CSE216 Programming Abstractions Objects, Streams and Lazy Evaluation

YoungMin Kwon

Modularity

- Two "world view" of the structure of systems: organizational strategies concentrating on
- Objects
- Viewing a large system as a collection of distinct objects
- E.g. registers, inductors, capacitors, ...
- Streams
- Flow of information in the system
- E.g. filters, amplifiers, signal processing modules...

Assignment and Local State

- State
- An object is said to have a state if its behavior is influenced by its history
- E.g.) bank account: "can I withdraw \$100?" depends on the history of the transition
- State variable
- Maintain enough information about the history to determine the object's current behavior
- E.g.) bank account: current balance

Assignment and Local State

- Modular design
- Decompose a model into computational objects
- Each object has its own local state
- Changes in the states of the objects in the system
- \rightarrow changes in the state variables of the computational object
- Assignment operator
- Changes the value associated with a name

Mutable Data

- Arrays
- Similar to arrays in other languages like C, Java, ...

```
# let arr = [| 1; 2; 3; 4 |];;
val arr : int array = [|1; 2; 3; 4|]
# arr;;
- : int array = [|1; 2; 3; 4|]
# arr.(2);; (* . indexing starts from 0 *)
- : int = 3
# arr.(2) <- 4;; (* <- operator for modification *)
- : unit = ()
# arr;;
- : int array = [|1; 2; 4; 4|]
```


Mutable Data

- Mutable record fields

```
type running_sum = {
    mutable sum: float; (*mutable field*)
    mutable sum_of_squ: float; (*sum of squares*)
    mutable count: int;
}
let mean rsum =
    rsum.sum /. float rsum.count
let variance rsum = (*Var X = E[\mp@subsup{X}{}{\wedge}2] - E[X]^2*)
    let m_squ = rsum.sum_of_squ /. float rsum.count in
    let m}=\mathrm{ mean rsum in
    m_squ -. m *.m
let stddev rsum =
    sqrt (variance rsum)
```

```
let create () =
    { sum = 0.; sum_of_squ = 0.; count = 0 }
let update rsum x = (*update the states*)
    rsum.sum <- rsum.sum +. x;
    rsum.sum_of_squ <- rsum.sum_of_squ +. x *. x;
    rsum.count <- rsum.count + 1
let rsum = create ()
let _ = List.iter (fun x -> update rsum x) [1.;3.;2.;-7.;4.;5.]
let _ = mean rsum
let _ = stddev rsum
# #use "running_sum.ml";;
- : float = 1.3333333333333333
- : float = 3.944053188733077
```


Mutable Data

- Refs

- record type with a single mutable field called contents

```
# let x = ref 0;; (* create a ref, i.e., {contents = 0}*)
val x : int ref = {contents = 0}
# x;;
- : int ref = {contents = 0}
# !x;; (* ! get the contents of a ref, i.e. x.contents *)
- : int = 0
# x := !x + 1;; (* := assignment, i.e., x.contents <- ... *)
- : unit = ()
# x.contents <- x.contents + 1; ;
- : unit = ()
# x;;
- : int ref = {contents = 2}

\section*{Local State Variable}
- Computational object with time varying state
- E.g.) balance of a bank account: each invocation of withdraw returns a different balance
- If the initial balance was \(\$ 100\)
- withdraw 10 returns 90
- withdraw 10 returns 80,...
- The same withdraw 10 returns different values
- To implement withdraw, we can use a variable balance
- balance decrements by the amount of withdraw

\section*{Local State Variable}
```


let balance = ref 100;; (*time varying state variable*)

val balance : int ref = {contents = 100}

let withdraw amount =

 if !balance >= amount (*balance is outside of withdraw*)
 then begin
 balance := !balance - amount; (*balance changes*)
 !balance
 end
 else
 assert false;;
 val withdraw : int -> int = <fun>

withdraw 10;;

- : int = 90

withdraw 10;;

