
CSE216 Programming Abstractions
Data Abstractions

YoungMin Kwon

Overview: 3 Elements of Data

 The 3 elements of data
 Primitive data
 Compound data
 Data abstraction

 Like 3 elements of programming
 Primitive expression
 Means of combination
 Means of abstraction

Overview: Primitive Data
 Integers

 -1, 0, 1, 2, …

 Floats
 -1.0, 0, 1.0, 3.141592, …

 Boolean
 true, false

 Character
 'a', 'b', 'c’,

 String
 "hello world"

1;;
- : int = 1

1.0;;
- : float = 1.

true;;
- : bool = true

'a';;
- : char = 'a'

"hello";;
- : string = "hello"

Overview: Compound Data

 Compound data
 A way to glue data together

 Closure property: can glue combined data objects again

 Needs a way to access individual components

 Compound data can increase the modularity of
programs

Overview: Compound Data

 E.g.) Rational number with two integers
 Without compound data: needs to manage sets

of two integer variables

 Combine num and den into rat

let num1 = 1 in let den1 = 2 in
let num2 = 3 in let den2 = 4 in
let num3 = add_rat_num(num1, den1, num2, den2) in
let den3 = add_rat_den(num1, den1, num2, den2) in …

let rat1 = make_rat(1,2) in
let rat2 = make_rat(3,4) in
let rat3 = add_rat(rat1, rat2) in …

Overview: Data Abstraction
 Data abstraction means isolating

 how data objects are represented from
 how data objects are used

 E.g.)

 a is a complex number in the rectangular form
 b is a complex number in the polar form
 However, we can use them the same way without

distinguishing their implementations

let example () =
let (+) = arith "add" in
let (-) = arith "sub" in
let (*) = arith "mul" in
let (/) = arith "div" in
let a = complex 2. 3. in
let b = polar 1. 3.14 in
(a + b) * a / b

Primitive Data

 OCaml Basic types

CommentsType

31-bit signed int on 32-bit processors,
63-bit signed int on 64-bit processors

int

IEEE double-precision floating pointfloat

A booleanbool

An 8-bit charchar

A stringstring

Like void in Cunit

Compound Data: Tuples

 Tuple
 Ordered collection of values that can be of

different type

 E.g.)

(1, "hello", true);;
- : int * string * bool = (1, "hello", true)

(1, ("hello", true));;
- : int * (string * bool) = (1, ("hello", true))

Compound Data: Tuples

 Pattern matching to access components

let (x, y) = (1, ("hello", true));;
val x : int = 1
val y : string * bool = ("hello", true)

let (x, (y, z)) = (1, ("hello", true));;
val x : int = 1
val y : string = "hello"
val z : bool = true

let (_, (y, _)) = (1, ("hello", true));;
val y : string = "hello"

Building Rational Numbers

 Example: building rational numbers
 Assume that the constructor and selectors are available as

 make_rat n d,
 num x, den x

let add_rat x y =
 make_rat ((num x) * (den y) + (num y) * (den x))
 ((den x) * (den y));;

let sub_rat x y =
 make_rat ((num x) * (den y) - (num y) * (den x))
 ((den x) * (den y));;

Building Rational Numbers

let mul_rat x y =
 make_rat ((num x) * (num y)) ((den x) * (den y));;

let div_rat x y =
 make_rat ((num x) * (den y)) ((den x) * (num y));;

let equal_rat x y =
 (num x) * (den y) = (den x) * (num y);;

let print_rat x =
 Printf.printf "%d/%d\n" (num x) (den x);;

Building Rational Numbers

 Representing rational numbers as a pair
 Implementing pair using a tuple: constructor and accessors

 The constructor and accessors for rational numbers

let make_rat n d = pair n d;;
let num x = first x;;
let den x = second x;;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

let pair a b = (a, b);;
let first x = let (a, _) = x in a;;
let second x = let (_, b) = x in b;;

Building Rational Numbers
 Reduce rational numbers to their lowest terms

 Divide n and d by their gcd in make_rat

 Because of the data abstraction, this change does not
affect other parts of the program

let make_rat n d =
 let rec gcd x y =
 if x > y then gcd (x - y) y
 else if x < y then gcd (y - x) x
 else x in
 let g = gcd n d in
 pair (n/g) (d/g);;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

Building Rational Numbers

 Implementing pair using a function

 Again, because of the data abstraction, this change does
not affect any other parts of the program

let pair a b = fun z -> if z then a else b;;
let first x = x true in;;
let second x = x false in;;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

What is Meant by Data

 We can think of data as
 Some collection of selectors and constructors, and
 Conditions that these procedures must satisfy

