CSE216 Programming Abstractions Data Abstractions

YoungMin Kwon

Overview: 3 Elements of Data

- The 3 elements of data
- Primitive data
- Compound data
- Data abstraction
- Like 3 elements of programming
- Primitive expression
- Means of combination
- Means of abstraction

Overview: Primitive Data

- Integers
- $-1,0,1,2, \ldots$
- Floats
- -1.0, 0, 1.0, 3.141592, ...
- Boolean
- true, false
- Character
- 'a', 'b', 'c',
- String
- "hello world"

```
# 1;;
- : int = 1
# 1.0;;
- : float = 1.
# true;;
- : bool = true
# 'a';;
- : char = 'a'
# "hello";;
- : string = "hello"
```


Overview: Compound Data

- Compound data
- A way to glue data together
- Closure property: can glue combined data objects again
- Needs a way to access individual components
- Compound data can increase the modularity of programs

Overview: Compound Data

- E.g.) Rational number with two integers
- Without compound data: needs to manage sets of two integer variables

```
# let num1 = 1 in let den1 = 2 in
    let num2 = 3 in let den2 = 4 in
    let num3 = add_rat_num(num1, den1, num2, den2) in
    let den3 = add_rat_den(num1, den1, num2, den2) in ...
```

- Combine num and den into rat

```
# let rat1 = make_rat(1,2) in
    let rat2 = make_rat(3,4) in
    let rat3 = add_rat(rat1, rat2) in
```


Overview: Data Abstraction

- Data abstraction means isolating
- how data objects are represented from
- how data objects are used
- E.g.) let example () =

$$
\begin{aligned}
& \frac{\text { let }}{\text { let }}(+)=\text { arith "add" in } \\
& \frac{\text { let }}{}(*)=\text { arith "sub" in } \\
& \underline{\text { let }}(/)=\text { arith "mul" } \overline{\text { in }} \\
& \frac{\text { let }}{} a=\text { complex 2. 3. in } \\
& \text { let } b=\text { polar } 1.3 .14 \text { in } \\
& (a+b) * a / b
\end{aligned}
$$

- a is a complex number in the rectangular form
- b is a complex number in the polar form
- However, we can use them the same way without distinguishing their implementations

Primitive Data

- OCaml Basic types

Type	Comments
int	31-bit signed int on 32-bit processors, 63-bit signed int on 64-bit processors
float	IEEE double-precision floating point
bool	A boolean
char	An 8-bit char
string	A string
unit	Like void in C

Compound Data: Tuples

- Tuple
- Ordered collection of values that can be of different type
- E.g.)
\# (1, "hello", true); ;
- : int * string * bool = (1, "hello", true)
\# (1, ("hello", true)); ;
- : int * (string * bool) = (1, ("hello", true))

Compound Data: Tuples

- Pattern matching to access components

```
# let (x, y) = (1, ("hello", true));;
val x : int = 1
val y : string * bool = ("hello", true)
# let (x, (y, z)) = (1, ("hello", true));;
val x : int = 1
val y : string = "hello"
val z : bool = true
# let (_, (y, _)) = (1, ("hello", true));;
val y : string = "hello"
```


Building Rational Numbers

- Example: building rational numbers
- Assume that the constructor and selectors are available as
- make_rat n d,
- num x, den x

```
let add_rat x y =
    make_rat ((num x) * (den y) + (num y) * (den x))
        ((den x) * (den y));;
let sub_rat x y =
    make_rat ((num x) * (den y) - (num y) * (den x))
    ((den x) * (den y));;
```


Building Rational Numbers

let mul_rat x y =
make_rat ((num x) * (num y)) ((den x) * (den y)); ;

```
let div_rat x y = make_rat ((num x) * (den y)) ((den x) * (num y)); ;
```

let equal_rat x y $=$
(num x) * (den y) = (den x) * (num y); ;
let print_rat $\mathrm{x}=$
Print $\bar{f} . p r i n t f$ " $\% d / \% d \backslash n "$ (num x) (den x); ;

Building Rational Numbers

- Representing rational numbers as a pair
- Implementing pair using a tuple: constructor and accessors

```
let pair a b = (a, b);;
let first x = let (a, _) = x in a;;
let second x = let (_, b) = x in b;;
```

- The constructor and accessors for rational numbers

```
let make_rat n d = pair n d;;
let num x = first x;;
let den x = second x;;
print_rat (sub_rat (make_rat 1 2), (make_rat 1 3));;
```


Building Rational Numbers

- Reduce rational numbers to their lowest terms
- Divide n and d by their gcd in make_rat

```
let make_rat n d =
    let rec gcd x y =
    if }x>y\quadthen gcd (x - y) y
            else if }x<y\mathrm{ then gcd (y - x) x
            else x in
    let g = gcd n d in
    pair (n/g) (d/g);;
print_rat (sub_rat (make_rat 1 2)
    (make_rat 1 3));;
```

