond
er's

the

tters
3 Modify your palindrome function from the previous exercise so that blanks and c
tals are ignored in the matching process. Under these rules, the following are exam
of palindromes.

"Huh" "A man a plan a canal Panama" "at a"

4 A real polynomialp(x) of degreen or less is given by

p(x) = a0 + a1x + a2x
2 + ··· +anx

n

with the coefficientsa0, a1, . . ., an representing real numbers. Ifan ! = 0, the
degree ofp(x) is n. Polynomials can be represented in code by an array such a

#define N 5 /* N is the max degree */
double p[N+1];

Write a method

double evalPoly(double p[], int degree, double x) {
···

that returns the value of the polynomialp evaluated atx . Write two versions of the
function. The first version should be a straightforward, naive approach. The sec
version should incorporate Horner's Rule. For fifth-degree polynomials, Horn
Rule is expressed as

p(x) = a0 + x(a1 + x(a2 + x(a3 + x(a4 + x(a5)))))

How many additions and multiplications are used in each of your two versions of
eval() function?

5 Write a function that adds two polynomials.

// f = g + h;
int addPoly(double f[], int degreeF,

double g[], int degreeG,
double h[], int degreeH) {

···

If either degreeG or degreeH is greater thandegreeF then the function does
not modify f and the return value is -1, otherwise the sum is placed inf and the
return value is the degree of the resulting polynomial.

6 Write a program that reads 10 characters into an array. Then have it print out the le
of the array sorted in alphabetic order.

44 Chapter 3♦ Arrays

Chapter 4

Strings
ecial
eful

end
cha-
ing
Strings in C are nothing more than arrays of characters. Like Java, C provides sp
syntax for creating string literals. Also, the standard C libraries include many us
functions for operating on strings.

4.1 Strings - arrays of characters

A properly formed string contains a null character as its last character, indicating the
of the string. Remember, arrays in C do not carry around their length so some me
nism had to be created for determining the length of a string. Consider the follow
example:

/* strings.c
 * Author - Charlie McDowell
 * Purpose - show strings as arrays of char
 */
#include <stdio.h>

int main(void) {
char strOne[] =

{'s','t','r','i','n','g',' ','o','n','e','\0'};
 char *char_p;
 int i;

46 Chapter 4♦ Strings

ue
ed

9.3). In
repre-

inter
o a
 printf("%s\n", strOne);

 for(i = 0; strOne[i] != '\0'; i++)
 printf("%c,", strOne[i]);
 printf("\n");

 for(char_p = strOne; *char_p != '\0'; char_p++)
 printf("%c,", *char_p);
 printf("\n");

 return 0;
}

The output of this program is

Dissection of strings.c

• char strOne[] =
{'s','t','r','i','n','g',' ','o','n','e','\0'};

The variablestrOne is an array of characters initialized as shown. The char val
'\0' is called the null character. It is used as the last character in all properly form
strings. Just as in Java, the backslash is an escape character (see JBD Section 2.
this example the escape sequence is used to specify the character whose binary
sentation is zero.

• char *char_p;
int i;

These variables will be used later. In Section 3.4 we showed that we could use a po
to an int to access an array of integers. In this program we will use a pointer t
char to access the elements of an array of characters.

string one
s,t,r,i,n,g, ,o,n,e,
s,t,r,i,n,g, ,o,n,e,

4.1 ♦ Strings - arrays of characters 47

tion.

he

izing
• printf("%s\n", strOne);

As shown by this statement,strOne , is in fact a string in C. We can print it using
printf() and the string conversion string%s.

• for(i = 0; strOne[i] != '\0'; i++)
printf("%c,", strOne[i]);

printf("\n");

We can also print the characters of the string one at a time, using normal array nota

• for(char_p = strOne; *char_p != '\0'; char_p++)
printf("%c,", *char_p);

printf("\n");

As we did with theint array in Section 3.4, we can also print the characters of t
string using pointer notation.

Because strings are used so often, the string literal notation can be used for initial
a string (array of characters). The following two statements are equivalent:

char *strOne = "string one";
char strOne[] =

{'s','t','r','i','n','g',' ','o','n','e','\0'};

Notice that the notation,"string one" , implicitly includes the null character at the
end.

48 Chapter 4♦ Strings

this
ions

to
o pre-
nat-

low-
4.2 Manipulating strings

The standard C libraries include a number of functions for manipulating strings. In
section we introduce a few of the most commonly used string functions. The funct
we describe are summarized in the following table.

Notice that several of the functions come in two forms; thestr... form and the
strn... form. The latter form is always safer. These safer functions allow you
specify the maximum number of characters to be processed. This can be used t
vent errors in the event that one of the strings was inadvertently left without a termi
ing null character.

We describe the string functions in the above table using a dissection of the fol
ing example.

function brief description

strcat(), strncat()
These functions are used to append the contents of one string

onto the end of another string. This is called concatenation.

strchr()
This function is used to search for the first occurrence of a partic-

ular character in a string.

strcmp(), strncmp() These functions are used to compare two strings.

strcpy(), strncpy() These functions are used to make a copy of a string.

strlen() This function is used to find the length of a string.

strstr()
This function is used to search for the first occurrence of one

string as a substring in another string.

4.2 ♦ Manipulating strings 49
/* stringLib.c
 * Author - Charlie McDowell
 * Purpose - demo some standard string functions
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_S2 100

int main(void) {
 char *s1 = "String one";
 char *s2 = calloc(MAX_S2, sizeof(char));
 char *s3;

 printf("The length of \"%s\" is %d\n",
s1, strlen(s1));

 strncpy(s2, "Testing", MAX_S2);
 strncat(s2, " 1 2 3", MAX_S2 - strlen(s2));
 printf("s2 contains:%s\n", s2);

 s3 = strchr(s1, 'g');
 printf("s3 is now %s\n", s3);

 s3 = strstr(s1, "tr");
 printf("s3 is now %s\n", s3);

 printf("comparing %s and %s gives %d\n",
 s1, s2, strncmp(s1, s2, MAX_S2));
 printf("comparing %s and %s gives %d\n",
 s2, s1, strncmp(s2, s1, MAX_S2));
 printf("comparing %s and String one gives %d\n",
 s1, strcmp(s1, "String one"));

 return 0;
}

50 Chapter 4♦ Strings

spe-
ge
third
The output for this program is:

Dissection of stringLib.c

• #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_S2 100

We need to include the header for the string library,string.h. Constants are created in C
using the#define construct shown. All subsequent uses of the identifierMAX_S2
will be equivalent to typing the integer100 .

• char *s1 = "String one";
char *s2 = calloc(MAX_S2, sizeof(char));
char *s3;

We declare three string variables for use in the program. The first is initialized to a
cific string literal. The second is pointing to an uninitialized portion of memory lar
enough to contain 100 characters, counting the null character at the end. The
string variable is uninitialized. Notice that there is no type with the namestring in C.
Instead we usechar *, a pointer tochar .

• printf("The length of \"%s\" is %d\n",
s1, strlen(s1));

The expressionstrlen(s1) returns the length ofs1 , not including the terminating
null character.

The length of "String one" is 10
s2 contains:Testing 1 2 3
s3 is now g one
s3 is now tring one
comparing String one and Testing 1 2 3 gives -1
comparing Testing 1 2 3 and String one gives 1
comparing String one and String one gives 0

4.2 ♦ Manipulating strings 51

to
usly
on
no

it

er of
t

as
te

r
sub-
hing
is
by
• strncpy(s2, "Testing", MAX_S2);

The expressionstrncpy(str1, str2, n) copies the characters instr2 into
str1 , copying at mostn characters. The first parameter must already be pointing
memory large enough to hold the copied characters. In this example, we previo
assigneds2 to point to a freshly allocated array of 100 characters. The functi
strcpy() is similar but it takes only two arguments, the two strings. There is
check to make sure that not too many characters are copied.