 E.g.) pairs of rational number
 Constructor: pair
 Selectors: first, second
 Conditions: if x is a pair of a and b, then first x is a and
second x is b

What is Meant by Data

 E.g.) Representing pair

 Both representations have the same constructor,
selectors, and the condition

let pair a b z =
 if z then a
 else b
let first x = x true
let second x = x false

let pair a b = (a, b)
let first (a, _) = a
let second (_, b) = b

uncurried function:
pattern matching
at parameters

Abstraction Barriers

 Abstraction barriers
 Isolate different levels of a system
 The barrier at each level

 Separates the program above that uses the data
 From the program below that implements the data

abstraction

 Procedures at each level are interfaces that define
the abstraction barriers

Abstraction Barriers
PPrograms that use rational numbers

Rational numbers in problem domain

add_rat sub_rat …

Rational numbers as numerators and denominators

make_rat num den

Rational numbers as pairs

pair first second

Pairs as tuples

(a, b) let (a, b) = x

However tuples are implemented

Example: A Picture Language

 Demonstrates the power of
 Data abstraction
 High order procedures
 Closure property

 Results of an operation can be
used for the same operation

Install Graphics Package

 Run the following commands in Ubuntu
 sudo apt install pkg-config (may not necessary)
 opam init
 opam update
 opam install graphics

Install Graphics Package

 Copy graphics.cmi and graphics.cma to your local
directory
 opam config list graphics

 Find where the graphics library is installed
 Look for graphics:lib or library directory for this package

 Copy graphics.cmi and graphics.cma from the library
to your local directory
 E.g.:
 cp ~/.opam/default/lib/graphics/graphics.cmi .
 cp ~/.opam/default/lib/graphics/graphics.cma .

Test Graphics

 Run the following commands from your ocaml
top level

Install X11 Server

 You may need to install X11 server
 Windows: install xming from

https://sourceforge.net/projects/xming/

 WSL: may need to add export DISPLAY=127.0.0.1:0 to
.bashrc file

 Mac: install XQuartz

To Use Graphics in Cygwin
 Check if Graphics package is installed

 Install Graphics package if it is not installed

 Run Ocaml with -I (include) option

 If ocamlfind is not installed, install it using

$ opam list
Packages matching: installed
Name # Installed # Synopsis
base-bigarray base
...
graphics 5.1.1 The OCaml graphics library
ocaml 4.11.1 The OCaml compiler (virtual package)
...

$ opam install graphics

$ ocaml -I $(ocamlfind query graphics)

$ opam install ocamlfind

Picture Language:
Abstraction Barriers

PPrograms that use transforms

Complex transform operations on painter

right_split, up_split, corner_split…

Simple transform operations on painter

tf_painter, flip, scale, translate, rotate

Frames as a tuple of vectors

new_frame, frame_to_globalcoord_map

2D vectors as tuples

add, sub, prod, smul

However tuples are implemented

A Picture Language

 Key elements
 Painter

 A function that takes a frame and draws on
the frame

 Frame
 Decides where and how the painter draws

image
 A tuple of o, u, and v vectors in the global

coordinate
 o: origin vector,
 u: edge1 vector, v: edge2 vector

A Picture Language

 Key elements
 Mapping

 Frame coordinate screen
coordinate

 p o + p.x * u + p.y * v

 Painter draws on the frame
 We transform the frames

A Picture Language

 Vector 2d

(*vector 2d--------------------------------------
*)

(*add, sub*)
let add (x1, y1) (x2, y2) = (x1 +. x2, y1 +. y2)
let sub (x1, y1) (x2, y2) = (x1 -. x2, y1 -. y2)

(*scalar multiplication*)
let smul s (x, y) = (s *. x, s *. y)

(*inner product*)
let prod (x1, y1) (x2, y2) = x1 *. x2 +. y1 *. y2

A Picture Language

 Vector 2d

let pi = acos (- 1.)
let deg2rad deg = deg /. 180. *. pi
let rad2deg rad = rad /. pi *. 180.

(*rotate v a degree from center*)
let rot a center v =

let cv = sub v center in
let cosx = cos (deg2rad a) in
let sinx = sin (deg2rad a) in
let x = prod (cosx, -. sinx) cv in
let y = prod (sinx, cosx) cv in
add (x, y) center

Frame and
Coordinate Mapping

(*frame--
*)

let new_frame o u v = (o, u, v)
let frame_g = new_frame (0.,0.) (1.,0.) (0.,1.)