_ : int = 80

```

\section*{Local State Variable}
```


let make_withdraw balance = (*balance is a local state var*)

 fun amount ->
 if !balance >= amount
 then begin
 balance := !balance - amount;
 !balance
 end
 else assert false;;
 val make_withdraw : int ref -> int -> int = <fun>

let withdraw = make_withdraw (ref 100); ;

val withdraw : int -> int = <fun>

withdraw 10;;

- : int = 90

withdraw 10;;

- : int = 80

```

\section*{Local State Variable}
- Computational object with local states
- \(\Rightarrow\) assignments with local variables
- Problem: the substitution model does not work
- Substitution model: replace the function parameters variables with actual parameter expressions
```

let double x =
x + x
double (withdraw 10);;
- : int = 180

```
```

In substitution model
double (withdraw 10)
=> (withdraw 10) + (withdraw 10)
=> - : int = 170

```

\section*{Bank Account Example}
```

(*bank account object
*)
type action = Withdraw | Deposit
let make_account balance =
let bal = ref balance in (*bal is a local state var*)
let withdraw amount = (*subtract amount from baL*)
if !bal >= amount
then begin
bal := !bal - amount;
!bal
end
else
assert false in
let deposit amount = (*add amount to bal*)
bal := !bal + amount;
!bal in

```

\section*{Bank Account Example}
```

 let dispatch msg = (*dispatch: message-passing style*)
 match msg with
 | Withdraw -> withdraw
 | Deposit -> deposit in
 dispatch (*return dispatch as a result*);;
 val make_account : int -> action -> int -> int = <fun>

let acc = make_account 100;;

val acc : action -> int -> int = <fun>

acc Withdraw 10;;

- : int = 90

acc Deposit 20;;

- : int = 110

```

\section*{Benefits of Introducing Assignments}
- Modular design
- Viewing systems as a collection of objects with local state
- Without local variables, modularity can be broken
- E.g.) Monte Carlo simulation
- \(6 / \pi^{2}\) is equal to the probability that two randomly chosen integers will have no common factors
- \(6 / \pi^{2} \sim\) the probability of gcd \((\) rand ()\()(\) rand ()\()=1\)
(* Estimating pi: Monte Carlo simulation on Cesaro test Local state: \(x\) in rand
*)
let rand_update \(x=(x * 16807)\) mod \(0 x 7 f f f f f f f\)
let make_rand rand_init =
let \(x=\) ref rand_init in
fun () ->
\(x:=\) rand_update ! \(x\);
! \(x\)
let rand \(=\) make_rand 1
let rec gcd \(a b=\)
if \(\quad a=0\) then \(b\)
else if \(b=0\) then \(a\)
else if \(a>b\) then gcd \((a \bmod b) b\)
else \(\quad \operatorname{gcd}(b \bmod a) a\)
let cesaro_test () = (*experiment*)
(gcd (rand ()) (rand ())) = 1
(*monte_carlo: estimates the probability that an experiment succeeds
- the function can be used for different experiments

\section*{*)}
let monte_carlo trials experiment \(=\)
let rec iter n cnt_passed =
if \(\mathrm{n}=0\) then
(float cnt_passed) /. (float trials)
else if experiment () then
iter (n - 1) (cnt_passed + 1)
else
iter ( \(n\) - 1) (cnt_passed) in
iter trials 0
let estimate_pi trials =
sqrt (6. /. (monte_carlo trials cesaro_test))
let _ = estimate_pi 1000000
\# \#use "montecarlo.ml";
- : float \(=3.1410943510648726\)

\section*{Benefits of Introducing Assignments}
- Monte Carlo simulation without using a local state
- Use rand_update instead of rand
- Monte Carlo idea cannot be isolated
- experiment cannot be passed as a parameter
- monte_carlo method is fixed for the cesaro test
- The state variable \(\times\) for rand should be carried through the iter function
```

