
CSE216 Programming Abstractions
Objects, Streams and Lazy Evaluation

YoungMin Kwon



Modularity

 Two “world view” of the structure of systems: 
organizational strategies concentrating on

 Objects
 Viewing a large system as a collection of distinct objects
 E.g. registers, inductors, capacitors, …

 Streams
 Flow of information in the system
 E.g. filters, amplifiers, signal processing modules…



Assignment and Local State

 State
 An object is said to have a state if its behavior is 

influenced by its history
 E.g.) bank account: “can I withdraw $100?” depends 

on the history of the transition

 State variable
 Maintain enough information about the history to 

determine the object’s current behavior
 E.g.) bank account: current balance



Assignment and Local State

 Modular design
 Decompose a model into computational objects
 Each object has its own local state
 Changes in the states of the objects in the system 

 changes in the state variables of the computational 
object

 Assignment operator
 Changes the value associated with a name



Mutable Data
 Arrays

 Similar to arrays in other languages like C, Java, …
# let arr = [| 1; 2; 3; 4 |];;
val arr : int array = [|1; 2; 3; 4|]

# arr;;
- : int array = [|1; 2; 3; 4|]

# arr.(2);;      (* . indexing starts from 0 *)
- : int = 3

# arr.(2) <- 4;; (* <- operator for modification *)
- : unit = ()

# arr;;
- : int array = [|1; 2; 4; 4|]



Mutable Data

 Mutable record fields
type running_sum = {

mutable sum: float; (*mutable field*)
mutable sum_of_squ: float; (*sum of squares*)
mutable count: int;

}

let mean rsum =
rsum.sum /. float rsum.count

let variance rsum = (*Var X = E[X^2] - E[X]^2*)
let m_squ = rsum.sum_of_squ /. float rsum.count in
let m = mean rsum in
m_squ -. m *. m

let stddev rsum =
sqrt (variance rsum)



let create () =
{ sum = 0.; sum_of_squ = 0.; count = 0 }

let update rsum x = (*update the states*)
rsum.sum <- rsum.sum +. x;
rsum.sum_of_squ <- rsum.sum_of_squ +. x *. x;
rsum.count <- rsum.count + 1

let rsum = create ()

let _ = List.iter (fun x -> update rsum x) [1.;3.;2.;-7.;4.;5.]
let _ = mean rsum
let _ = stddev rsum

# #use "running_sum.ml";;
…
- : float = 1.3333333333333333
- : float = 3.944053188733077



Mutable Data
 Refs

 record type with a single mutable field called contents

# let x = ref 0;; (* create a ref, i.e., {contents = 0}*)
val x : int ref = {contents = 0}

# x;;
- : int ref = {contents = 0}

# !x;;            (* ! get the contents of a ref, i.e. x.contents *)
- : int = 0

# x := !x + 1;;   (* := assignment, i.e., x.contents <- … *)
- : unit = ()

# x.contents <- x.contents + 1;;
- : unit = ()

# x;;
- : int ref = {contents = 2}



Local State Variable

 Computational object with time varying state
 E.g.) balance of a bank account: each invocation of 

withdraw returns a different balance
 If the initial balance was $100
 withdraw 10 returns 90
 withdraw 10 returns 80, ...

 The same withdraw 10 returns different values

 To implement withdraw, we can use a variable balance
 balance decrements by the amount of withdraw



Local State Variable
# let balance = ref 100;; (*time varying state variable*)
val balance : int ref = {contents = 100}

# let withdraw amount =
if !balance >= amount (*balance is outside of withdraw*)
then begin

balance := !balance - amount; (*balance changes*)
!balance

end
else

assert false;;
val withdraw : int -> int = <fun>

# withdraw 10;;
- : int = 90

# withdraw 10;;
- : int = 80



Local State Variable
# let make_withdraw balance = (*balance is a local state var*)

fun amount ->
if !balance >= amount
then begin

balance := !balance - amount;
!balance

end
else assert false;;

val make_withdraw : int ref -> int -> int = <fun>

# let withdraw = make_withdraw (ref 100);;
val withdraw : int -> int = <fun>

# withdraw 10;;
- : int = 90

# withdraw 10;;
- : int = 80



Local State Variable
 Computational object with local states

 ⇒ assignments with local variables

 Problem: the substitution model does not work
 Substitution model: replace the function parameters 