(*convert (x,y) in frame coord to global coord*)
let frame_to_global_coord_map frame =

let (o, u, v) = frame in
fun (x, y) -> add o (add (smul x u) (smul y v))

o

uv

Base Painter
(*base painter-----------------------------------
draw a box of a nearly entire frame

*)
let base_painter =

let scale a s = truncate (a *. float s) in
let move_to (x, y) = scale x (size_x ()) |> fun sx ->

scale y (size_y ()) |> fun sy ->
moveto sx sy in

let line_to (x, y) = scale x (size_x ()) |> fun sx ->
scale y (size_y ()) |> fun sy ->
lineto sx sy in

fun frame ->
let map = frame_to_global_coord_map frame in
let b = 0.99 in
let a = 1. -. b in
set_color red;
move_to (map (a, a));
line_to (map (a, b));
line_to (map (b, b));
line_to (map (b, a));
line_to (map (a, a))

Sequence Operator:
append next expr
if prev expr is ()

Returns a painter, a
function that takes a
frame and draws on it

o

yx

Simple Transform
Painters

(*simple transform on painters----------------
*)

(*tf_painter make painter draw on the local
coordinate system of o, x, y w.r.t. frame
i.e. paint on the new frame of o, x, y w.r.t. frame*)

let tf_painter painter o x y =
fun frame ->

let map = frame_to_global_coord_map frame in
let (go, gu, gv) = (map o, map x, map y) in

(*make the frame for o, x, y local coord. sys.*)
painter (new_frame go (sub gu go) (sub gv go))

Closure property:
tf_painter returns a
painter. It takes a frame
and draws on it

Simple Transform Painters

let flip_ver painter =
tf_painter painter (0.,1.) (1.,1.) (0.,0.)
(* ^o ^x ^y *)

=>

Simple Transform Painters

let flip_hor painter =
tf_painter painter (1.,0.) (0.,0.) (1.,1.)
(* ^o ^x ^y *)

=>

Simple Transform Painters

let scale sx sy painter =
tf_painter painter (0., 0.) (sx, 0.) (0., sy)

let translate tx ty painter =
tf_painter painter (tx, ty) (1. +. tx, 0. +. ty)

(0. +. tx, 1. +. ty)

let rotate a center painter =
let r = rot a center in
tf_painter painter (r (0., 0.)) (r (1., 0.)) (r (0., 1.))

let rotate90 painter = rotate 90. (0.5, 0.5) painter
let rotate180 painter = rotate 180. (0.5, 0.5) painter
let rotate270 painter = rotate 270. (0.5, 0.5) painter

Simple Transform Painters

Closure property: beside
returns a painter. It takes a
frame and draws on it

let beside painter_l painter_r =
let paint_left = tf_painter painter_l (0.,0.) (0.5,0.) (0.,1.) in
let paint_right = tf_painter painter_r (0.5,0.) (1.,0.) (0.5,1.) in
fun frame ->

paint_left frame;
paint_right frame

=>

let below painter_t painter_b =
let paint_top = tf_painter painter_t (0.,0.5) (1.,0.5) (0.,1.) in
let paint_bottom = tf_painter painter_b (0.,0.) (1.,0.) (0.,0.5) in
fun frame ->

paint_top frame;
paint_bottom frame

Simple Transform Painters

=>

(*complex transform on painters------------------
*)
let flipped_pairs painter =

let painter2 = beside (flip_hor painter) painter in
below painter2 (flip_ver painter2)

Complex Transform
Painters

=>

let rec right_split painter n =
if n = 0 then painter
else

let smaller = right_split painter (n-1) in
beside painter (below smaller smaller)

Complex Transform Painters

right_split returns a
painter: it takes a frame
and draws on it

let rec up_split painter n =
if n = 0 then painter
else

let smaller = up_split painter (n-1) in
below (beside smaller smaller) painter

Complex Transform Painters

Without up up or right
right, the pictures look
squeezed.

let rec corner_split painter n =
if n = 0 then painter
else

let up = up_split painter (n-1) in
let right = right_split painter (n-1) in
let top_left = beside up up in
let bottom_right = below right right in
let corner = corner_split painter (n-1) in
beside (below top_left painter)

(below corner bottom_right)

Complex transform on painter

let rec rot_scale painter n =
if n = 0 then painter
else

let rs = painter |> scale 0.95 0.95
|> rotate (-10.) (0.7, 0.3)
|> fun p -> rot_scale p (n-1) in

fun frame ->
painter frame;
rs frame

Complex Transform Painters

=>

Drawing on a window
(*draw---
*)
let draw painter frame =

open_graph " 600x600";
clear_graph ();
painter frame;
(*close_graph ();*)
()

This space is not a
mistake

A Picture Language: Overall Program
#load "graphics.cma";;
open Graphics;;