• strncat(s2, " 1 2 3", MAX_S2 - strlen(s2));
printf("s2 contains:%s\n", s2);

The expressionstrncat(str1, str2, n) , copies at mostn characters from
str2 onto the end ofstr1 , and then adds a null character. In our example we lim
the copy by the amount of space remaining in s2. The functionstrcat() is similar
but takes only two parameters, the two strings, and no check is made for the numb
characters copied. As shown in the output, the result of this concatenation is thas2
now contains,"Testing 1 2 3" .

• s3 = strchr(s1, 'g');
printf("s3 is now %s\n", s3);

The expressionstrchr(str1, c) , searches the stringstr1 for the first occur-
rence of the characterc . The result is a pointer to the matching character that w
found. If the character is not found, the return value is NULL. It is important to no
that in our example at this points3 is pointing into the middle of the strings1 . If we
change any of the characters after the'g' in s1 , we will also be changing the string
pointed to bys3 . Remember,s1 and ands3 are not really strings but simply pointers
to sequences of characters.

• s3 = strstr(s1, "tr");
printf("s3 is now %s\n", s3);

The functionstrstr() is similar tostrchr() except that instead of searching fo
a single character in a string, we are searching for a substring within a string. The
string is the second argument. The result is a pointer to the beginning of the matc
substring within the original string. If the character is not found, the return value
NULL. As before, after the above statements, the memory for the string pointed to
s1 and the memory for the string pointed to bys3 overlap.

52 Chapter 4♦ Strings

e
phi-

um

e
ring

t
s

• printf("comparing %s and %s gives %d\n",
s1, s2, strncmp(s1, s2, MAX_S2));

printf("comparing %s and %s gives %d\n",
s2, s1, strncmp(s2, s1, MAX_S2));

printf("comparing %s and String one gives %d\n",
s1, strcmp(s1, "String one"));

Here we show that the functionstrncmp() can be used to compare two strings. Th
result is -1, 1, or 0, depending upon whether the first argument appears lexicogra
cally before, after, or is equal to the second. The functionstrcmp() is the same as
strncmp() except that the later has a third parameter that controls the maxim
number of characters that will be compared.

o

4.3 Reading strings with scanf()

Strings are read usingscanf() by passing a pointer to the location where th
first character of the string should be stored. The following example reads in a st
usingscanf() .

Trouble spot: Failing to include a null character at the end of a string can
have very unpredictable results.

When creating strings with something other than string literals, it is easy to leave
off the terminating null character. This is a common source of program errors,
often resulting in the program crashing. Sometimes, failing to terminate a string
can result in much more insidious errors, that do not crash the program bu
instead corrupt some internal data, causing the program to behave in mysteriou
ways. Such errors are often very hard to detect. You should be very careful to
always include the null character in any strings you generate. It is also a good
idea to use thestrn... form of the standard string functions whenever possi-
ble.

4.3 ♦ Reading strings with scanf() 53

ating

cter
/* readingStrings.c
 * Author - Charlie McDowell
 * Purpose - reading strings with scanf()
 */
#include <stdio.h>
#include <strings.h>

int main(void) {
 char strOne[100];
 int status;

 strOne[0] = '\0'; // initialize to the empty string
 printf("Enter a sentence. End with a period.\n");

 status = scanf("%99s", strOne);
 while(status == 1 &&

strOne[strlen(strOne)-1] != '.')
{

 printf("%s\n", strOne);
 status = scanf("%99s", strOne);
 }
 printf("%s\n", strOne);

 return 0;
}

Dissection of readingStrings.c

• char strOne[100];

Here we create enough storage to hold a string of 99 characters plus the termin
null character.

• int status;

We will usestatus to check that thescanf() successfully read a string.

• strOne[0] = '\0'; // initialize to the empty string

Just to be safe, we initialize the string to the empty string by placing the null chara
in the first character of the string.

54 Chapter 4♦ Strings

-
e are
t if

used
hout

n

ads

ing

y

char-
rs is
acter

t-
nor-

s
s

• status = scanf("%99s", strOne);

Although we have ignored it up until now,scanf() returns the number of items suc
cessfully scanned. The expected result in this example is one, the one string w
scanning. We will use this to control the termination of the loop. This will take effec
the end-of-file is encountered before the period at the end of the sentence. We also
the field width specification to make sure that at most 99 characters are read. Wit
this, a user could enter a really long string, overrunning the end of thechar array
strOne . This would cause unpredictable behavior of the program.

• while(status == 1 &&
strOne[strlen(strOne)-1] != '.')

We will continue to read in strings until either thescanf() fails to return one, as
recorded instatus , or until a string ending in a period is read. The expressio
strlen(strOne)-1 is the index of the last character in the string.

• {
printf("%s\n", strOne);
status = scanf("%99s", strOne);

}

The body of the loop prints the previously read string on a line by itself and then re
in another string.

• printf("%s\n", strOne);

When the loop ends, we print the last string read. Normally this will be the one end
in a period.

Thescanf() conversion specification%[...] can be used to scan an arbitrar
set of characters. There are two cases, determined by the first character after the[. If
the first character is the character ^, then the remaining characters specify which
acters will not be scanned. When any one of the “not to be scanned” characte
encountered, the input ends for that argument. If the first character is not the char
^ , then any character not in the set ends the input.

For example,%[()-0123456789] might be used to read in a phone number wri
ten in the common form such as (888)444-1234, storing the result as a string. The
mal string reading conversion specification%s reads until a white-space character i
read. The%sis just shorthand for%[^\t\n] , which specifies to read any character
that are not tab, newline or space (the white space characters).

♦ Summary 55

ting

ing

. A
ple

re
palin-

ber
many

187
Summary

• String is not a standard type in C. A string is simply an array of characters.

• A proper string is terminated by a null character,’\0’ .

• C includes the same string literal syntax as in Java, e.g."this is a string" .

• A char array used to hold a string must be long enough to store the termina
null character.

• A string variable can be declared as either achar* , or using an array declaration,
e.g.char s[10] .

• The standard C library includes functions for manipulating strings.

• Strings can be read in from the standard input (typically the keyboard) us
scanf() with the%s conversion character.

Exercises

1 Write a program to read in a string an determine if the string is a palindrome
palindrome is a string that reads the same backward or forward. A simple exam
is madam. A Java solution is presented in Section 6.1 of JBD.

2 Modify your solution to the palindrom problem of the previous exercise to igno
space characters. For example, "a man a plan a canal panama" would be a
drome by this definition.

3 Write a program to play a number guessing game. The player thinks of a num
between 1 and 100 and the computer tries to guess. The program prints out how
guesses the computer used. The player must respond to each guess by typingcorrect,
too big, or too small. The pseudocode for one possible solution is shown on page
of JBD.

56 Chapter 4♦ Strings

th a

y of
of

-one
rcase
Write
ption
tion

ing
d

4 Write a program that readsn strings into an array wheren is read in. Then have it
print out the strings of the array sorted in alphabetic order. Perform the sort wi
method

void sort(char* names[]){...}

Remember, a string in C is simply a char*, so an array of strings is an arra
char*. You can also think of the array of strings as a two-dimensional array
characters, with each row representing one string.

5 A simple encryption scheme is to interchange letters of the alphabet on a one-to
basis. This scheme can be accomplished with a translation table for the 52 lowe
and uppercase letters. Write a program that uses such a scheme to encode text.
another program to decode text that has been encoded. This isn’t a serious encry
scheme. Do you know why? If you’re interested, learn about a more secure encryp
system and then program it. (See Section 10.5 in JBD.)

6 Write a program that reads words from the standard input us
scanf("%s",...) and builds an array of all of the unique words that are foun
in the input. Print the list of words found.