(*Monte Carlo simulation WITHOUT a Local state
monte_carlo cannot be separated from the experiment (cesaro test)
*)
let monte_carlo trials =
let rec iter n cnt_passed r =
let r1 = rand_update r in
let r2 = rand_update r1 in
if n = 0 then
(float cnt_passed) /. (float trials)
else if (gcd r1 r2) = 1 then
iter (n - 1) (cnt_passed + 1) r2
else
iter (n - 1) (cnt_passed) r2 in
iter trials 0 1
let estimate_pi trials =
sqrt (6. /. (monte_carlo trials))
let _ = estimate_pi 1000000

```

\section*{Costs of Introducing Assignments}
- The substitution model does not work
- "Nice" mathematical properties cannot be an adequate framework for objects
- Referential transparency (equals can be substituted for equals) is violated
- Reasoning about programs becomes drastically more difficult
```


let w1 = make_withdraw (ref 25);; \# w1 10;;

val w1 : int -> int = <fun> - : int = 15

let w2 = make_withdraw (ref 25);; \# w1 10;;

val w2 : int -> int = <fun> - : int = 5

w2 10;;

- : int = 15

```

\section*{Costs of Introducing Assignments}
- Functional programming
- Programming without using assignments
- Procedures can be viewed as mathematical functions
- Two evaluations of the same procedure with the same arguments produce the same result
- Referential transparency is preserved

\section*{Costs of Introducing Assignments}
- Imperative programming
- Extensive use of assignments
- The order of assignment is important
- E.g.) factorial
```

let factorial n =
let rec iter p c =
if c > n then p
else iter (c * p)
(c+1) in
iter 1 1 in
let factorial2 n =
let p = ref 1 in
let c = ref 1 in
let rec iter () =
if !c > n then !p
else begin

Their order is important
$\mathrm{p}:=!\mathrm{c} *!\mathrm{p} ;$ $\mathrm{c}:=!\mathrm{c}+1 ;$ niter ()
end in
inter ()

```

\section*{Streams}
- Modeling state
- We saw assignments as a tool for modeling states
- Real world object with local state \(\rightarrow\) computational object with local variable
- Time variation in the real world \(\rightarrow\) assignments to local variables
- Streams: alternative approach
- Time varying behavior of a variable \(x \rightarrow\) a function of time \(x(t)\)
- The function itself does not change

\section*{Streams}
- Streams
- A stream is simply a sequence
- Delayed evaluation \(\rightarrow\) enables representing very large (possibly infinite) sequences as a stream
- Streams \(\rightarrow\) modeling systems with states without using assignments


\section*{Abstractions for Sequences}
- Abstractions for manipulating sequences
- map, filter, accumulate, ...
- Elegantly manipulate sequences
- But the elegance is bought at the price of inefficiency (both time and space)

\section*{Abstractions for Sequences}
```

(*sum of prime numbers in the interval [a, b]
*)
let sum_primes1 a b =
let iter count accum =
if count > b then
accum
else if isPrime count then
iter (count + 1) (count + accum)
else
iter (count + 1) accum in
iter a 0

```
- sum_primes1 needs to store only the accumulated sum

\section*{Abstractions for Sequences}

- sum_primes2: generates an interval of list, generates a filtered list, then accumulate the list

\section*{Streams are Delayed Lists}
- With streams
- Formulate programs elegantly as a sequence manipulation
- Attaining the efficiency of incremental computation
- Streams
- Construct a stream only partially
- Pass the partial construction to its consumer
- If the consumer tries to access unconstructed part of the stream \(\rightarrow\) the stream will construct just enough more

\section*{Streams}

\section*{- stream type, car, cdr}