(*vector 2d*)
(*frame*)
(*base painter*)
(*simple transform on painter*)
(*complex transform on painter*)
(*draw*)

let rs = rot_scale (scale 0.5 0.5 base_painter) 50
let p1 = base_painter
let p2 = flip_ver rs
let p3 = flip_hor rs
let p4 = beside rs rs
let p5 = below rs rs
let p6 = flipped_pairs rs
let p7 = right_split rs 8
let p8 = up_split rs 8
let p9 = corner_split rs 8
let pa = rot_scale (scale 0.5 0.5 rs) 50
let _ = draw p9 frame_g

After open, you can
use lineto instead of
Graphics.lineto

Load Graphics module

Compound Data: Lists

 List
 Any number of items of the same type
 Tuple: fixed number of possibly different types
 E.g.)

[1; 2; 3];;
- : int list = [1; 2; 3]

["hello"; "world"];;
- : string list = ["hello"; "world"]

[1, 2, 3];; (*semicolons vs commas*)
- : (int * int * int) list = [(1, 2, 3)]

Compound Data: Lists

 Constructing lists with ::

1::2::3::[];; (* two list constructors: [] and :: *)
- : int list = [1; 2; 3]

1::(2::(3::[]));;
- : int list = [1; 2; 3]

[1;2;3] @ [4;5;6];; (* list concatenation *)
- : int list = [1; 2; 3; 4; 5; 6]

[];;
- : 'a list = []

Compound Data: Lists

 Use pattern matching to extract components
 Two list constructors: [] and ::

let rec sum l =
match l with
| [] -> 0
| hd :: tl -> hd + sum tl

sum [1;2;3];;

- : int = 6

let rec sum = function
| [] -> 0
| hd :: tl -> hd + sum tl

function is equivalent to
<param> match <param> with

Compound Data: Lists

 Mapping over list
 Apply a transform to each element in a list and

generate the list of results

let rec map f l =
match l with
| [] -> []
| hd :: tl -> (f hd) :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

let _ = map (fun x -> x * x) [1; 2; 3];;

- : int list = [1; 4; 9]

Compound Data: Lists

 Filter
 Apply a predicate function to each element in a

list and generate a filtered list

let rec filter f l =
match l with
| [] -> []
| hd :: tl -> if f hd

then hd :: filter f tl
else filter f tl

let _ = filter ((fun x -> x mod 2 = 0)) [1; 2; 3; 4; 5]

- : int list = [2; 4]

Compound Data: Lists

 Function composition by |> operator

let sum_of_odd_squares l =
l |> filter (fun x -> x mod 2 = 1)

|> map (fun x -> x * x)
|> sum

let _ = sum_of_odd_squares [1;2;3;4;5;6;7;8;9;10];;
- : int = 165

Compound Data: Records

 Records
 Similar to tuples
 Individual fields are named

 Defining new data type
type point2d = { x : float; y : float };;
type point2d = { x : float; y : float; }

let p = { x = 3.; y = -4. };;
val p : point2d = {x = 3.; y = -4.}

 Accessing data
let mag1 { x = _x; y = _y } = (*pattern matching*)

sqrt (_x ** 2. +. _y ** 2.)

let mag2 { x; y } = (*field punning*)
sqrt (x ** 2. +. y ** 2.)

let mag3 p = (*dot notation*)
sqrt (p.x ** 2. +. p.y ** 2.)

let mag = mag3

let dist p q = (*distance between p and q*)
mag { x = p.x -. q.x; y = p.y -. q.y}

let p = { x = 3.; y = -4. }
let q = { x = 4.; y = -5. }

let _= dist p q
- : float = 1.4142135623730951

function parameter

omitting param. names
when they are equal to
field names

Assignment 3

 Implement a Tic-Tac-Toe game
 Download robot.zip
 Implement all TODO parts
 After finishing the assignment,

you should be able to play the Tic-Tac-Toe game
with the robot

 Upload basis.ml board.ml, command.ml,
drawer.ml, pose.ml, vector.ml in a single zip file
to Brightspace

