CSE216 Programming Abstractions

Data Abstractions

YoungMin Kwon

Overview: 3 Elements of Data

" The 3 elements of data
= Primitive data
= Compound data
= Data abstraction

= Like 3 elements of programming
= Primitive expression
= Means of combination
= Means of abstraction

Overview: Primitive Data

Integers
= -1,0,1, 2, .. # 155
- int =1

Floats i 10
= -1.0,0, 1.0, 3.141592, float < 1.
Boolean # true;;
m true’ false - : bool = true
Ch * el

aracter . char = '3’
n lal,'bl, ICI' :

. # "hello";;
String - : string = "hello"

= "hello world"

@ Korea '

Overview: Compound Data

= Compound data

= A way to glue data together
" Closure property: can glue combined data objects again

"= Needs a way to access individual components

"= Compound data can increase the modularity of
programs

Overview: Compound Data

" E.g.) Rational number with two integers

= \Without compound data: needs to manage sets
of two integer variables

let numl 1 in let denl = 2 in
let num2 3 in let den2 = 4 in

let num3 = add_rat_num(numl, denl, num2, den2) in
let den3 = add _rat_den(numl, denl, num2, den2) in ..

= Combine num and den into rat

let ratl = make rat(1,2) in

let rat2 = make_rat(3,4) in
let rat3 = add _rat(ratl, rat2) in ..

.

Overview: Data Abstraction

= Data abstraction means isolating
= how data objects are represented from
= how data objects are used

0 E.g.) let example () =

let (+) = arith "add" in
let (-) = arith "sub" in
let (*) = arith "mul" in
let (/) = arith "div" in
let a = complex 2. 3. in
let b = polar 1. 3.14 in
(a+b) *a /b

= 3isacomplex numberin the rectangular form
= bisacomplex numberin the polar form

= However, we can use them the same way without
distinguishing their implementations

@ Ko;’ea '

Primitive Data

= OCaml Basic types

int 31-bit signed int on 32-bit processors,
63-bit signed int on 64-bit processors

float |IEEE double-precision floating point
bool A boolean

char An 8-bit char

string A string

unit Like void in C

@K_orea

Compound Data: Tuples

= Tuple

= Ordered collection of values that can be of
different type

" E.g.)

(1, "hello", true);;
- : int * string * bool = (1, "hello", true)

(1, ("hello", true));;
- : int * (string * bool) = (1, ("hello", true))

.

Compound Data: Tuples

= Pattern matching to access components

let (x, y) = (1, ("hello", true));;
val x : int =1
val y : string * bool = ("hello", true)

let (x, (y, z)) = (1, ("hello", true));;
val x : int =1

val y : string = "hello"
val z : bool = true

let (, (v,)) = (L, ("hello"™, true));;
val y : string = "hello"

Building Rational Numbers

= Example: building rational numbers

= Assume that the constructor and selectors are available as

let

let

= make rat n d,

" num X, den X

add rat x y =
make rat ((num
((den

sub rat x y =
make rat ((num
((den

(den y) + (num y) * (den x))
(den y));;

(den y) - (num y) * (den x))
(den y));;

@ Korea '

let

let

let

let

Building Rational Numbers

mul rat x y =
make rat ((num x) * (num y)) ((den x) * (den y));;

div_rat x y =
make rat ((num x) * (den y)) ((den x) * (num y));;

equal rat x y =
(num x) * (den y) = (den x) * (num vy);;

print rat x =
Printf.printf "%d/%d\n" (num x) (den x);;

@ Ko;’ea '

Building Rational Numbers

= Representing rational numbers as a pair
= Implementing pair using a tuple: constructor and accessors
let pair a b = (a, b);;

let first x let (a,) = x in a;;
let second x = let (_, Db) x in b;;

= The constructor and accessors for rational numbers

let make rat n d = pair n d;;

let num x = first x;;

let den x = second x;;

print rat (sub rat (make rat)
(make rat)) i

@Koreah)