variables with actual parameter expressions

let double x =
x + x

double (withdraw 10);;
- : int = 180

In substitution model

double (withdraw 10)
=> (withdraw 10) + (withdraw 10)
=> - : int = 170



(*bank account object
*)
type action = Withdraw | Deposit

let make_account balance =
let bal = ref balance in (*bal is a local state var*)

let withdraw amount = (*subtract amount from bal*)
if !bal >= amount
then begin

bal := !bal - amount;
!bal

end
else

assert false in

let deposit amount = (*add amount to bal*)
bal := !bal + amount;
!bal in

…

Bank Account Example



…
let dispatch msg = (*dispatch: message-passing style*)

match msg with
| Withdraw -> withdraw
| Deposit -> deposit in

dispatch (*return dispatch as a result*);;

val make_account : int -> action -> int -> int = <fun>

# let acc = make_account 100;;
val acc : action -> int -> int = <fun>

# acc Withdraw 10;;
- : int = 90

# acc Deposit 20;;
- : int = 110

Bank Account Example



Benefits of Introducing Assignments

 Modular design
 Viewing systems as a collection of objects with 

local state
 Without local variables, modularity can be broken

 E.g.) Monte Carlo simulation
 6/2 is equal to the probability that two randomly 

chosen integers will have no common factors
 6/2 ~ the probability of gcd (rand ()) (rand ()) = 1



(* Estimating pi: Monte Carlo simulation on Cesaro test
local state: x in rand

*)

let rand_update x = (x * 16807) mod 0x7fffffff

let make_rand rand_init =
let x = ref rand_init in
fun () ->

x := rand_update !x;
!x

let rand = make_rand 1

let rec gcd a b =
if a = 0 then b
else if b = 0 then a
else if a > b then gcd (a mod b) b
else gcd (b mod a) a

let cesaro_test () = (*experiment*)
(gcd (rand ()) (rand ())) = 1



(*monte_carlo: estimates the probability that an experiment succeeds
- the function can be used for different experiments

*)
let monte_carlo trials experiment =

let rec iter n cnt_passed =
if n = 0 then

(float cnt_passed) /. (float trials)
else if experiment () then

iter (n - 1) (cnt_passed + 1)
else

iter (n - 1) (cnt_passed) in
iter trials 0

let estimate_pi trials =
sqrt (6. /. (monte_carlo trials cesaro_test))

let _ = estimate_pi 1000000

# #use "montecarlo.ml";;
- : float = 3.1410943510648726



Benefits of Introducing Assignments

 Monte Carlo simulation without using a local 
state
 Use rand_update instead of rand
 Monte Carlo idea cannot be isolated

 experiment cannot be passed as a parameter
 monte_carlo method is fixed for the cesaro test

 The state variable x for rand should be carried 
through the iter function



(*Monte Carlo simulation WITHOUT a local state
monte_carlo cannot be separated from the experiment (cesaro test)

*)
let monte_carlo trials =

let rec iter n cnt_passed r =
let r1 = rand_update r in
let r2 = rand_update r1 in
if n = 0 then

(float cnt_passed) /. (float trials)
else if (gcd r1 r2) = 1 then

iter (n - 1) (cnt_passed + 1) r2
else

iter (n - 1) (cnt_passed) r2 in
iter trials 0 1

let estimate_pi trials =
sqrt (6. /. (monte_carlo trials))

let _ = estimate_pi 1000000



Costs of Introducing Assignments

 The substitution model does not work

 “Nice” mathematical properties cannot be an adequate 
framework for objects
 Referential transparency (equals can be substituted for equals) is 

violated
 Reasoning about programs becomes drastically more difficult

# let w1 = make_withdraw (ref 25);;
val w1 : int -> int = <fun>

# let w2 = make_withdraw (ref 25);;
val w2 : int -> int = <fun>

# w1 10;;
- : int = 15

# w1 10;;
- : int = 5
# w2 10;;
- : int = 15



Costs of Introducing Assignments

 Functional programming
 Programming without using assignments
 Procedures can be viewed as mathematical

functions
 Two evaluations of the same procedure with the same 

arguments produce the same result

 Referential transparency is preserved



Costs of Introducing Assignments
 Imperative programming

 Extensive use of assignments
 The order of assignment is important
 E.g.) factorial

let factorial n =
let rec iter p c =

if c > n then p
else iter (c * p)