Chapter 5

Structured data types
en-

ns. In
C uses thestruct construct to specify user defined types. Astruct is similar to a
class in Java, but far more limited.

• A struct can have only data members, not function members.

• A struct cannot be derived from anotherstruct using inheritance.

• A struct does not have the notions of private, and public. All fields are ess
tially public.

• Not having function members, a struct cannot have a constructor.

In Java, the name of the class is a new type and can be used in variable declaratio
C, a separate keyword,typedef , is used to create a new type.

58 Chapter 5♦ Structured data types
5.1 Declaring a structured data type

The following example demonstrates the use oftypedef andstruct to create a
new type.

/* structAssignment.c
 * Author - Charlie McDowell
 * Purpose - demo creating a new type
 */
#include <stdio.h>
#include <strings.h>

#define NAME_SIZE 80

typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

int main(void) {
 student_t studentOne, studentTwo;

 studentOne.gpa = 3.5;
 studentOne.startYear = 2000;
 strncpy(studentOne.first, "Jane", NAME_SIZE);
 strncpy(studentOne.last, "Programmer", NAME_SIZE);

 studentTwo = studentOne; //field by field assignment
 studentTwo.gpa = 3.45;
 strncpy(studentTwo.first, "John", NAME_SIZE);

 printf("%s, %s: gpa:%f, start year:%d\n",
 studentOne.last, studentOne.first,
 studentOne.gpa, studentOne.startYear);

 printf("%s, %s: gpa:%f, start year:%d\n",
 studentTwo.last, studentTwo.first,
 studentTwo.gpa, studentTwo.startYear);

return 0;
}

5.1 ♦ Declaring a structured data type 59

ch as
likely
d of

n a
ult

-
s or
The output of this program is

Dissection of structAssignment.c

• #include <stdio.h>
#include <strings.h>

#define NAME_SIZE 80

The#define compiler directive is used to create named constants. Constants su
this make the program easier to modify and understand. The program is also less
to have errors. A minor typographical error in a literal constant, such as 90 instea
80 will go undetected by the compiler. However, a minor typographical error i
named constant, such as NAME_SSIZE instead of NAME_SIZE, will generally res
in a compiler error.

• typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

The above statement declaresstudent_t to be a newstruct type. We use the style
convention of appending_t to an indentifier to indicate it is a type name. This particu
lar structure type contains four fields. As you can see, fields can be simple type
arrays. Fields can even be other structures.

• int main(void) {
 student_t studentOne, studentTwo;

In this example, we declare two variables of typestudent_t . The variablesstu-
dentOne andstudentTwo are not pointers tostudent_t values, they actually

Programmer, Jane: gpa:3.500000, start year:2000
Programmer, John: gpa:3.450000, start year:2000

60 Chapter 5♦ Structured data types

he

ues to

g is

rst
cters
ecu-

you

y the
contain astudent_t value, in the same way that anint variable contains anint
value. This is important because we do not need to create astudent_t value with
something like Java’snew. Furthermore, we cannot changestudentOne to later
refer to a differentstudent_t structure, although we can change the values of t
fields.

• studentOne.gpa = 3.5;
studentOne.startYear = 2000;

These two assignments use the same notation used in Java for assigning val
fields.

• strncpy(studentOne.first, "Jane", NAME_SIZE);
strncpy(studentOne.last, "Programmer", NAME_SIZE);

It is not possible to use simple assignment with arrays. For example, the followin
not legal syntax in C:

studentOne.first = "Jane";

Instead, we use the standard C string copy function,strncpy() , to copy the charac-
ters from the literal strings for the names, into the character array fields ofstuden-
tOne . Recall thatstrncpy() copies the characters in the second string, into the fi
string, stopping when either the null character is copied, or the number of chara
specified by the third parameter have been copied, whichever comes first. After ex
tion of the twostrncpy() functions, all of the fields ofstudentOne have been
initialized.

• studentTwo = studentOne; // field by field assignment

This assignment copies each field in the structurestudentOne , into the correspond-
ing fields of the structurestudentTwo . This is different from the syntactically simi-
lar assignment in Java. In Java this would assignstudentTwo andstudentOne to
refer to the same object (structure). After execution of this statement in Java, if
modified a field ofstudentTwo , you would also be modifying a field ofstuden-
tOne , because they are the same object. This is very different from C as shown b
next two statements.

• studentTwo.gpa = 3.45;
strncpy(studentTwo.first, "John", NAME_SIZE);

These two statements modify two of the fields ofstudentTwo . This has no affect on
the fields in the structurestudentOne .

5.1 ♦ Declaring a structured data type 61

two

just
ign-
itive
• printf("%s, %s: gpa:%f, start year:%d\n",
studentOne.last, studentOne.first,
studentOne.gpa, studentOne.startYear);

printf("%s, %s: gpa:%f, start year:%d\n",
studentTwo.last, studentTwo.first,
studentTwo.gpa, studentTwo.startYear);

Here we print out the values of the two structures, to show that indeed, there are
structures, not two references to one structure.

As the above example shows, assignment of structure values in C is treated
like assignment of values of built-in types. This is different from Java where ass
ment of class type variables has very different behavior from assignment of prim
type variables.

62 Chapter 5♦ Structured data types

. The
s the
wn in
sult is
ter to a
sider
5.2 Passing structures as parameters

As indicated earlier, C, like Java, always uses pass-by-value for parameter passing
difference between C and Java is that in C, a structure variable actually contain
structure data as opposed to containing a reference to the structure. This was sho
the previous example where we assigned one structure variable to another. The re
that structures are copied when passed as parameters. It is possible to pass a poin
structure, but that requires pointer notation (see the examle in Section 5.3). Con
the following example.

/* student.c
 * Author - Charlie McDowell
 * Purpose - passing structs to functions
 */
#include <stdio.h>
#include <strings.h>
#define NAME_SIZE 80

typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

void printRecord(student_t student);
student_t readRecord();

int main(void) {
 student_t student;

 student = readRecord();
printRecord(student);
return 0;

}

void printRecord(student_t student) {
 printf("%s, %s: gpa:%f, start year:%d\n",
 student.last, student.first,

 student.gpa, student.startYear);
}

5.2 ♦ Passing structures as parameters 63

e
rs and
ssed

bject
student_t readRecord() {
 student_t record;

 record.gpa = 3.5;
 record.startYear = 2000;
 strncpy(record.first, "Jane",NAME_SIZE);
 strncpy(record.last, "Programmer",NAME_SIZE);

return record;
}

Dissection of student.c

• void printRecord(student_t student);
student_t readRecord();

This example uses the samestudent_t as the previous example. A structure typ
can be used just like a built-in type. Structure values can be passed as paramete
returned as results of functions. Just as with built-in types, structure values are pa
by-value. The above two lines are function prototypes so thatmain() can be defined
prior to the full definition of the functionsprintRecord() andreadRecord() .

• int main(void) {
 student_t student;

 student = readRecord();
 printRecord(student);
 return 0;
}

In the example above, we declare a single variable of typestudent_t . The function
readRecord() will return astudent_t value that is assigned (field by field) to
student. We then pass the valuestudent , toprintRecord() for printing.

• void printRecord(student_t student) {
 printf("%s, %s: gpa:%f, start year:%d\n",
 student.last, student.first,

 student.gpa, student.startYear);
}

The printRecord() function takes a single argument which is astudent_t
value. The fields of a structure value are accessed much like the fields of a Java o

64 Chapter 5♦ Structured data types

Sec-

s a

ra-
m

re
e

o

-

as shown earlier. The expressionstudent.gpa , is an int value, andstu-
dent.startYear is adouble value. The expressionstudent.last[0] would
be the first character of the last name. The parameter student inprintRecord() will
contain a copy of the value ofstudent in main() . It is not a pointer, or reference to
the value as it would be in Java. This is an important difference that is discussed in
tion 5.3.