Building Rational Numbers

= Reduce rational numbers to their lowest terms
= Divide n and d by their gcd in make_rat

let make rat n d =
let rec gcd x y =
if x > vy then gcd (x - vy) vy
else if x < y then gcd (y - x) x
else x 1in
let g = gcd n d in
pair (n/g) (d/g);;

print rat (sub rat (make rat)
(make rat)) ;>

= Because of the data abstraction, this change does not
affect other parts of the program

Building Rational Numbers

=" Implementing pair using a function

fun z -> if z then a else Db;;
x true in;;
x false in; ;

let pair a b
let first x
let second x

print rat (sub rat (make rat 1 2)
(make rat 1 3));;

= Again, because of the data abstraction, this change does
not affect any other parts of the program

@ Korea)

What is Meant by Data

= \We can think of data as
= Some collection of selectors and constructors, and
" Conditions that these procedures must satisfy

= E.g.) pairs of rational number
= Constructor: pair
= Selectors: first, second

= Conditions: if x is a pair of a and b, then first x is a and
second xis b

@ Korea)

What is Meant by Data
" E.g.) Representing pair

let pair a b = (a, b)

let pair a b z =
let first (a, _)

a if z then a

let second (_, b) =D else b
let first x = x true
uncurried function: let second x = x false

pattern matching
at parameters

= Both representations have the same constructor,
selectors, and the condition

@ Korea '

Abstraction Barriers

= Abstraction barriers
" |solate different levels of a system
= The barrier at each level

= Separates the program above that uses the data

" From the program below that implements the data
abstraction

= Procedures at each level are interfaces that define
the abstraction barriers

Abstraction Barriers

{Programs that use rational numbers

—

Rational numbers in problem domain

{ add_rat sub_rat .. }

Rational numbers as numerators and denominators

[make rat num den }

Rational numbers as pairs

| pair first second |

L)
Pairs as tuples

{ (a, b) 1let (a, b) = x }

However tuples are implemented

@Koreah)

Example: A Picture Language

" Demonstrates the power of

m Data abstraction

" High order procedures

" Closure property

= Results of an operation can be
used for the same operation

Install Graphics Package

= Run the following commands in Ubuntu
* sudo apt install pkg-config (may not necessary)
= opam init
" opam update
= opam install graphics

Install Graphics Package

= Copy graphics.cmi and graphics.cma to your local
directory

= opam config list graphics

* Find where the graphics library is installed
" Look for graphics:lib or library directory for this package

= Copy graphics.cmi and graphics.cma from the library
to your local directory
= E.g.:
= cp ~/.opam/default/lib/graphics/graphics.cmi .
= cp ~/.opam/default/lib/graphics/graphics.cma..

@ Korea)

Test Graphics

" Run the following commands from your ocaml
top level

¥ ykwon4@youngbox2: /mnt/c, X ==

L OCanl ver=ionit s 10

#load "graphics.cma";;
open Graphics;;

open_graph " 500x500";;
== unit = ()

lineto 300 300;;

= = unit = ()

close_graph ();;

= = gndt = ()

#

@Korean‘_

Install X11 Server

" You may need to install X11 server

= Windows: install xming from
https://sourceforge.net/projects/xming/

= WSL: may need to add export DISPLAY=127.0.0.1:0 to
bashrc file

= Mac: install XQuartz

To Use Graphics in Cygwin
Check if Graphics package is installed

$ opam list

Packages matching: installed

Name # Installed # Synopsis

base-bigarray base

graphics 5.1.1 The OCaml graphics library

ocaml 4.11.1 The OCaml compiler (virtual package)

Install Graphics package if it is not installed

$ opam install graphics

Run Ocaml with -I (include) option

$ ocaml -I $(ocamlfind query graphics)

If ocamlfind is not installed, install it using

$ opam install ocamlfind

@Koreah)