```

type 'a stream = Nil
| Cons of 'a * (unit -> 'a stream) (*thunk*)
let cons a thunk =
Cons (a, thunk)
let car s =
match s with
| Nil -> assert false
| Cons (x, _) -> x
let cdr s =
match s with
| Nil -> assert false
| Cons (_, f) -> f () (*force*)
let rec from n = cons n (fun () -> from (n + 1))
let nat = from 0 (*natural numbers*)

```

\section*{Streams}

\section*{- map and filter functions}
```

let rec map proc s =
if s = Nil then Nil
else cons (proc (car s))
(fun () -> map proc (cdr s))
let plus1 = map (fun x -> x + 1) nat
let _ = plus1 |> cdr |> cdr |> cdr |> car

- : int = 4

```

\section*{Streams}

\section*{- map and filter functions}
```

let rec filter predi s =
if s = Nil then Nil
else if predi (car s) then
cons (car s)
(fun () -> filter predi (cdr s))
else filter predi (cdr s)
let even = filter (fun x -> x mod 2 = 0) nat
let _ = even |> cdr |> cdr |> cdr |> car

- : int = 6

```

Fibonacci Numbers with Streams
- Fibonacci numbers
```

let fibs =
let rec fibgen a b =
cons a (fun () -> fibgen b (a + b)) in
fibgen 0 1
let _ = fibs |> cdr |> cdr |> cdr |> cdr |> cdr |> car

- : int = 5

```

\section*{Prime Numbers with Streams}
- Prime numbers (sieve of Eratosthenes)
- Start with 2 (the \(1^{\text {st }}\) prime number)
- Get streams by filtering the multiples of 2
- Leaves us a stream string with 3 (the \(2^{\text {nd }}\) prime number)
- Get streams by filtering the multiples of 3
- Leaves us a stream string with 5 (the \(3^{\text {rd }}\) prime number)
- Get streams by filtering the multiples of 5
- Leaves us a stream string with 7 (the \(4^{\text {th }}\) prime number)
- ...

\section*{Prime Numbers with Streams}

\section*{- Prime numbers by sieve of Eratosthenes}
```

let rec sieve s =
let h = car s in
let thunk = fun () ->
cdr s
|> filter (fun x -> (x mod h) <> 0)
|> sieve in
cons h thunk
let primes = from 2 |> sieve
(*n-th element of s*)
let rec stream_ref n s =
if n = 0 then car s
else stream_ref (n - 1) (cdr s)
let _ = stream_ref 50 primes

```

\section*{Monte Carlo Simulation with Streams}
- Monte Carlo simulation using a stream
- make_rand returns a stream of pseudo random numbers
- cesaro_stream is a stream of Cesaro experiment
- Monte Carlo simulation is separated from experiment
- monte_carlo runs Cesaro test passed as an experiment
- Modularity is regained

\section*{Monte Carlo Simulation with Streams}
- Stream of random numbers
```

let rand_update x = (x * 16807) mod 0x7ffffffff
let rec make_rand rand_init =
let next = rand_update rand_init in
cons next
(fun() -> make_rand next) rand is a stream of
random numbers

```
- Stream of Cesaro test results


\section*{Monte Carlo Simulation with Streams}
- Monte Carlo simulation
```

monte_carlo is a stream of probabilities

```
let rec monte_carlo passed trials experiment =
    let next passed trials =

        let thunk \(=\) fun() ->
            monte_carlo passed trials (cdr experiment) in
        cons \(h\) thunk in
    if car experiment
    then next (passed + 1) (trials + 1)
    else next passed (trials +1 )

\section*{Monte Carlo Simulation with Stream}

\section*{- The simulation program}
```

let pi = make_rand 1
|> cesaro_stream
|> monte_carlo 0 0
|> map (fun p -> sqrt (6. /. p))
(*n-th element of s*)
let rec stream_ref n s =
if n = 0
then car s
else cdr s |> stream_ref (n -1)
let _ = pi |> stream_ref 100000

```

\section*{Parameter Passing Modes}
- Terms
- Formal parameters: parameter names in the declaration of a subroutine
- Actual parameters (arguments): expressions that are passed to a subroutine
- Parameter passing mode
- How the parameters are passed
- Call by value
- Call by reference
- Call by name
- Call by need
```

void square(int x) {

```
void square(int x) {
    x = x * x;
    x = x * x;
}
}
void foo() {
void foo() {
    square(1 + 2);
    square(1 + 2);
}
```