(c + 1) in
iter 1 1 in

let factorial2 n =
let p = ref 1 in
let c = ref 1 in
let rec iter () =

if !c > n then !p
else begin

p := !c * !p;
c := !c + 1;
iter ()

end in
iter ()

Their order is
important



Streams

 Modeling state
 We saw assignments as a tool for modeling states

 Real world object with local state  computational 
object with local variable

 Time variation in the real world  assignments to local 
variables

 Streams: alternative approach
 Time varying behavior of a variable x  a function of 

time x (t)
 The function itself does not change



Streams
 Streams

 A stream is simply a sequence

 Delayed evaluation  enables representing very 
large (possibly infinite) sequences as a stream

 Streams modeling systems with states without 
using assignments



Abstractions for Sequences

 Abstractions for manipulating sequences
 map, filter, accumulate, …

 Elegantly manipulate sequences

 But the elegance is bought at the price of 
inefficiency (both time and space)



Abstractions for Sequences

 sum_primes1 needs to store only the 
accumulated sum

(*sum of prime numbers in the interval [a, b]
*)
let sum_primes1 a b =

let iter count accum =
if count > b then

accum
else if isPrime count then

iter (count + 1) (count + accum)
else

iter (count + 1) accum in
iter a 0



Abstractions for Sequences

 sum_primes2: generates an interval of list, 
generates a filtered list, then accumulate the 
list

(*sum of prime numbers in the interval [a, b]
*)
let sum_primes2 a b =

enumerate_interval a b |> fun i ->
filter isPrime i |> fun p ->
accumulate (+) 0 p

[a; a+1; a+2; … b]



Streams are Delayed Lists
 With streams

 Formulate programs elegantly as a sequence 
manipulation

 Attaining the efficiency of incremental computation

 Streams
 Construct a stream only partially
 Pass the partial construction to its consumer
 If the consumer tries to access unconstructed part of 

the stream  the stream will construct just enough 
more



Streams
 stream type, car, cdr

type 'a stream = Nil
| Cons of 'a * (unit -> 'a stream) (*thunk*)

let cons a thunk =
Cons (a, thunk)

let car s =
match s with
| Nil -> assert false
| Cons (x, _) -> x 

let cdr s =
match s with
| Nil -> assert false
| Cons (_, f) -> f () (*force*)

let rec from n = cons n (fun () -> from (n + 1))
let nat = from 0 (*natural numbers*)



thunking will delay
further evaluation

Streams
 map and filter functions

let rec map proc s =
if s = Nil then Nil
else cons (proc (car s))

(fun () -> map proc (cdr s))

let plus1 = map (fun x -> x + 1) nat

let _ = plus1 |> cdr |> cdr |> cdr |> car

- : int = 4



thunking will delay
further evaluation

Streams
 map and filter functions

let rec filter predi s =
if s = Nil then Nil
else if predi (car s) then

cons (car s)
(fun () -> filter predi (cdr s))

else filter predi (cdr s)

let even = filter (fun x -> x mod 2 = 0) nat

let _ = even |> cdr |> cdr |> cdr |> car

- : int = 6



Fibonacci Numbers with Streams

 Fibonacci numbers

let fibs =
let rec fibgen a b =

cons a (fun () -> fibgen b (a + b)) in
fibgen 0 1

let _ = fibs |> cdr |> cdr |> cdr |> cdr |> cdr |> car

- : int = 5



Prime Numbers with Streams
 Prime numbers (sieve of Eratosthenes)

 Start with 2 (the 1st prime number)

 Get streams by filtering the multiples of 2
 Leaves us a stream string with 3 (the 2nd prime number)

 Get streams by filtering the multiples of 3
 Leaves us a stream string with 5 (the 3rd prime number)

 Get streams by filtering the multiples of 5
 Leaves us a stream string with 7 (the 4th prime number)

 …



Prime Numbers with Streams

 Prime numbers by sieve of Eratosthenes
let rec sieve s =

let h = car s in
let thunk = fun () ->

cdr s
|> filter (fun x -> (x mod h) <> 0)
|> sieve in

cons h thunk

let primes = from 2 |> sieve

(*n-th element of s*)
let rec stream_ref n s =

if n = 0 then car s
else stream_ref (n - 1) (cdr s)

let _ = stream_ref 50 primes



Monte Carlo Simulation with Streams

 Monte Carlo simulation using a stream
 make_rand returns a stream of pseudo random 

numbers

 cesaro_stream is a stream of Cesaro experiment

 Monte Carlo simulation is separated from 
experiment
 monte_carlo runs Cesaro test passed as an experiment
 Modularity is regained