Picture Language:
Abstraction Barriers
()

l Programs that use transforms]

Complex transform operations on painter

f

Lright_split, up_split, corner_splitm]

J
Simple transform operations on painter

f

| tf _painter, flip, scale, translate, rotate |

)

Frames as a tuple of vectors

{new_Frame, frame_to _globalcoord map |

)

2D vectors as tuples

| add, sub, prod, smul

—

However tuples are implemented

@ Korea '

A Picture Language

Key elements

= Painter

= A function that takes a frame and draws on
the frame

"= Frame
= Decides where and how the painter draws .- %
image %

= A tuple of 0, u, and v vectors in the global f
. rame
coordinate e

vector

frame
edgel
vector

0: origin vector,
u: edgel vector, v: edge2 vector

frame
origin (0, 0) point on
vector display screen

A Picture Language

= Key elements
= Mapping

" Frame coordinate — screen

coordinate

"p—o>0o+pxFu+py*v

= Painter draws on the frame
= We transform the frames

frame
edgel
vector

frame
edge2
vector

frame
origin (0, 0) point on
vector display screen

Complex transform operations on painter
—[m,;!'-\ plit, up_split, rner_split]—
[]
Simple transform operations on painter
I C Ul I e a I l LI a e —[e];
Frames as a tuple of vectors
_‘ new_frame, frame_to_globalcoord_map l—
2D vectors as tuples

= \/ector 2d

(*vector 2d---------------mmmmm oo b

a—bh
*) a+b a
a

(*add, sub*)

let add (x1, y1) (x2, y2) = (x1 +. x2, yl +. y2)
let sub (x1, y1) (x2, y2) = (x1 -. x2, y1l -. y2) _
(*scalar multiplication*) 22"

let smul s (x, y) = (s *. x, s *. vy)

(*inner product*) /45////”

let prod (x1, y1) (x2, y2) = x1 *. x2 +. yl *, y2 ;

a.b =|a] |b] Cos6

.

A Picture Language

= \/ector 2d

pi = acos (- 1.)

let
let deg2rad deg = deg /. 180. *.
let rad2deg rad = rad /. pi *.

pi
180.

(*rotate v a degree from center¥*)

let rot a center v =

let cv = sub v center in

let cosx = cos (deg2rad a)
let sinx = sin (deg2rad a)
let x = prod (cosx, -.

let y = prod (sinx,
add (x, y) center

>

i

i

>

sinx) cv i
COSX) CV 1

515

Jf

@ Korea)

>rograms that use tra
F ' a I ' l e a I l d —'r'\,;nt split, up_split, corner_split
Simple transform operations on paint
tf_painter, fl le

—{ late
[}] Frames tuple of vectors
Coordinate Mapping —=- =
2D vectors as tuples
_[add b, prod ul
* However tuples ar leme
(¥Frame-----===--c - ea

new _frame o u v = (0, u, V)
let frame g = new_frame (0.,0.) (1.,0.) (0.,1.)

(*convert (x,y) in frame coord to global coord*)
let frame to global coord map frame =

let (o, u, v) = frame in

fun (x, y) -> add o (add (smul x u) (smul y v))

frame
edgel
vector

frame
edge2
vector

frame

origin (0, 0) point on
vector display screen Rores .

Base Painter

(*base painter--------------- -
draw a box of a nearly entire frame
k
)
let base painter =
let scale a s = truncate (a *. float s) in
let move to (x, y) = scale x (size x ()) |> fun sx ->
scale y (size y ()) |> fun sy ->
moveto sx sy in
let Line to (x, y) = scale x (size x ()) |> fun sx ->
scale y (size y ()) |[> fun sy ->
lineto sx sy in
fun frame ->
let map = frame_to_global coord map frame in

let b = .99 in

Returns a painter, a let a=1. -. b in

function that takes a set_color red; i Sequence Operator:
frame and draws on it | move_to (map (a, a)); append next expr
line_to (map (a, b)); if prev expr is ()

line _to (map (b, b));
line _to (map (b, a));
line_to (map (a) a)) @Korea

Closure property:

tf _painter returns a

painter. It takes a
and draws on it

e Complex transform operations on painter
Imple Transtorm -

Simple transform operations on painter
—{ tf_pair flip, scale, translate, rotate }—