- Because of the data abstraction, this change does not affect other parts of the program

Building Rational Numbers

- Implementing pair using a function

```
let pair a b = fun z -> if z then a else b;;
let first x = x true in;;
let second x = x false in;;
print_rat (sub_rat (make_rat 1 2)
    (make_rat 1 3));;
```

- Again, because of the data abstraction, this change does not affect any other parts of the program

What is Meant by Data

- We can think of data as
- Some collection of selectors and constructors, and
- Conditions that these procedures must satisfy
- E.g.) pairs of rational number
- Constructor: pair
- Selectors: first, second
- Conditions: if x is a pair of a and b, then first x is a and second x is b

What is Meant by Data

- E.g.) Representing pair

$$
\begin{aligned}
& \text { let pair } a b z= \\
& \text { if } z \text { then } a \\
& \text { else } b \\
& \text { let first } x=x \text { true } \\
& \text { let second } x=x \text { false }
\end{aligned}
$$

- Both representations have the same constructor, selectors, and the condition

Abstraction Barriers

- Abstraction barriers
- Isolate different levels of a system
- The barrier at each level
- Separates the program above that uses the data
- From the program below that implements the data abstraction
- Procedures at each level are interfaces that define the abstraction barriers

Abstraction Barriers

Rational numbers in problem domain

Rational numbers as numerators and denominators

Rational numbers as pairs

Pairs as tuples

However tuples are implemented

Example: A Picture Language

- Demonstrates the power of
- Data abstraction
- High order procedures
- Closure property
- Results of an operation can be used for the same operation

Install Graphics Package

- Run the following commands in Ubuntu
- sudo apt install pkg-config (may not necessary)
- opam init
- opam update
- opam install graphics

Install Graphics Package

- Copy graphics.cmi and graphics.cma to your local directory
- opam config list graphics
- Find where the graphics library is installed
- Look for graphics:lib or library directory for this package
- Copy graphics.cmi and graphics.cma from the library to your local directory
- E.g.:
- cp ~/.opam/default/lib/graphics/graphics.cmi .
- cp ~/.opam/default/lib/graphics/graphics.cma .

Test Graphics

- Run the following commands from your ocaml top level

```
#. ykwon4@youngbox2:/mnt/c, }\times+
ykwon4@youngbox2:/mnt/c/Users/young/Documents/Share/CSE216/OCaml/Recitation$ ocaml
    OCaml version 4.13.1
# #load "graphics.cma";;
# open Graphics;;
# open_graph " 500x500";;
- : unit = ()
# lineto 300 300;;
- : unit = ()
# close_graph ();;
- : unit = ()
# |
```


Install X11 Server

- You may need to install X11 server
- Windows: install xming from https://sourceforge.net/projects/xming/
- WSL: may need to add export DISPLAY=127.0.0.1:0 to .bashrc file
- Mac: install XQuartz

To Use Graphics in Cygwin E

- Check if Graphics package is installed

```
$ opam list
# Packages matching: installed
# Name # Installed # Synopsis
base-bigarray base
ocaml 4.11.1
```

graphics 5.1.1 The OCaml graphics library
The OCaml compiler (virtual package)

- Install Graphics package if it is not installed
\$ opam install graphics
- Run Ocaml with -I (include) option
\$ ocaml -I \$(ocamlfind query graphics)
- If ocamlfind is not installed, install it using

Picture Language: Abstraction Barriers

Complex transform operations on painter

Simple transform operations on painter

Frames as a tuple of vectors

2D vectors as tuples

However tuples are implemented

A Picture Language

- Key elements
- Painter
- A function that takes a frame and draws on the frame
- Frame
- Decides where and how the painter draws image
- A tuple of o, u, and v vectors in the global coordinate
- o: origin vector,
- u: edge1 vector, v: edge2 vector

A Picture Language

- Key elements
- Mapping
- Frame coordinate \rightarrow screen coordinate
- p $\rightarrow 0+$ p. $x^{*} u+p . y^{*} v$
- Painter draws on the frame
- We transform the frames

A Picture Language

- Vector 2d

```
(*vector 2d-
*)
(*add, sub*)
let add \((x 1, y 1)(x 2, y 2)=(x 1+. x 2, y 1+. y 2)\)
let \(\operatorname{sub}(x 1, y 1)(x 2, y 2)=(x 1-. x 2, y 1-. y 2)\)
(*scalar multiplication*)
let add \((x 1, y 1)(x 2, y 2)=(x 1+. x 2, y 1+. y 2)\)
\(\underline{\text { let }} \operatorname{sub}(x 1, y 1)(x 2, y 2)=(x 1-. x 2, y 1-. y 2)\)
(*scalar multiplication*)
let smul \(s(x, y)=\left(s^{*} . x, s^{*} . y\right)\)
(*inner product*)
let \(\operatorname{prod}(x 1, y 1)(x 2, y 2)=x 1\) *. \(x 2+. y 1\) *. \(y 2\)
```