Monte Carlo Simulation with Streams

 Stream of random numbers

 Stream of Cesaro test results 

let rand_update x = (x * 16807) mod 0x7fffffff

let rec make_rand rand_init =
let next = rand_update rand_init in
cons next 

(fun() -> make_rand next)

let rec cesaro_stream rand =
let first = car rand in
let rest = cdr rand in
let second = car rest in
cons (gcd first second = 1)

(fun() -> cesaro_stream (cdr rest))

experiment is a
stream of cesaro tests

rand is a stream of
random numbers



Monte Carlo Simulation with Streams

 Monte Carlo simulation

let rec monte_carlo passed trials experiment =
let next passed trials =

let h = (float passed) /. (float trials) in
let thunk = fun() ->

monte_carlo passed trials (cdr experiment) in
cons h thunk in

if car experiment
then next (passed + 1) (trials + 1)
else next passed (trials + 1)

monte_carlo is a stream
of probabilities



Monte Carlo Simulation with Stream

 The simulation program

let pi = make_rand 1
|> cesaro_stream
|> monte_carlo 0 0
|> map (fun p -> sqrt (6. /. p))

(*n-th element of s*)
let rec stream_ref n s =

if n = 0
then car s
else cdr s |> stream_ref (n -1)

let _ = pi |> stream_ref 100000



Parameter Passing Modes

 Terms
 Formal parameters: parameter names in the declaration of 

a subroutine
 Actual parameters (arguments): expressions that are 

passed to a subroutine

 Parameter passing mode
 How the parameters are passed
 Call by value
 Call by reference
 Call by name
 Call by need

void square(int x) {
x = x * x;

}

void foo() {
square(1 + 2);

}



Call by Value and Call by Reference

 First, the arguments to a function are fully evaluated 
before invoking the function (eager evaluation)

 Call by value: copies of the arguments are passed
 Call by reference: the addresses of arguments are 

passed

void square(int x) {
x = x * x;

}

void foo() {
int y = 1 + 2;
square(y);

}

void remove(Object o) {
o = null;

}

void foo() {
Object o = new Object();
remove(o);

}



Call by Value and Call by Reference
 Why call by reference

 To change the actual parameter value
 When the size of actual parameter is large

 In call by value
 Explicitly pass the addresses of variables (pointers in C)

void square(int* x) {
int y = *x;
*x = y * y;

}

void foo() {
int y = 1 + 2;
square( &y );

}



Call by Name and Call by Need

 Call by name: parameters are passed as literal 
substitution
 Lazy evaluation
 E.g. lambda calculus

 Call by need: call by name + memorize the evaluation 
results of actual parameters

int square(int x) {
return x * x;

}

void foo() {
square(very_complex());

}

return very_complex() *
very_complex();



Lazy Evaluation

 Function application
 Arguments (without being evaluated) are stored in 

an environment as a thunk
 Delay evaluating the actual parameters until they 

are necessary

 When the variable is actually used
 The thunk is forced



 Call-by-name examples
(*no division by 0 error*)
( (lambda (c t f)

(if c t f))
true (+ 1 1) (/ 1 0))

(*stream of natural numbers*)
( (lambda (rec cons car cdr)

( (lambda (s) (car (cdr (cdr (cdr s))))) (*4th element*)
(rec (lambda (self n) (*natural numbers*)

(cons n (self self (+ n 1)))) (*stream wo thunk*)
0)))

(lambda (f) (f f))
(lambda (x y z) (if z x y))
(lambda (x) (x true))
(lambda (x) (x false)))

Tiny: Lazy Evaluation



type expr
= NUM of int (*number*)
| BOOL of bool (*Boolean*)
| VAR of string (*variable*)
(*arithmetic exprs*)
| ADD of expr * expr | SUB of expr * expr

…
(*function definition: parameter, body*)
| FUN of string * expr
(*closure: parameter, body, environment*)
| CLO of string * expr * (string * expr) list