• student_t readRecord() {
 student_t record;

 record.gpa = 3.5;
 record.startYear = 2000;
 strncpy(record.first, "Jane",NAME_SIZE);
 strncpy(record.last, "Programmer",NAME_SIZE);
 return record;
}

The functionreadRecord() demonstrates that a structure value can be returned a
value from a function. Furthermore, the assignment inmain()

student = readRecord();

shows that structure values can be assigned just like built-in values such asint .

Although similar in syntax to returning an object value from a method in Java, ope
tionally C is quite different. In the previous C example, the result of the return fro
readRecord() and the subsequent assignment inmain() resulted in the values in
the fields of the structure valuerecord being copied into the fields of structure value
student in main() . We are not returning a reference or pointer to the structu
valuerecord in readRecord() . The actual memory locations used to store th
fields ofrecord in readRecord() are different from the memory locations used t
store the fields ofstudent in main() . The following figure shows the layout of
memory just before the return fromreadRecord() and again, just after the assign
ment tostudent in main() .

5.2 ♦ Passing structures as parameters 65
Before the return

After the return and the assignment to student

???

???

contents variable

student.first in main

student.last in main

student.gpa in main

student.startYear in main

3.5

2000

record.first in readRecord

record.last in readRecord

record.gpa in readRecord

record.startYear in readRecord

???

???

"Jane"

"Programmer"

3.5

2000

contents variable

student.first in main

student.last in main

student.gpa in main

student.startYear in main

3.5

2000

record.first in readRecord

record.last in readRecord

record.gpa in readRecord

record.startYear in readRecord

"Jane"

"Programmer"

"Jane"

"Programmer"

Memory inside of the dashed box is no longer accessible

66 Chapter 5♦ Structured data types

ce or
n C,

ich
t the

ause
In Java, when you pass an object variable, you are actually passing a referen
pointer, so changes to the fields of the object will be seen back at the caller. I
changing the fields in a structure parameter of a function such asprintRecord()
will not have any affect on the original value. Consider the following example, wh
attempts to modify a structure value passed as a parameter, with the intent tha
changes will be visible back at the point of the call. The program is erroneous, bec
the functionreadRecord() as defined below, has no effect inmain() .

/* structByValue.c
 * Author - Charlie McDowell
 * Purpose - show that structs are copied
 */
#include <stdio.h>
#include <strings.h>

#define NAME_SIZE 80

typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

void printRecord(student_t student);
void readRecord(student_t student);

int main(void) {
 student_t student;

 // initialize all fields to null string or zero
 student.last[0] = '\0';
 student.first[0] = '\0';
 student.gpa = 0;
 student.startYear = 0;

 readRecord(student);
printRecord(student);

 return 0;
}

void printRecord(student_t student) {
 printf("%s, %s: gpa:%f, start year:%d\n",
 student.last, student.first,

 student.gpa, student.startYear);
}

5.2 ♦ Passing structures as parameters 67

is

y
of

o
e

void readRecord(student_t record) {
 record.gpa = 3.5;
 record.startYear = 2000;
 strncpy(record.first, "Jane",NAME_SIZE);
 strncpy(record.last, "Programmer",NAME_SIZE);
}

The output of this program is

Dissection of structByValue

• void readRecord(student_t student);

This program is largely the same asstudent.c, discussed earlier. The main change
that the functionreadRecord() takes astudent_t parameter instead of returning
astudent_t value as a result.

• int main(void) {
 student_t student;

 // initialize all fields to null string or zero
 student.last[0] = '\0';
 student.first[0] = '\0';
 student.gpa = 0;
 student.startYear = 0;

Local variables, such asstudent above, are not initialized to any particular value b
default. To make this program have predictable output, we initialize all of the fields
the structure variablestudent .

• readRecord(student);

In the previous example we hadreadRecord() return a value that was assigned t
student . In this example we passstudent as a parameter. If this were Java, th

, : gpa:0.000000, start year:0

68 Chapter 5♦ Structured data types

mal

tself.
y the
cture,
ore
methodreadRecord() could modify the fields of the object referred to bystu-
dent , so that upon the return fromreadRecord() , the fields would have been
changed. Using the notation shown here, C copies the entirestudent structure value,
into the formal parameter in the functionreadRecord() . The result will be that any
changes made inside ofreadRecord() will have no effect.

• void readRecord(student_t record) {
 record.gpa = 3.5;
 record.startYear = 2000;
 strncpy(record.first, "Jane",NAME_SIZE);
 strncpy(record.last, "Programmer",NAME_SIZE);
}

The above function is erroneous. It assigns values to all of the fields of the for
parameterrecord , but this does not change any of the fields in the variablestudent
in main() . It is important to note that even the array fields,first and last , are
copied. This is different from the handling of an array passed as a parameter by i
When an array is passed directly as a parameter, the array is not copied, onl
address of the first element of the array is passed. When an array is part of a stru
the entire array is copied. The following figure shows the layout of memory just bef
the return fromreadRecord() .

5.2 ♦ Passing structures as parameters 69
0

0

contents variable

student.first in main

student.last in main

student.gpa in main

student.startYear in main

3.5

2000

record.first in readRecord

record.last in readRecord

record.gpa in readRecord

record.startYear in readRecord

""

""

"Jane"

"Programmer"

70 Chapter 5♦ Structured data types

hich
ava,
, it is
tures

x for

ture
5.3 Pointers to structures

In our examples of structures above, we were dealing with structure variables w
contained structure values. Although similar in syntax to reference variables in J
these structure variables were not pointers or references. As with the built-in types
possible to declare and use pointers to structures. The behavior of pointers to struc
is very similar to the behavior of references in Java. Unfortunately the Java synta
references is most similar to the C syntax for structures that arenot pointers. The
pointer syntax introduced earlier for use with built-in types, can be used with struc
values as shown in the following example.

/* struct.c
 * Author - Charlie McDowell
 * Purpose - demo creating a new type
 */
#include <stdio.h>
#include <strings.h>

#define NAME_SIZE 80

typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

void printRecord(student_t student);
void readRecord(student_t *record_p);

int main(void) {
 student_t student;

 readRecord(&student);
printRecord(student);
return 0;

}

5.3 ♦ Pointers to structures 71

this

al
 as

, and
aren-

that
cture

ing
o a
void printRecord(student_t student) {
 printf("%s, %s: gpa:%f, start year:%d\n",
 student.last, student.first, student.gpa,

student.startYear);
}

void readRecord(student_t *record_p) {
 (*record_p).gpa = 3.5;
 (*record_p).startYear = 2000;
 strncpy((*record_p).first, "Jane",NAME_SIZE);
 strncpy((*record_p).last, "Programmer",NAME_SIZE);
}

This example is very similar to the erroneous example from the previous section. In
case the program is correct. In particular, the functionreadRecord() , because it is
passed a pointer to the structure value inmain() , can modify the fields of the struc-
ture variablestudent in main() . Notice that the call toreadRecord() passes
the address ofstudent , not the value student . Then in the funct ion
readRecord() , the parameter is declared to be a pointer to astudent_t , not a
simplestudent_t value. Finally, we use the indirection operator to get to the actu
student_t value and then access the fields. The parenthesis in statements such

(*record_p).gpa = 3.5;

are required. Both * and . are operators in this statement. They have precedence
the precedence for . is higher than the precedence for *. Therefore, without the p
thesis

*record_p.gpa = 3.5;

would first try to access the fieldgpa of the pointerrecord_p . But record_p is not
a structure value that has fields, it is a pointer. Thus the expressionrecord_p.gpa is
a syntax error. With the parenthesis, the expression(*record_p) is astudent_t
value that does have a fieldgpa so that(*record_p).gpa is a legal expression.