[] Frames as a tuple of vectors
F)Eallﬂrtealfs; -
2D vectors as tuple
{ , sub, prod, smul }
(* . . However tuples are implemented
simple transform on painters----------------

*)
(*tf _painter make painter draw on the Local
coordinate system of o, x, y w.r.t. frame
1.e. paint on the new frame of o, x, y w.r.t. frame*)

let tf painter painter o x y =
fun| frame| ->

4////,77 ety map = frame_to global coord map frame in

let\(go, gu, gv) = (map o, map x, map y) in

the frame for o, x, y local coord. sys.*)
r (new_frame go (sub gu go) (sub gv go))

frame

@ Rores

Simple Transform Painters

let flip ver painter =
tf_painter painter (0.,1.) (1.,1.) (0.,0.)

(* o x oy)
1 cam) grapeics - O B s graphice - o
= B,
ZIAAALE
f’ﬁp{ . F\f :Vy{/":: R
] “ b . i P
?’;:5-& it f\f"’;ﬁs (\;‘\W\ i A
ey i 7
AT == -
e/ =S \
| _\\ ‘__r"_f‘j % S LA 5 N
b S \,«/;f/’:’ f’/ : "y b3
- /
2 g
8 N / |
L \\ \\./ / f' /
TR A
~— i
T‘———.______ R"\-—.._H_/(’II

@ Korea

Simple Transform Painters

let fLlip hor painter

tf_painter painter (1.,0.) (0.,0.) (1.,1.)

(*

O

B QCamI graphics

¢

"y

*)

B QCam] Graphics

@ Korea

[
M
+

=
)
+

=
¢
+

[
M
+

Simple Transform Painters

scale sx sy painter =
tf_painter painter (0., 0.) (sx, 0.) (0., sy)

translate tx ty painter =
tf _painter painter (tx, ty) (1. +. tx, 0. +. ty)
(0. +. tx, 1. +. ty)

rotate a center painter =
let r = rot a center in
tf_painter painter (r (0., 0.)) (r (1., 0.)) (r (0., 1.))

rotate9o painter
rotatel80 painter
rotate270 painter

rotate 96. (0.5, 0.5) painter
rotate 180. (0.5, 0.5) painter
rotate 270. (0.5, 0.5) painter

@ Korea)

Simple Transform Painters

let beside painter L painter_r =
paint left = tf_painter painter_1 (0.,0.)

let
let
fun

paint_right = tf_painter painter_r (0.5,0.) (1.,0.)

frame ->
paint_left e;
paint_right frame

(0.5,0.) (0.,1.)
(0.5,1.)

Closure property: beside
returns a painter. It takes a
frame and draws on it

B QCamI graphics

55
S |5

@.K_orea

Simple Transform Painters

let below painter t painter b =
let paint_top = tf_painter painter_t (0.,0.5) (1.,0.5) (0.,1.)
let paint bottom = tf _painter painter b (0.,0.) (1.,0.) (0.,0.5)
fun frame ->
paint_top frame;
paint_bottom frame

55
S |5

B QCamI graphics = u] X B QCamI graphics = u] X

@ Rores

Complex Transform
Painters

(*complex transform on painters---------------

*)
let flipped pairs painter =

|

Programs that use transforms

T

Complex transform operations on painter

|

right_split, up_split, corner_split..