(*lazy eval, thunk: expr, env*)
| TNK of expr * (string * expr) list

(*function application: operator, operand*)
| APP of expr * expr

Tiny: Lazy Evaluation



(*evaluate expr in env*)
let rec eval expr env =
…

let force = function
| TNK (e, ev) -> eval e ev (*lazy*)
| x -> x in

match expr with
| BOOL b -> BOOL b
| NUM n -> NUM n
| VAR v -> lookup v env |> force

…
| FUN (v, e) -> CLO (v, e, env)

(*lazy: thunk a and env without evaluating a*)
| APP (f, a) -> eval f env |> fun clo ->

dropCLO clo |> fun (v, e, ev) ->
eval e ((v, TNK (a, env))::ev)

| _ -> assert false



(*no division by 0 error*)
let ite = parse

"( (lambda (c t f)\
(if c t f))\

true (+ 1 1) (/ 1 0))"

(*stream without thunking*)
let nat = parse

"( (lambda (rec cons car cdr)\
( (lambda (s) (car (cdr (cdr (cdr s)))))\ (*4th*)

(rec (lambda (self n)\ (*nat: stream wo thunk*)
(cons n (self self (+ n 1))))\

0)))\
(lambda (f) (f f))\
(lambda (x y z) (if z x y))\
(lambda (x) (x true))\
(lambda (x) (x false)))"

eval ite [] |> print;
eval nat [] |> print;
()

Results:
NUM(2)
NUM(3)



Optional: Lazy module of OCaml

 Lazy module
 lazy <expr>: make expr of u type u Lazy.t type 

without evaluating it
 Lazy.force <expr>: evaluate Lazy.t type expr

module type Lazy = sig
type 'a t = 'a lazy_t
val force: 'a t -> 'a

end

# let a = lazy (1+2);;
val a : int lazy_t = <lazy>

# Lazy.force a;;
- : int = 3



Optional: Lazy module of OCaml

 Lazy stream
module Stream = struct

type 'a stream = Nil |
Cons of 'a * (unit -> 'a stream)

let cons a thunk =
Cons (a, thunk)

let car s =
match s with
| Cons (x, _) -> x 
| _ -> assert false

let cdr s =
match s with
| Cons (_, f) -> f ()
| _ -> assert false

end

module StreamLazy = struct
type 'a stream = Nil |
Cons of 'a * 'a stream Lazy.t

let cons a thunk =
Cons (a, thunk)

let car s =
match s with
| Cons (x, _) -> x 
| _ -> assert false

let cdr s =
match s with
| Cons (_, f) -> Lazy.force f 
| _ -> assert false

end



Optional: Lazy module of OCaml
module StreamTest = struct

open Stream

let rec sum a b =
cons ((car a) + (car b))
(fun () -> sum (cdr a) (cdr b))

let rec fibs () =
cons 1 (fun () ->
cons 2 (fun () ->
sum (fibs ()) (cdr (fibs ()))
))

let rec stream_ref s n =
if n = 0
then car s
else stream_ref (cdr s) (n -1)

end

let _ = let open StreamTest in
stream_ref (fibs ()) 10

module StreamLazyTest = struct
open StreamLazy

let rec sum a b =
cons ((car a) + (car b))
(lazy (sum (cdr a) (cdr b)))

let rec fibs () =
cons 1 (lazy (
cons 2 (lazy (
sum (fibs ()) (cdr (fibs ()))
))))

let rec stream_ref s n =
if n = 0
then car s
else stream_ref (cdr s) (n -1)

end

let _ = let open StreamLazyTest in
stream_ref (fibs ()) 10



Assignment 6

 In this assignment we will simulate simple circuits 
using streams

 Wires as a stream
 Logical gates
 Half adder, Full adder, and n-bit adder

 Download, adder.ml; implement all TODOs; and 
submit adder.ml to Brightspace

 Due date 5/2/2024



(** Stream ****************************
*)
module type IStream = sig
    type 'a stream = Nil | Cons of 'a * (unit -> 'a stream)

    val cons: 'a -> (unit -> 'a stream) -> 'a stream
    val nil: unit -> 'a stream
    val car: 'a stream -> 'a
    val cdr: 'a stream -> 'a stream
    val index: 'a stream -> int -> 'a
end