Because pointers to structures are frequently used in C, probably more often
actual structure variables, C provides a special syntax for accessing a field of a stru
using a pointer to the structure value. The following is an equivalent way of writ
readRecord() using the preferred syntax for accessing fields, given a pointer t
structure value.

72 Chapter 5♦ Structured data types

sion

e

ple

ssign-
the

been
ment
e

void readRecord(student_t *record_p) {
 record_p->gpa = 3.5;
 record_p->startYear = 2000;
 strncpy(record_p->first, "Jane",NAME_SIZE);
 strncpy(record_p->last, "Programmer",NAME_SIZE);
}

The operator-> is called the structure pointer operator. As you can see, the expres
record_p->gpa is equivalent to the expression(*record_p).gpa . A trick for
remembering when to use . and when to use-> for accessing fields is that you use th
-> when you have a pointer, and-> looks somewhat like a pointer or arrow.

5.4 Dynamic allocation of structure values

As with arrays, structure values can be dynamically allocated. The following exam
dynamically allocates astudent_t value and assignsstudentOne_p to point to
that value. The example also shows that pointer assignment in C is analogous to a
ment with reference variables in Java. Compare this program and its output with
programstructAssignment.cfrom Section 5.1. The twostudent_t variables in the
earlier example have been changed to pointers. Most uses of the variables have
adjusted to accommodate the fact that they are now pointers. However, the assign
studentTwo_p = studentOne_p below was left as a simple assignment. Th
result is that bothstudentTwo_p andstudentOne_p will be pointing to the same
structure value.

/* structPointer2.c
 * Author - Charlie McDowell
 * Purpose - structure pointer assignment
 */
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>

#define NAME_SIZE 80

5.4 ♦ Dynamic allocation of structure values 73
typedef struct {
 char last[NAME_SIZE];
 char first[NAME_SIZE];
 double gpa;
 int startYear;
} student_t;

int main(void) {
 student_t *studentOne_p, *studentTwo_p;

 studentOne_p =
(student_t *)malloc(sizeof(student_t));

 studentOne_p->gpa = 3.5;
 studentOne_p->startYear = 2000;
 strncpy(studentOne_p->first, "Jane", NAME_SIZE);
 strncpy(studentOne_p->last, "Programmer",NAME_SIZE);

 studentTwo_p = studentOne_p; // pointer assignment

studentTwo_p->gpa = 3.45;
 strncpy(studentTwo_p->first, "John", NAME_SIZE);

 printf("%s, %s: gpa:%f, start year:%d\n",
 studentOne_p->last, studentOne_p->first,
 studentOne_p->gpa, studentOne_p->startYear);

 printf("%s, %s: gpa:%f, start year:%d\n",
 studentTwo_p->last, studentTwo_p->first,
 studentTwo_p->gpa, studentTwo_p->startYear);

 return 0;
}

The output of this program is

Programmer, John: gpa:3.450000, start year:2000
Programmer, John: gpa:3.450000, start year:2000

74 Chapter 5♦ Structured data types

e yet
type.

inter

after
ory

nt_t
_p is
Dissection of structPointer2.c

• student_t *studentOne_p, *studentTwo_p;

This program creates two pointers to student_t values. No student_t values hav
been created. Notice that the * is associated with the variable name, not with the
Consider the declaration

student_t* studentOne_p, studentTwo_p;

The above declaration is syntactically legal but it declares studentOne_p to be a po
to a student_t and it declares studentTwo_p to be a student_t, not a pointer.

• studentOne_p =
(student_t *)malloc(sizeof(student_t));

This statement creates on student_t value, the only one created in this program.

• studentOne_p->gpa = 3.5;
studentOne_p->startYear = 2000;
strncpy(studentOne_p->first, "Jane", NAME_SIZE);
strncpy(studentOne_p->last, "Programmer",NAME_SIZE);

Here we fill in the fields of the student_t value pointed to by studentOne_p.

• studentTwo_p = studentOne_p; // pointer assignment

This assignment is like a Java assignment of two reference variables. Specifically,
execution of this statement, studentTwo_p will be pointing to the exact same mem
location (student_t value) that studentOne_p is pointing to.

• studentTwo_p->gpa = 3.45;
strncpy(studentTwo_p->first, "John", NAME_SIZE);

Using the variable studentTwo_p, we change two of the fields in the one stude
value created in this program. This is the same student_t value that studentOne
pointing to, as shown by the print statements that follow.

♦ Summary 75

, the

n-

tion

on
llo-

type.
e that
to a
• printf("%s, %s: gpa:%f, start year:%d\n",
 studentOne_p->last, studentOne_p->first,
 studentOne_p->gpa, studentOne_p->startYear);

printf("%s, %s: gpa:%f, start year:%d\n",
 studentTwo_p->last, studentTwo_p->first,
 studentTwo_p->gpa, studentTwo_p->startYear);

Here we print out the values pointed to by both student_t pointers. As shown above
output of both statements is the same.

There is only onestudent_t value in the above program. Try replacing the assig
ment

studentTwo_p = studentOne_p;

with the following:

studentTwo_p = (student_t *)malloc(sizeof(student_t));
*studentTwo_p = *studentOne_p;

Now you will get the same output as that produced by the earlier example in Sec
5.1. Try leaving out the first of the two statements above? What happens?

We used the standard library functioncalloc() to allocate arrays in Section 3.4.
We could al locate astudent_t structure using the cal lcal loc(1,
sizeof(student_t)) . However, it is more common to use the standard functi
malloc() which takes only a single parameter, the size of the structure being a
cated. These allocation functions return a generic pointer with the typevoid* . To
avoid error messages, these generic pointers must be cast into the appropriate
This is just like casting in Java except that there are no runtime checks to make sur
the cast is valid. In the example above we are casting the result in to a pointer
student_t .

Summary

• A struct in C is like a class with only data members, no methods.

76 Chapter 5♦ Structured data types

o

al

me

nge is
nies.
g an
f the
clude
ed
nted

wo
e (1,

ions
• Unlike Java, astruct value can be stored directly in a variable. C can als
declare pointers tostruct values. These pointers are like Java references.

• To access a field of astruct value, if the variable contains thestruct value,
then you you use the field selection operator, dot, e.g.studentOne.gpa .

• To access a field of a pointer to astruct value, use the indirect field selection
operator,-> , e.g.record_p->gpa .

• Although a pointer to astruct value behavesmost like a reference to a Java
object,syntactically, field access in C is most similar to Java when using actu
struct values, not pointers.

• Passing astruct value in C is not like passing a Java object. To get the sa
behavior as in Java, in C we must pass a pointer to astruct value.

Exercises

1 Create a structured type to represent an amount of change. An amount of cha
determined by a specified number of dollars, quarters, dimes, nickels and pen
Write a function makeChange() that takes two double parameters representin
amount of money paid and the amount of money owed, and returns a value o
newly defined change type to represent the change that should be returned. In
this function in a program to test it by prompting the user for the amounts ow
and paid, and then printing the change. A Java solution to this problem is prese
in Section 6.8 of JBD.

2 Create astruct to represent complex numbers. Complex numbers have t
parts: a real part and an imaginary part. So a complex number value could b
1.5i), where 1 is the real part and 1.5i is the imaginary part. Create functions to
add, subtract, and multiply two complex numbers. The rules for these operat
are

a bi,() c di,()+ a c+ b d+()i,()= ;

a bi,() c di,()– a c– b d–()i,()= ;

a bi,() c di,()× ac bd– ad bc+()i,()=

♦ Exercises 77

ress,
the

lues.
st of

s a
s in
3 Create a struct to represent a person with fields for first and last name, add
social security number, and telephone number. Write a program that reads in
data for a list of people and stores the data in an array of your person struct va
Then sort the array on the last name of the person. Finally, printed the sorted li
entries. If you define the new type with typedef as in

typedef struct {...} person_t;

Then you can create an array of 100 person records with

person_t data[100];

4 Modify your solution to the previous problem to represent the address info a
struct value also, with fields for street address, city, state, and zipcode. Field
struct s can themselves bestruct s.