"

Simple transform operations on painter

tf_painter, flip, scale, translate, rotate

Frames as a tuple of vectors

new_frame, frame_to_globalcoord_map

2D vectors as tuples

add, sub, prod, smul

I
TTT

However tuples are implemented

let painter2 = beside (flip hor painter) painter in

below painter2 (flip ver painter2)

P I
B QCamI graphics = u] X B QCam Graphics

@ Rores

Complex Transform Painters

let rec right split painter n =
if n = @ then painter
else
let smaller = right split painter (n-1) in
beside painter (below smaller smaller)

N\

right_split returns a
painter: it takes a frame
and draws on it

(::::)erea

Complex Transform Painters

let rec up _split painter n =
if n = @ then painter
else
let smaller = up_split painter (n-1) in
below (beside smaller smaller) painter

B OCaml graphics

(::::)erea

Complex transform on painter

let rec corner_split painter n =
if n = @ then painter

else
let up = up_split painter (n-1) in
let right = right _split painter (n-1) in
let top left = beside up up in
let bottom right = below right right
let corner = corner_split painter (n £§S;EE\\\‘
beside (below top left painter)
(below corner bottom_right) Without up up or right
right, the pictures look

squeezed.

o - [£ 1

o, T P T | :

L g +

3

FERFLSEFRTRRLTFVISRERHRB VAR R R WY
+

(::::)erea

Complex Transform Painters

let rec rot _scale painter n =
if n = @ then painter
else
let rs = painter |> scale 0.95 0.95
|> rotate (-10.) (0.7, 0.3)
|> fun p -> rot_scale p (n-1) in
fun frame ->
painter frame;
rs frame

B QCam| Graphics = (u] x B QCamE Graphics i n} X

(::::)erea

|

Programs that use transforms

-

Complex transform operations on painter

L

ight_split, up_split, corner_split

-

Simple transform operations on painter

tf_painter, flip, scale, otate

Frames as a tuple of vectors

., frame_to_globalcoord_map

2D vectors as tuples

Drawing on a window

(AP AW~ = = = = = = = =~ — o o

*)

let draw painter frame =
open_graph " 600x600"
clear_graph ();
painter frame;
(*close graph ();*)
()

Lll
TTT

oo

This space is not a
mistake

I
B OCaml graphics

A u] * | B QCaml graphics

A Picture Language: Overall Program

#load "graphics.cma"; ;= Load Graphics module
open Graphics;;

After open, you can
use lineto instead of
Graphics.lineto

vector 2d¥)

*base palinter¥®)
imple transform on painter*)
omplex transform on palnter¥)

0]

*
*

Q

(
(
(
(
(
(

let rs = rot_scale (scale 0.5 0.5 base_painter) 50
let p1 = base_painter

let p2 = flip ver rs

let p3 = flip hor rs

let p4 = beside rs rs

let p5 = below rs rs

let p6 = flipped pairs rs

let p7 = right split rs 8

up_split rs 8

let p9 = corner_split rs 8

let pa = rot_scale (scale 0.5 0.5 rs) 50

let = draw p9 frame g @Korea

—
]

)
0
]

Compound Data: Lists

= List
= Any number of items of the same type
" Tuple: fixed number of possibly different types

" E.g.)
[1; 25 3153
- ¢ int list = [1; 2; 3]

["hello"; "world"];;
- : string list = ["hello"; "world"]

[1, 2, 3];; (*semicolons vs commas*)
- ¢ (int * int * int) 1list = [(1, 2, 3)]

Compound Data: Lists

" Constructing lists with : :

1::2::3::[];; (* two list constructors: [] and ::

- ¢ int list = [1; 2; 3]

1::(2::(3::[D))33
- ¢ int list = [1; 2; 3]

[1;2;3] @ [4;5;6];; (* list concatenation *)
- : int 1list = [1; 2; 3; 4; 5; 6]

#1155
-+ 'a list = []

*)

Compound Data: Lists

= Use pattern matching to extract components

= Two list constructors: | | and : :

let rec sum L =
match 1 with

| [1->0
| hd :: tL -> hd + sum tl

sum [1;2;3]1;;