(* TODO: impelemnt Stream module
*)
module Stream: IStream = struct
    type 'a stream = Nil | Cons of 'a * (unit -> 'a stream)

    let cons h t =
    let nil () =
    let car = function
    let cdr = function
    let rec index s n =     (*return the n-th element of stream s*)
end



(** Wire ****************************
*)
module type IWire = sig
    include IStream
    type wire = int stream

    val w_zero: wire
    val w_one: wire
    val probe: wire list -> int -> unit
end

module Wire: IWire = struct
    include Stream
    type wire = int stream

    (* TODO: implement constant
       constant c returns the infinite stream of c
    *)
    let rec constant c =

    let w_zero = constant 0
    let w_one  = constant 1
…
end



(** Gate ****************************
*)
module type IGate = sig
    open Wire

    val g_not: wire -> wire
    val g_and: wire -> wire -> wire
    val g_or:  wire -> wire -> wire
end

module GateBuilder (P: IGateParam): IGate = struct
    open Wire

    (* delay d stream adds d 0's to the front of stream
        e.g. delay 3 stream => [0; 0; 0; stream]
    *)
    let rec delay d stream =
        if d = 0
        then stream
        else cons 0 (fun () -> delay (d-1) stream)



…
    (*not-gate: returns the negated stream of w_a
        e.g. g_not [1; 1; 0; 0; ...] => [0; 0; 1; 1; ...]
    *)
    let g_not w_a =
        let rec iter wa =
            let a = car wa in
            let o = if a = 0 then 1 else 0 in
            cons o (fun () -> iter (cdr wa)) in
        iter w_a |> delay P.delay_not

    (*TODO: impement g_and, the and-gate
        - g_and returns the stream of the conjunction of w_a and w_b
        e.g. g_and [1; 1; 0; 0; ...] [1; 0; 1; 0; ...] => [1; 0; 0; 0; ...]
    *)
    let g_and w_a w_b =

    (*TODO: impement g_or, the or-gate
        - g_or returns the stream of the disjunction of w_a and w_b
        e.g. g_and [1; 1; 0; 0; ...] [1; 0; 1; 0; ...] => [1; 1; 1; 0; ...]
    *)
    let g_or w_a w_b =

end



(** Adder ****************************
*)
module type IAdder = sig
    open Wire

    val half_adder: wire -> wire -> (wire * wire)
    val full_adder: wire -> wire -> wire -> (wire * wire)
    val adder:      wire list -> wire list -> wire list
end

module AdderBuilder (G:IGate) : IAdder = struct
    open Wire
    open G

    (*TODO: impement half_adder, a half-adder
        - half_adder returns the tuple of the sum and the carry streams
          of w_a and w_b
        e.g. half_adder [1; 1; 0; 0; ...]
                        [1; 0; 1; 0; ...]
                    => ([0; 1; 1; 0; ...], [1; 0; 0; 0; ...])
    *)
    let half_adder w_a w_b =



    (*TODO: impement full_adder, a full-adder
        - full_adder returns the tuple of the sum and the carry streams
          of w_a, w_b, and w_c
        e.g. half_adder [1; 1; 0; 0; ...]
                        [1; 0; 1; 0; ...]
                        [1; 1; 0; 0; ...]
                    => ([1; 0; 1; 0; ...], [1; 1; 0; 0; ...])
    *)
    let full_adder w_a w_b w_c =



    (*TODO: impement adder, an n-bit adder
        - wl_a, wl_b: list of wires of the form [LSB wire; ... ; MSB wire]
        - adder returns the sum of wl_a, wl_b with carry in the form
          [LSB wire; ... ; MSB wire; carry wire]
        e.g. adder [  [1; 0; 1; 1; ...];
                      [1; 1; 1; 0; ...]  ]
                   [  [1; 1; 1; 0; ...];
                      [0; 1; 1; 1; ...]  ]
            =>     [  [0; 1; 0; 1; ...];
                      [0; 0; 1; 1; ...];
                      [1; 1; 1; 0; ...]  ]

           i.e. adder [3; 2; 3; 1; ...]
                      [1; 3; 3; 2; ...]
                   => [(0, 1); (1, 1); (2, 1); (3, 0); ...]
    *)
    let adder wl_a wl_b =
        let rec iter wl_a wl_b w_c =

        iter wl_a wl_b w_zero
end

LSB
MSB