78 Chapter 5♦ Structured data types

Chapter 6

File I/O and multiple source
files
hem
spe-

/O,
s.We

tro-
There are many libraries of functions that can be called from C programs. Some of t
are standard and found on essentially all platforms that support C, while others are
cific to a particular platform. For example, there is standard C library support for file I
but no standard C library for supporting the development of graphical user interface
begin this chapter with a brief discussion of the standard C support for file I/O.

We conclude this chapter and this primer with an extended example that also in
duces the use of header files and multiple source files.

80 Chapter 6♦ File I/O and multiple source files

and
ents,
s a
files
6.1 File I/O and Command Line Arguments

In this section we briefly introduce some standard C functions for performing input
output using files. The example also introduces the use of command line argum
which is very similar to how they are handled in Java. The following program open
text file, and copies the entire contents into another text file. The names of the two
will be specified on the command line when the program is executed.

/* fileCopy.c
 * Author - Charlie McDowell
 * Purpose - Demonstratie text file I/O by copying one
 * file to another. The program also uses command
 * line arguments.
 */
#include <stdio.h>

void copy(FILE* in, FILE* out);

int main(int argc, char* argv[]) {
 FILE* in_file;
 FILE* out_file;

 if(argc != 3) {
 printf("Usage: fileCopy inputFile outputFile\n");
 exit(1);
 }

 in_file = fopen(argv[1],"r");
 if(in_file == NULL) {
 fprintf(stderr,

"ERROR: couldn't open %s for reading\n",
argv[1]);

 exit(1);
 }

 out_file = fopen(argv[2],"w");
 if(out_file == NULL) {
 fprintf(stderr,

"ERROR: couldn't open %s for writing\n",
argv[2]);

 exit(1);
 }

6.1 ♦ File I/O and Command Line Arguments 81

py,
.txt

ard

sepa-
to-
we
 copy(in_file, out_file);

 return 0;
}

#define BUF_SIZE 200

void copy(FILE* in, FILE* out) {
 char buffer[BUF_SIZE];

 while(fgets(buffer, BUF_SIZE, in) != NULL) {
 fprintf(out,"%s",buffer);
 }
}

If the above program was compiled into an executable with the name fileCo
then the following command could be used to copy the contents of the file inputFile
into the file outputFile.txt as shown below.

Dissection of fileCopy.c

• #include <stdio.h>

The function prototypes for the I/O functions used in this program are in the stand
header file, stdio.h.

• void copy(FILE* in, FILE* out);

To make the program more readable, we have separated the actual copying into a
rate function. The function is defined after main(), thus the need for a function pro
type. The type FILE, is a standard type from the header file stdio.h. This is what
will use to refer to a file once it has been opened for reading or writing.

os-prompt>gcc fileCopy.c -o fileCopy
os-prompt>fileCopy inputFile.txt outputFile.txt
os-prompt>

82 Chapter 6♦ File I/O and multiple source files

is
s.

mes

al

me of
rray

ion
• int main(int argc, char* argv[]) {

In all previous examples,main() was not passed any arguments. As shown in th
example, themain() function of a C program can be passed any array of string
Recall thatchar* is the closest thing to the type string in C, soargv above is an array
of strings. Because C arrays do not include a length,main() is also passed the length
of the array, in the argument labeledargc . The namesargc andargv are simple
identifiers, and can in principle be any legal identifier, however, these are the na
normally used by convention. The names come fromargumentcount andargument
vector.

• FILE* in_file;
FILE* out_file;

Here we declare twoFILE* variables. The standard file manipulation routines de
with this type, as shown below.

• if(argc != 3) {
printf("Usage: fileCopy inputFile outputFile\n");
exit(1);

}

Unlike Java, the command line arguments passed to a C program include the na
the program as the first entry in the array. Therefore this program is expecting the a
to be length 3, the program name, the input file and the output file. The funct
exit() is a standard function that aborts the program.

6.1 ♦ File I/O and Command Line Arguments 83

nt
ld be

ss-

fails.
eter
-
am.

thod

rom
• in_file = fopen(argv[1],"r");
if(in_file == NULL) {

fprintf(stderr,
"ERROR: couldn't open %s for reading\n",
argv[1]);

exit(1);
}

out_file = fopen(argv[2],"w");
if(out_file == NULL) {

fprintf(stderr,
"ERROR: couldn't open %s for writing\n",
argv[2]);

exit(1);
}

The functionfopen() is a standard C function for opening a file. The first argume
is the name of the file. The second argument is a string indicating how the file shou
opened. There are a number of variations. In this example we use only"r" for reading
the input file, and"w" for writing the output file. The functionfopen() will return a
pointer to theFILE structure used to manipulate the file, if the file is opened succe
fully. If the open fails, the function returnsNULL. To make our program reasonably
user friendly, we test the return value and print an appropriate message if the open
The function fprintf() is the same as printf() except that it takes an additional param
that is a pointer of an openFILE structure. This allows us to print to any file. The vari
ablestderr , is a predefined value that refers to the standard error output stre
Although not shown, there is a functionfscanf() that is the same asscanf()
except that, likefprintf() , it takes a file parameter.

• copy(in_file, out_file);

Here we simply pass the pointers to the two successfully opened files to the me
copy(), which does the actual copying.

• #define BUF_SIZE 200

We use a constant to document the size of the buffer we will use for reading text f
the input file.

84 Chapter 6♦ File I/O and multiple source files

xt
y

1)
coun-
top-
e

of

the

saw
all

ing a
les
e

pe
e:
• void copy(FILE* in, FILE* out) {
 char buffer[BUF_SIZE];

 while(fgets(buffer, BUF_SIZE, in) != NULL) {
 fprintf(out,"%s",buffer);
 }
}

The functionfgets() is a standard C library routine that reads strings from a te
file. Each call tofgets() transfers characters from the input file into the char arra
indicated by the first parameter (buffer in our example). The function continues to
copy characters until eitherBUF_SIZE-1 characters (the second parameter minus
have been transfered, or a newline has been transfered, or the end-of-file is en
tered. In every case, the string is terminated with a null character. Notice that by s
ping atBUF_SIZE-1 , there will always be room for the null character to terminate th
string. If the call transfers any characters, thefgets() returns its first parameter, oth-
erwise it returnsNULL. As you can see, the end-of-file is signalled by a return value
NULL.

The standard C libraries include other functions for performing file I/O. Refer to
documentation with your system or a standard book on C for more details.

6.2 Header Files

C, like Java, allows programs to be composed from multiple source files. As we
in Section 2.1, it is necessary to provide a function prototype for a function, if we c
the function before defining the function. This same mechanism is used when call
function that is defined in a different file. It is for this reason that we have included fi
like stdio.husing the#include directive. These files, called header files, includ
function prototypes, type definitions (usingtypedef) and constants (using
#define). By placing this information in a header file, we can avoid having to rety
the information in all of the files that may need it. All we need to type is the single lin

#include <someHeader.h>

6.2 ♦ Header Files 85

in C
only be

-
piler
ne

ener-
er C
ed
will
-

Just as in Java, a C program must contain a functionmain() . And just as in Java,
you can combine several files together to make a program. Because all functions
share the same name space, that is, they are not grouped into classes, there can
one file in your program that contains a functionmain() . Recall that you can have
several Java classes that each contain amain() method. When you start the Java pro
gram, you indicate which class you want to use as the main class. In C, the com
will combine all of the source files into a single output file which must contain only o
main() function.

Both header files (files ending in.h) and normal C source files (files ending in.c) are
considered part of the C source code. As mentioned above, the header files will g
ally contain type definitions, constant definitions, and function prototypes. The oth
source files will contain the function definitions. The following program is compos
of three source files, two regular source files and one header file. One source file
contain themain() function, and the other will contain methods to implement a sim
ple stack (see JBD Section 12.2).