}

```

\section*{Call by Value and Call by Reference}
- First, the arguments to a function are fully evaluated before invoking the function (eager evaluation)
- Call by value: copies of the arguments are passed
- Call by reference: the addresses of arguments are passed
```

void square(int x) {
x = x * x;
}
void foo() {
int y = 1 + 2;
square(y);
}

```
```

void remove(Object O) {
o = null;
}
void foo() {
Object O = new Object();
remove(o);
}

```

\section*{Call by Value and Call by Reference}
- Why call by reference
- To change the actual parameter value
- When the size of actual parameter is large
- In call by value
- Explicitly pass the addresses of variables (pointers in C)
```

void square(int* x) {
int y = *x;
*x = y * y;
}
void foo() {
int y = 1 + 2;
square(\&y);
}

```

\section*{Call by Name and Call by Need}
- Call by name: parameters are passed as literal substitution
- Lazy evaluation
- E.g. lambda calculus
- Call by need: call by name + memorize the evaluation results of actual parameters
```

int square(int x) {
return x * x;
}
void foo() {
square(very_complex());
}

```
```

return very_complex() *
very_complex();

```

\section*{Lazy Evaluation}
- Function application
- Arguments (without being evaluated) are stored in an environment as a thunk
- Delay evaluating the actual parameters until they are necessary
- When the variable is actually used
- The thunk is forced

\section*{Tiny: Lazy Evaluation}

\section*{- Call-by-name examples}
```

(*no division by 0 error*)
((lambda (c t f)
(if c t f))
true (+ 1 1) (/ 1 0))
(*stream of natural numbers*)
((lambda (rec cons car cdr)
(lambda (s) (car (cdr (cdr (cdr s))))) (*4th element*)
(rec (lambda (self n) (*natural numbers*)
(cons n (self self (+ n 1)))) (*stream wo thunk*)
0)))
(lambda (f) (f f))
(lambda (x y z) (if z x y))
(lambda (x) (x true))
(lambda (x) (x false)))

```

\section*{Tiny: Lazy Evaluation}
```

type expr
= NUM of int (*number*)
| BOOL of bool (*Boolean*)
| VAR of string (*variable*)
(*arithmetic exprs*)
| ADD of expr * expr | SUB of expr * expr
(*function definition: parameter, body*)
| FUN of string * expr
(*closure: parameter, body, environment*)
CLO of string * expr * (string * expr) list
(*Lazy eval, thunk: expr, env*)
| TNK of expr * (string * expr) list
(*function application: operator, operand*)
| APP of expr * expr

```
```

(*evaluate expr in env*)
let rec eval expr env =
let force = function
| TNK (e, ev) -> eval e ev (*Lazy*)
x -> x in
match expr with
| BOOL b -> BOOL b
NUM n -> NUM n
| VAR v -> lookup v env |> force
| FUN (v, e) -> CLO (v, e, env)
(*Lazy: thunk a and env without evaluating a*)
| APP (f,a) -> eval f env |> fun clo ->
dropCLO clo |> fun (v, e, ev) ->
eval e ((v, TNK (a, env))::ev)
| _ -> assert false

```
```