- : int = 6

function is equivalent to
let rec sum = function <param> match <param> with

| [1 ->0
| hd :: tL -> hd + sum tl

@ Korea '

Compound Data: Lists

" Mapping over list
= Apply a transform to each element in a list and
generate the list of results

let rec map f L =
match 1 with
| [1 ->[1]
| hd :: tL -> (f hd) :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
let =map (fun x -> x * x) [1; 2; 3]1;;

- ¢ int list = [1; 4; 9]

@Koreah)

Compound Data: Lists

= Filter

= Apply a predicate function to each elementin a
list and generate a filtered list

let rec filter f L =
match 1 with
| [1 ->[1
| hd :: tL -> if f hd
then hd :: filter f tl
else filter f tl
let = filter ((fun x -> x mod 2 = 90)) [1; 2; 3; 4; 5]

- ¢ int list = [2; 4]

@Koreah)

Compound Data: Lists

" Function composition by |> operator

let sum of odd squares L =
1 [> filter (fun x -> x mod 2 = 1)
|> map (fun x -> x * x)
| > sum

let = sum_of odd squares [1;2;3;4;5;6,7,;8;9;10];;

- : int = 165

@ Korea)

Compound Data: Records

= Records

= Similar to tuples
= |ndividual fields are named

" Defining new data type

type pointad

= { x : float; y : float };;
type point2d = { x

: float; y : float; }

let p = { x

= y=—4. };;
val p : point2d

3.5
={)y=_4‘}

- ACCESSing data function parameter

__Zsf"

let magl { x = _x; y =
2. +

let (*pattern matching*)
sqrt (_x **)

I\)II

.y ¥

let mag2 { x; y } = (*field punning*)

sqrt (x ** 2. +. y ** 2.) omitting param. names
when they are equal to
let mag3 p = (*dot notation*) field names

sqrt (p.x ** 2. +. p.y ** 2.)

let mag = mag3

let dist p q = (*distance between p and g*)
mag { x = p.x -. g.X; y = p.y -. q.y}

let p={x=3.;y=-4.1}

let g={x=4.5y=-5 1}

let dist p ¢

. float = 1.4142135623730951 <:>
Korea

Assignment 3

" Implement a Tic-Tac-Toe game

= Download robot.zip
" Implement all TODO parts

= After finishing the assignment,
you should be able to play the Tic-Tac-Toe game
with the robot

= Upload basis.m| board.ml, command.ml,
drawer.ml, pose.ml, vector.ml in a single zip file
to Brightspace

= Due date: 4/4/2024

@ Korea)

Abstraction Barriers

Game Plays the game

winner, next_mark, game, ...

S

 S—

Command moves robots

f

l move to pose, pick, drop, mark ,."}

Drawer draws a robot and a board w.r.t. a basis

rdr‘aw box, draw robot, draw arml, .. |
G - - J
Pose pose of a robot

{ get_pose, chg pose, find_pose, ..}

Basis as a tuple of vectors
{scale, translate, rot, v2g, b2g, .. }

3D vectors as tuples

[)

add, sub, prod, smul, ..
L) (::::)KDreaMh

Assignment 3

" To play Tic-Tac-Toe
" Press the number keys (1~ 9) to put a
mark at the position ehal 7

= Press q to quit WL

" The robot should mark on the position,
where

= it will win the game if the position is
marked by the robot

= it will lose the game if the position is
marked by the other

= Otherwise, mark any empty position

@Koreah)

(*ap

#use
#use
#use
#use
#use
#use
#use
#use

let

let

p.mL*)

"globals.ml"
"vector.ml"
"basis.ml"

"board.ml"
"pose.ml" You can test each file by uncommenting

"drawer.ml" test codes
"command.ml" ‘\V/7
"game.ml"

app () =

Abstraction levels

(*camera basis*)
let b camera = (b_rotx (-60.) (b_rotz (-210.) gb basis)) in
(*initial pose*)
let ipose = (90., 30., 60., 0., mark_n) in
(*initial board*)
let iboard = [mark_n; mark_n; mark_n;
mark_n; mark_n; mark_n;
mark_n; mark _n; mark_n;
mark_o (*9*); mark_x (*16*)] in

Graphics.open_graph " 800x800";
Graphics.auto_synchronize false;

game b_camera (ipose, iboard) |> print_result;
Graphics.auto_synchronize true

_=app ()

.