/* fileMain.c
 * Author - Charlie McDowell
 * Purpose - Demonstratie separate compilation and
 * header files using a simple stack implementation.
 */
#include <stdio.h>
#include "stack.h"

int main(void) {
 stack_t* myStack = newStack();

 push(myStack, 123);
 push(myStack, 99);
 push(myStack, 4444);
 while(!empty(myStack)) {
 int value;
 value = pop(myStack);
 printf("popped: %d\n", value);
 }
}

86 Chapter 6♦ File I/O and multiple source files
/* stack.h
 * Author - Charlie McDowell
 * Purpose - A header file for a stack containing
 * type declarations and function prototypes.
 */
#include <stdio.h>

typedef struct stackElem {
 int value;
 struct stackElem* next_p;
} stackElem_t;

typedef struct {
 stackElem_t* top_p;
} stack_t;

int pop(stack_t* stack_p);
void push(stack_t* stack_p, int value);
int top(stack_t* stack_p);
stack_t* newStack();
int empty(stack_t* stack_p);

6.2 ♦ Header Files 87
/* stack.c
 * Author - Charlie McDowell
 * Purpose - a simple integer stack implementation.
 * This implementation uses a linked list.
 */
#include "stack.h"

stack_t* newStack() {
 stack_t* result = (stack_t *)malloc(sizeof(stack_t));
 result->top_p = NULL;
 return result;
}

int pop(stack_t* stack_p) {
 if(stack_p == NULL || stack_p->top_p == NULL) {
 fprintf(stderr,

"ERROR: tried to pop an empty stack\n");
 exit(1); // abort the program
 }
 else {
 int result;
 stackElem_t* result_elem;
 result_elem = stack_p->top_p;
 result = result_elem->value;
 stack_p->top_p = result_elem->next_p;
 free(result_elem);
 return result;
 }
}

void push(stack_t* stack_p, int value) {
 stackElem_t* temp =

(stackElem_t *)malloc(sizeof(stackElem_t));
 temp->value = value;
 temp->next_p = stack_p->top_p;
 stack_p->top_p = temp;
}

int top(stack_t* stack_p) {
 if(stack_p == NULL || stack_p->top_p == NULL) {
 fprintf(stderr,

"ERROR: tried to examine top of empty stack\n");
 exit(1); // abort the program
 }
 else
 return stack_p->top_p->value;
}

88 Chapter 6♦ File I/O and multiple source files

pile
exe-

at do
cha-

is
nd
ed in
find
int empty(stack_t* stack_p) {
 return (stack_p->top_p == NULL);
}

The easiest way to compile a C program that consists of multiple files is to com
all of the files with a single command. The program above can be compiled and
cuted as shown below.

For large C programs, consisting of many source files, there are mechanisms th
not require every source file to be recompiled each time. The details of these me
nisms vary from system to system.

Dissection of stackMain.c

• #include <stdio.h>
#include "stack.h"

When including header files from the standard C library, the name of the file
enclosed in<angle brackets>. When including header files that you create yourself, a
that reside in the same directory as your other source files, the file name is enclos
quotes. The choice of enclosing symbols affects where the C compiler expects to
the header file. The function prototype forprintf() is in stdio.h, and the prototypes
and typedefs for our stack implementation are instack.h, dissected later.

• int main(void) {
 stack_t* myStack = newStack();

The typestack_t is defined in the header filestack.h. The methodnewStack() is
implemented in the filestack.cand a prototype for the function is instack.h. At this
point it is sufficient to know thatnewStack() returns a pointer to astack_t value.

os-prompt>gcc stackMain.c stack.c -o stackTest
os-prompt>stackTest
popped: 4444
popped: 99
popped: 123
os-prompt>

6.2 ♦ Header Files 89

. The
call

BD
ction

o the
ck.

struc-
the

h as
• push(myStack, 123);
push(myStack, 99);
push(myStack, 4444);

To demonstrate our use of our stack, we push three integer values onto the stack
function push() is defined in stack.c, dissected later. Recall that in Java the first
would probably have been written as

myStack.push(123);

In C, functions aren’t part of the type and there is no implicit first parameter (see J
Section 6.3). Therefore we explicitly pass the stack as the first parameter to the fun
push() .

• while(!empty(myStack)) {
int value;
value = pop(myStack);
printf("popped: %d\n", value);

}

The functionsempty() andpop() are defined instack.c, and have prototypes in
stack.h.

Dissection of stack.h

• typedef struct stackElem {
 int value;
 struct stackElem* next_p;
} stackElem_t;

Here we declare a type that will be used to store each of the values pushed ont
stack, in a simple linked list. Each element will point to the next element in the sta
This example presents a complication that arises when declaring recursive data
tures such as this in C. In Java, the name of a class is immediately available to
implementation of the class as a type. In C, thetypedef notation shown here for cre-
ating a new type, does not make the new type available until thetypedef has been
completely processed. The solution is as shown here. By including an identifier suc
stackElem after the keywordstruct , we can immediately usestruct stack-

90 Chapter 6♦ File I/O and multiple source files

e

An

unc-
n

Elem as the type. In fact, thetypedef as used here is a way of defining the nam
stackElem_t to be a shorthand forstruct stackElem . The shorthand version
can’t be used within thestruct definition. The identifier after thestruct is
optional if we only plan to use the shorthand version.

• typedef struct {
 stackElem_t* top_p;
} stack_t;

This is the main stack type. It is simply a pointer to the top element in the stack.
empty stack will be represented by havingtop_p beNULL.

• int pop(stack_t* stack_p);
void push(stack_t* stack_p, int value);
int top(stack_t* stack_p);
stack_t* newStack();
int empty(stack_t* stack_p);

These are the function prototypes for the functions that implement the stack. The f
tions are defined instack.c. By placing the prototypes in this header file, functions i
other files, such asstackMain.c, can call the functions defined instack.cby simply
includingstack.h using the#include directive in the other source files.

Dissection of stack.c

• #include "stack.h"

The file stack.cprovides the implementation for the function prototypes instack.h. In
addition,stack.c use the types defined instack.h to implement the stack operations.

6.2 ♦ Header Files 91

ulate
e by

ight
d not
rror

wly
ak-
other

uld
stack
f this
• stack_t* newStack() {
 stack_t* result =

(stack_t *)malloc(sizeof(stack_t));
 result->top_p = NULL;
 return result;
}

For this stack design, we decided that users of the stack should always manip
pointers to stack values. They obtain a pointer to a properly initialized stack valu
calling this method. This method simulates the function of a Java constructor.

• int pop(stack_t* stack_p) {
 if(stack_p == NULL || stack_p->top_p == NULL) {
 fprintf(stderr,

"ERROR: tried to pop an empty stack\n");
 exit(1); // abort the program
 }
 else {
 int result;
 stackElem_t* result_elem;
 result_elem = stack_p->top_p;
 result = result_elem->value;
 stack_p->top_p = result_elem->next_p;
 free(result_elem);
 return result;
 }
}

C does not have direct support for exception handling. In a Java program we m
throw an exception if an attempt was made to pop an empty stack or a stack that ha
been properly initialized. In this example we simply abort the program printing an e
message. If the stack is not empty we remove the top element, advancetop_p to the
next element in the stack and free the memory occupied by the poppedstackElem_t
value. Without thefree() , the memory for the poppedstackElem_t values would
constitute a memory leak. A program using this stack implementation would slo
consume more and more memory until it finally ran out of memory. There are we
nesses with this implementation. There is nothing in the language that prevents
parts of a program from obtaining pointers tostackElem_t values from the stack
and using them. However, if a program did this, then unpredictable behavior wo
result when we free up the memory as we do here. There are ways to implement a
that provide increased data hiding, but those techniques are beyond the scope o
brief primer on C.