(*no division by 0 error*)
let ite = parse
"((lambda (c t f)\
(if c t f))\
true (+ 1 1) (/ 1 0))"
(*stream without thunking*)
let nat = parse
"((lambda (rec cons car cdr)\
((lambda (s) (car (cdr (cdr (cdr s)))))\ (*4th*)
(rec (lambda (self n)\ (*nat: stream wo thunk*)
(cons n (self self (+ n 1))))\
0)))\
(lambda (f) (f f))\
(lambda (x y z) (if z x y))\
(lambda (x) (x true))\
(lambda (x) (x false)))"
eval ite [] |> print;
eval nat [] |> print;
()

```

Results:
NUM (2)
NUM (3)

\section*{Optional: Lazy module of OCaml}

\section*{- Lazy module}
- lazy <expr>: make expr of u type u Lazy.t type without evaluating it
- Lazy.force <expr>: evaluate Lazy.t type expr
```

module type Lazy = sig
type 'a t = 'a lazy_t
val force: 'a t -> 'a
end

```
```


let a = lazy (1+2);;

val a : int lazy_t = <lazy>

Lazy.force a;;

- : int = 3

```

\section*{Optional: Lazy module of OCaml}

\section*{- Lazy stream}
module Stream = struct
type ' \(a\) stream = Nil |
Cons of ' \(a^{*}\) (unit -> 'a stream)
let cons a thunk = Cons (a, thunk)
let car s =
match s with
| Cons ( \(x\), _) -> \(x\)
_ -> assert false
let \(c d r s=\)
match s with
| Cons (_, f) -> f ()
| _ -> assert false
```

module StreamLazy = struct
type 'a stream = Nil |
Cons of 'a * 'a stream Lazy.t
let cons a thunk =
Cons (a, thunk)
let car s =
match s with
Cons (x, _) -> x
| _ -> assert false
let cdr s =
match s with
| Cons (_, f) -> Lazy.force f
| _ -> assert false
end

```

\section*{Optional: Lazy module of OCaml}
```

module StreamTest = struct
open Stream
let rec sum a b =
cons ((car a) + (car b))
(fun () -> sum (cdr a) (cdr b))
let rec fibs () =
cons 1 (fun () ->
cons 2 (fun () ->
sum (fibs ()) (cdr (fibs ()))
))
let rec stream_ref s n =
if n = 0
then car s
else stream_ref (cdr s) (n -1)
end
let _ = let open StreamTest in

```
```

module StreamLazyTest = struct

```
module StreamLazyTest = struct
    open StreamLazy
    open StreamLazy
    let rec sum a b =
    let rec sum a b =
        cons ((car a) + (car b))
        cons ((car a) + (car b))
        (lazy (sum (cdr a) (cdr b)))
        (lazy (sum (cdr a) (cdr b)))
    let rec fibs () =
    let rec fibs () =
        cons 1 (lazy (
        cons 1 (lazy (
        cons 2 (lazy (
        cons 2 (lazy (
        sum (fibs ()) (cdr (fibs ()))
        sum (fibs ()) (cdr (fibs ()))
        ))))
        ))))
    let rec stream_ref s n =
    let rec stream_ref s n =
        if n = 0
        if n = 0
        then car s
        then car s
        else stream_ref (cdr s) (n -1)
        else stream_ref (cdr s) (n -1)
end
end
let _ = let open StreamLazyTest in
```

let _ = let open StreamLazyTest in

```

\section*{Assignment 6}
- In this assignment we will simulate simple circuits using streams
- Wires as a stream
- Logical gates
- Half adder, Full adder, and n-bit adder
- Download, adder.ml; implement all TODOs; and submit adder.ml to Brightspace
- Due date 5/2/2024
```

(** Stream ****************************
*)
module type IStream = sig
type 'a stream = Nil | Cons of 'a * (unit -> 'a stream)
val cons: 'a -> (unit -> 'a stream) -> 'a stream
val nil: unit -> 'a stream
val car: 'a stream -> 'a
val cdr: 'a stream -> 'a stream
val index: 'a stream -> int -> 'a
end
(* TODO: impelemnt Stream module
*)
module Stream: IStream = struct
type 'a stream = Nil | Cons of 'a * (unit -> 'a stream)
let cons h t =
let nil () =
let car = function
let cdr = function
let rec index s n = (*return the n-th element of stream s*)
end

```