(*drawer.mlL*)

(*convert b w.r.t. basis to the global coordinate*)
let b2g basis b basis =

let draw _arml pose =

let s = 0.9 in
let v ta2 = (0.0,0.0,0.56) in
fun basis -»>
let b a2 = gb _basis (*b _a2: basis for arm 2%*)

(*TODO: rotate gb basis by arm2 angle of pose around y axis*)
(*TODO: scale the result by 6.5%)
(*TODO: translate the result by v_ta2*)

* X 1s coord to global coord*)
|> b_roty (get_pose pose "arm2")
|> b_scale 0.5 These are not in your

|> b_translate v_ta2 _ f1
|> fun b -> b2g basis b basis in assignment tile

(*draw arm2 in b_a2 basis*)
draw_arm2 pose b_a2;

(*draw arml*)
draw_box (©.12/.s) (©.12/.s) (©.5/.s) Graphics.black basis

@K_orea

(*pose.mlL*)
type pose = float * float * float * float * float;;

(*find the angle of joints to get to x y z*)
let find pose (x, y, z) =
fun f m ->
(*TODO: find b, al, and a2 and return the pose (b, al, a2, f, m)
b: angle (deg) of base measured from x axis (use atan2),
al: angle (deg) of arml measured from z axis
a2: angle (deg) of arm2 measured from arml .. *)

A= {7
(4, +d, cosb] +(dssin-b)&: d™
S~ o/ = 92 Sid /d
s~-0 = 2/d
banb = L

(*command.mL*)

(*move from pose to target pose*)
let moveto pose b camera (pose, board) target pose =
let db = (get pose target pose "base") . (get_pose pose

let dal = (get _pose target pose "arml") -. (get_pose pose
let da2 = (get pose target pose "arm2") -. (get_pose pose
let df = (get _pose target pose "finger") -. (get_pose pose

(*move the joint <ang> angle in <step> steps
e.g. rotate arml 30 deg in 5 steps
=> rotate arml 5 times 6 deg each
k
)
let rot joint pose joint ang step =
(*TODO: implement this method
- on each step, draw the robot and the board
- wait for 56ms by calling Thread.delay ©0.05
- after rotating step times, return the final pose

*)

(*move the joints in base, arml, arm2, and finger order*)
let p = pose

|> fun p -> rot_joint p "base" db 5

|> fun p -> rot_joint p "arml" dal 5

|> fun p -> rot_joint p "arm2" da2 5

|> fun p -> rot_joint p "finger" df 3 in
(p, board)

(*command.mL*)

(*put mark at dst*)

let mark b _camera (pose, board) mrk dst =
let src = if mrk = mark_o then 9 else 10 in 7 T2
let f = get_pose pose "finger" in -
let m = get pose pose "mark" in

(*TODO: 1) find b, al, and a2 for dst _pose and src_pose
using find pose, mark_pos then
2) pass two params for the fun returned by find pose

*)
let dst pose = in (*robot's pose for the dst-th mark with finger is f, mark is mrk*)
let src _pose = in (*robot's pose for the src-th mark with finger is @, mark is m*)

(*moveto pose with the first param applied*)
let mvp = moveto pose b _camera in

(*TODO: 1. move to pose src_pose (use mvp)

2. pickR the mark at src (use pick)

3. Lift (use mvp and Lift pose)
4. move to pose dst pose (use mvp)

5. drop the mark at dst (use drop)

6. Lift (use mvp and Lift pose)
7. return the resulting pose and the board*)