92 Chapter 6♦ File I/O and multiple source files

eated

f

ents

s and
• void push(stack_t* stack_p, int value) {
 stackElem_t* temp =

(stackElem_t *)malloc(sizeof(stackElem_t));
 temp->value = value;
 temp->next_p = stack_p->top_p;
 stack_p->top_p = temp;
}

This function assumes thestack_t value has been properly initialized (i.e. the
top_p field has a meaningful value). Because Cstruct s do not have constructors,
there is no guarantee that the value has been initialized. If the stack value was cr
using the methodnewStack() then thetop_p field will be valid. The method allo-
cates memory for a newstackElem_t value and then links that value onto the top o
the stack.

• int top(stack_t* stack_p) {
 if(stack_p == NULL || stack_p->top_p == NULL) {
 fprintf(stderr,

"ERROR: tried to examine top of empty stack\n");
 exit(1); // abort the program
 }
 else
 return stack_p->top_p->value;
}

This method returns the same value as pop(), but it doesn’t modify the stack.

• int empty(stack_t* stack_p) {
 return (stack_p->top_p == NULL);
}

This method allows the user of a stack to check and see if there are any elem
remaining in the stack. Such a method is essential given this design wherepop()
aborts the program if you try to pop an element from an empty stack.

Summary

• C provides access to command line arguments by passing an array of string
an argument count as parameters tomain() .

♦ Exercises 93

ion

-

-

n-
ded in

o
,

. A

f the
m-
.

rom
ncod-
• A file can be opened for reading or writing using the standard C funct
fopen() .

• The functionfprintf() is like printf() but it can be used to print to a spe
cific file.

• The functionfscanf() is like scanf() but it can be used to read from a spe
cific file.

• The functions of a C program can be grouped into multiple source files.

• Header files (ending in.h by convention) are used to hold function prototypes, co
stant declarations, and type declarations. These header files can then be inclu
any source file needing those declarations.

• Unlike a Java class name, the type name defined by atypedef cannot be used as
a type within thetypedef . For struct types, the new type can be referred t
using the notationstruct name , even within the type definition. For example
in the declaration

typedef struct someType {...} someType_t;

the namesomeType_t cannot be used to define a field in thisstruct type,
however, the typestruct someType can be used. The identifiersomeType is
not required if thisstruct type is not recursive.

Exercises

1 Write a C program that prints out any command line arguments, one per line
Java solution to this problem is presented in Section 5.11.1 of JBD.

2 Write a C program that encrypts a text file using a one-time pad. The names o
clear text file and the resulting encrypted text file should be taken from the co
mand line. A Java solution to this problem is presented in Section 10.5 of JBD

3 Write a program to decode the results of encoding a file using the program f
the previous exercise. If you use srand() to seed the random sequence in the e
ing program, you will need to use the same seed in the decoding program.

94 Chapter 6♦ File I/O and multiple source files

y

tion
ions
gram
4 Modify stack.candstack.hfrom Section 6.2 to implement a stack using an arra
instead of a linked list.

5 Implement a linked list with the same capabilities as the linked list implementa
in Section 12.3 of JBD. You should create a header file to contain any declarat
that are needed by a program that uses your linked list. Provide a sample pro
that tests your linked list implementation.

	C for Java Programmers: A Primer
	Charlie McDowell
	University of California, Santa Cruz
	copyright 2000
	Preface
	Chapter 1 Introduction
	Dissection of hello.c
	1.1 Built-in types, local variables, loops and conditionals.
	Dissection of basicSyntax.c

	1.2 printf()
	1.3 scanf()
	Summary
	Exercises
	1 Write a program that reads in two integers for the width and height of a rectangle, then prints...
	2 Write a program to compute the area of a circle given its radius. Let radius be a variable of t...
	3 Write a program that asks for the number of quarters, dimes, nickels, and pennies you have. The...
	4 Write a program that prompts for the length of three line segments as integers. If the three li...
	5 Write a program that will print out a box drawn with asterisks, as shown
	6 Write a program that reads in numbers until the same number is typed twice in a row. Modify it ...
	7 Write a program that prints all the prime numbers in 2 through 100. A prime number is an intege...
	8 Write a program that generates an approximation of the real number e. Use the formula

	Chapter 2 Passing parameters to functions
	2.1 Declaring functions
	2.2 Pointers
	Dissection of pointer.c

	2.3 Call-By-Reference
	Dissection of swap.c
	Summary
	Exercises
	1 Write a program to play the game of Twenty-One Pickup. This is a two-player game that starts wi...
	2 Modify Exercise 5, on page�17, in Chapter 1, to have a function drawBox() that takes the width ...
	3 Write a function that can be used to sort three integers. The function will need to have three ...
	4 Write a program to print the values of for the range . Print the values in this range at a step...
	5 Write a program that allows the user to play the game of Craps, which is played with two dice. ...
	1 The player bets some amount of money.
	6 Write a program to compute the probability that we can toss some number, n, heads in a row usin...

	Chapter 3 Arrays
	3.1 One dimensional arrays
	3.2 Multi-dimensional arrays
	3.3 Passing arrays as parameters
	Dissection of arrayParams

	3.4 Dynamic arrays
	Summary
	Exercises
	1 Write a program based on the sieve of Eratosthenes to compute the prime numbers between 2 and 1...
	2 Generalize the sieve algorithm in Section 5.8.1, on page 160, of JBD to go from 2 through n. In...
	3 Modify your palindrome function from the previous exercise so that blanks and capitals are igno...
	4 A real polynomial p(x) of degree n or less is given by
	5 Write a function that adds two polynomials.
	6 Write a program that reads 10 characters into an array. Then have it print out the letters of t...

	Chapter 4 Strings
	4.1 Strings - arrays of characters
	Dissection of strings.c

	4.2 Manipulating strings
	Dissection of stringLib.c

	4.3 Reading strings with scanf()
	Dissection of readingStrings.c
	Summary
	Exercises
	1 Write a program to read in a string an determine if the string is a palindrome. A palindrome is...
	2 Modify your solution to the palindrom problem of the previous exercise to ignore space characte...
	3 Write a program to play a number guessing game. The player thinks of a number between 1 and 100...
	4 Write a program that reads n strings into an array where n is read in. Then have it print out t...
	5 A simple encryption scheme is to interchange letters of the alphabet on a one-to-one basis. Thi...
	6 Write a program that reads words from the standard input using scanf("%s",...) and builds an ar...

	Chapter 5 Structured data types
	5.1 Declaring a structured data type
	Dissection of structAssignment.c

	5.2 Passing structures as parameters
	Dissection of student.c
	Dissection of structByValue

	5.3 Pointers to structures
	5.4 Dynamic allocation of structure values
	Dissection of structPointer2.c
	Summary
	Exercises
	1 Create a structured type to represent an amount of change. An amount of change is determined by...
	2 Create a struct to represent complex numbers. Complex numbers have two parts: a real part and a...
	3 Create a struct to represent a person with fields for first and last name, address, social secu...
	4 Modify your solution to the previous problem to represent the address info as a struct value al...

	Chapter 6 File I/O and multiple source files
	6.1 File I/O and Command Line Arguments
	Dissection of fileCopy.c

	6.2 Header Files
	Dissection of stackMain.c
	Dissection of stack.h
	Dissection of stack.c
	Summary
	Exercises
	1 Write a C program that prints out any command line arguments, one per line. A Java solution to ...
	2 Write a C program that encrypts a text file using a one-time pad. The names of the clear text f...
	3 Write a program to decode the results of encoding a file using the program from the previous ex...
	4 Modify stack.c and stack.h from Section 6.2 to implement a stack using an array instead of a li...
	5 Implement a linked list with the same capabilities as the linked list implementation in Section...