```

*)
module type IWire = sig
include IStream
type wire = int stream
val w_zero: wire
val w_one: wire
val probe: wire list -> int -> unit
end
module Wire: IWire = struct
include Stream
type wire = int stream
(* TODO: implement constant
constant c returns the infinite stream of c
*)
let rec constant c =
let w_zero = constant 0
let w_one = constant 1
...
end

```
```

(** Gate ****************************
*)
module type IGate = sig
open Wire
val g_not: wire -> wire
val g_and: wire -> wire -> wire
val g_or: wire -> wire -> wire
end

```


Inverter


And-gate
```

module GateBuilder (P: IGateParam): IGate = struct
open Wire
(* delay d stream adds d 0's to the front of stream
e.g. delay 3 stream => [0; 0; 0; stream]
*)
let rec delay d stream =
if d = 0
then stream
else cons 0 (fun () -> delay (d-1) stream)

```


Or-gate
```

(*not-gate: returns the negated stream of w_a
e.g. g_not [1; 1; 0; 0; ...] => [0; 0; 1; 1; ...]
*)
let g_not w_a =
let rec iter wa =
let a = car wa in
let o = if a = 0 then 1 else 0 in
cons o (fun () -> iter (cdr wa)) in
iter w_a |> delay P.delay_not
(*TODO: impement g_and, the and-gate
- g_and returns the stream of the conjunction of w_a and w_b
e.g. g_and [1; 1; 0; 0; ...] [1; 0; 1; 0; ...] => [1; 0; 0; 0; ...]
*)
let g_and w_a w_b =
(*TODO: impement g_or, the or-gate
- g_or returns the stream of the disjunction of w_a and w_b
e.g. g_and [1; 1; 0; 0; ...] [1; 0; 1; 0; ...] => [1; 1; 1; 0; ...]
*)
let g_or w_a w_b =

```
```

(** Adder
*)
module type IAdder = sig
open Wire
val half_adder: wire -> wire -> (wire * wire)
val full_adder: wire -> wire -> wire -> (wire * wire)
val adder: wire list -> wire list -> wire list
end
module AdderBuilder (G:IGate) : IAdder = struct
open Wire
open G
(*TODO: impement half_adder, a half-adder
- half_adder returns the tuple of the sum and the carry streams
of w_a and w_b
e.g. half_adder [1; 1; 0; 0; ...]
[1; 0; 1; 0; ...]
=> ([0; 1; 1; 0; ...], [1; 0; 0; 0; ...])
*)
let half_adder w_a w_b =

```
(*TODO: impement full_adder, a full-adder
- full_adder returns the tuple of the sum and the carry streams of w_a, w_b, and w_c
e.g. half_adder \([1 ; 1 ; 0 ; 0 ; \ldots]\)
[1; 0; 1; 0; ...]
[1; 1; 0; 0; ...]
\(\Rightarrow([1 ; 0 ; 1 ; 0 ; \ldots],[1 ; 1 ; 0 ; 0 ; . .]\).
*)
let full_adder w_a w_b w_c =

```

(*TODO: impement adder, an n-bit adder
- wl_a, wl_b: list of wires of the form [LSB wire; ... ; MSB wire]
- adder returns the sum of wl_a, wl_b with carry in the form
[LSB wire; ... ; MSB wire; carry wire]
e.g. adder [[1; 0; 1; 1; ...];
[1; 1; 1; 0; ...]]
[[1; 1; 1; 0; ...];
[0; 1; 1; 1; ...]]
= [[0; 1; 0; 1; ...];
[0; 0; 1; 1; ...];
[1; 1; 1; 0; ...]]
i.e. adder [3; 2; 3; 1; ...]
[1; 3; 3; 2; ...]
=> [(0, 1); (1, 1); (2, 1); (3, 0); ...]
*)
let adder wl_a wl_b =
let rec iter wl_a wl_b w_c =
iter wl_a wl_b w_zero

```
end


A ripple-carry adder for \(n\)-bit numbers.```