 Due date: 4/4/2024

Pmove_to_pose, pick, drop, mark , …

Drawer draws a robot and a board w.r.t. a basis

draw_box, draw_robot, draw_arm1, …

Pose pose of a robot

get_pose, chg_pose, find_pose, …

Basis as a tuple of vectors

scale, translate, rot, v2g, b2g, …

3D vectors as tuples

add, sub, prod, smul, …

Game Plays the game

winner, next_mark, game, …

Command moves robots

Abstraction Barriers

Assignment 3
 To play Tic-Tac-Toe

 Press the number keys (1 ~ 9) to put a
mark at the position

 Press q to quit

 The robot should mark on the position,
where
 it will win the game if the position is

marked by the robot
 it will lose the game if the position is

marked by the other
 Otherwise, mark any empty position

(*app.ml*)
…
#use "globals.ml"
#use "vector.ml"
#use "basis.ml"
#use "board.ml"
#use "pose.ml"
#use "drawer.ml"
#use "command.ml"
#use "game.ml"

let app () =
…

(*camera basis*)
let b_camera = (b_rotx (-60.) (b_rotz (-210.) gb_basis)) in
(*initial pose*)
let ipose = (90., 30., 60., 0., mark_n) in
(*initial board*)
let iboard = [mark_n; mark_n; mark_n;

mark_n; mark_n; mark_n;
mark_n; mark_n; mark_n;
mark_o (*9*); mark_x (*10*)] in

Graphics.open_graph " 800x800";
Graphics.auto_synchronize false;
game b_camera (ipose, iboard) |> print_result;
Graphics.auto_synchronize true

let _ = app ()

Abstraction levels

You can test each file by uncommenting
test codes

(*drawer.ml*)

(*convert b w.r.t. basis to the global coordinate*)
let b2g_basis b basis =
…

let draw_arm1 pose =
let s = 0.9 in
let v_ta2 = (0.0,0.0,0.56) in
fun basis ->

let b_a2 = gb_basis (*b_a2: basis for arm 2*)
(*TODO: rotate gb_basis by arm2 angle of pose around y axis*)
(*TODO: scale the result by 0.5*)
(*TODO: translate the result by v_ta2*)
(*TODO: convert the result in basis coord to global coord*)
|> b_roty (get_pose pose "arm2")
|> b_scale 0.5
|> b_translate v_ta2
|> fun b -> b2g_basis b basis in

(*draw arm2 in b_a2 basis*)
draw_arm2 pose b_a2;

(*draw arm1*)
draw_box (0.12/.s) (0.12/.s) (0.5/.s) Graphics.black basis

These are not in your
assignment file

(*pose.ml*)

type pose = float * float * float * float * float;;

(*find the angle of joints to get to x y z*)
let find_pose (x, y, z) =

fun f m ->
(*TODO: find b, a1, and a2 and return the pose (b, a1, a2, f, m)

b: angle (deg) of base measured from x axis (use atan2),
a1: angle (deg) of arm1 measured from z axis
a2: angle (deg) of arm2 measured from arm1 … *)

(*command.ml*)

(*move from pose to target_pose*)
let moveto_pose b_camera (pose, board) target_pose =

let db = (get_pose target_pose "base") -. (get_pose pose "base") in
let da1 = (get_pose target_pose "arm1") -. (get_pose pose "arm1") in
let da2 = (get_pose target_pose "arm2") -. (get_pose pose "arm2") in
let df = (get_pose target_pose "finger") -. (get_pose pose "finger") in

(*move the joint <ang> angle in <step> steps
e.g. rotate arm1 30 deg in 5 steps

=> rotate arm1 5 times 6 deg each
*)
let rot_joint pose joint ang step =

(*TODO: implement this method
- on each step, draw the robot and the board
- wait for 50ms by calling Thread.delay 0.05
- after rotating step times, return the final pose

*)

(*move the joints in base, arm1, arm2, and finger order*)
let p = pose

|> fun p -> rot_joint p "base" db 5
|> fun p -> rot_joint p "arm1" da1 5
|> fun p -> rot_joint p "arm2" da2 5
|> fun p -> rot_joint p "finger" df 3 in

(p, board)

(*command.ml*)

(*put mark at dst*)
let mark b_camera (pose, board) mrk dst =

let src = if mrk = mark_o then 9 else 10 in
let f = get_pose pose "finger" in
let m = get_pose pose "mark" in

(*TODO: 1) find b, a1, and a2 for dst_pose and src_pose
using find_pose, mark_pos then

2) pass two params for the fun returned by find_pose
*)
let dst_pose = in (*robot's pose for the dst-th mark with finger is f, mark is mrk*)
let src_pose = in (*robot's pose for the src-th mark with finger is 0, mark is m*)

(*moveto_pose with the first param applied*)
let mvp = moveto_pose b_camera in

(*TODO: 1. move to pose src_pose (use mvp)
2. pick the mark at src (use pick)
3. lift (use mvp and lift_pose)
4. move to pose dst_pose (use mvp)
5. drop the mark at dst (use drop)
6. lift (use mvp and lift_pose)
7. return the resulting pose and the board*)