$a . b=|a||b| \operatorname{Cos} \theta$

A Picture Language

- Vector 2d

```
let pi = acos (- 1.)
let deg2rad deg = deg /. 180. *. pi
let rad2deg rad = rad /. pi *. 180.
(*rotate v a degree from center*)
let rot a center v =
    let cv = sub v center in
    let cosx = cos (deg2rad a) in
    let }\operatorname{sin}x=\operatorname{sin}(\operatorname{deg}2rad a) i
    let }x=\operatorname{prod}(\operatorname{cos}x, -. sinx) cv i
    let }y=\operatorname{prod}(\operatorname{sin}x,\quad\operatorname{cos}x) cv i
    add (x, y) center
```


Frame and Coordinate Mapping

(*frame
*)
let new_frame o $u v=(0, u, v)$
let frame_g = new_frame (0.,0.) (1.,0.) (0.,1.)
(*convert (x, y) in frame coord to global coord*)
let frame_to_global_coord_map frame =
let $(o, u, v)=$ frame in
fun (x, y) -> add o (add (smul x u) (smul y v))

Base Painter

(*base painter----------------------------------
draw a box of a nearly entire frame
*)
let base_painter =
let scale a $s=$ truncate (a^{*}. float s) in let move_to $(x, y)=$ scale $x\left(s_{i z e} x()\right) \mid>$ fun $s x$-> scale y (size_y ()) |> fun sy -> moveto sx sy in
let Line_to $(x, y)=$ scale $x($ size_x ()) |> fun $s x$-> scale y (size_y ()) |> fun sy -> lineto sx sy in
Returns a painter, a
function that takes a
frame and draws on it
frame ->
let map = frame_to_global_coord_map frame in
let $b=0.99$ in
let $a=1 .-. b$ in
set_color red;
move_to (map (a, a));
line_to (map (a, b));
line_to (map (b, b));
line_to (map (b, a));
line_to (map (a, a))

Sequence Operator: append next expr if prev expr is ()

Simple Transform Painters

(*simple transform on painters-----------------
*)
(*tf_painter make painter draw on the Local coordinate system of $0, x, y$ w.r.t. frame i.e. paint on the new frame of $0, x, y$ w.r.t. frame*)
let tf_painter painter o x y = fun frame ->
let \quad map $=$ frame_to_global_coord_map frame in let $(g o, g u, g v)=(\operatorname{map} 0, \operatorname{map} x, \operatorname{map} y)$ in

Closure property: tf_painter returns a painter. It takes a frame and draws on it
(*make the frame for $0, x, y$ local coord. sys.*) painter (new_frame go (sub gu go) (sub gv go))

Simple Transform Painters

let flip_ver painter =

Simple Transform Painters

let flip_hor painter =

Simple Transform Painters

```
let scale sx sy painter =
    tf_painter painter (0., 0.) (sx, 0.) (0., sy)
let translate tx ty painter =
    tf_painter painter (tx, ty) (1. +. tx, 0. +. ty)
                                (0. +. tx, 1. +. ty)
let rotate a center painter =
    let r = rot a center in
    tf_painter painter (r (0., 0.)) (r (1., 0.)) (r (0., 1.))
let rotate90 painter = rotate 90. (0.5, 0.5) painter
let rotate180 painter = rotate 180. (0.5, 0.5) painter
let rotate270 painter = rotate 270. (0.5, 0.5) painter
```


Simple Transform Painters

let beside painter_l painter_r =
let paint_Left $=$ tf_painter painter_l (0.,0.) (0.5,0.) (0.,1.) in let paint_right $=t f _p a i n t e r ~ p a i n t e r _r ~(0.5,0).(1 ., 0).(0.5,1$.$) in$ fun frame -> paint_left frame; Closure property: beside paint_right frame returns a painter. It takes a frame and draws on it

Simple Transform Painters

let below painter_t painter_b =

```
let paint_top = tf_painter painter_t (0.,0.5) (1.,0.5) (0.,1.) in
    let paint_bottom = tf_painter painter_b (0.,0.) (1.,0.) (0.,0.5) in
    fun frame ->
        paint_top frame;
        paint_bottom frame
```


Complex Transform Painters

(*complex transform on painters
*)
let flipped_pairs painter = let painter2 = beside (flip_hor painter) painter in below painter2 (flip_ver painter2)

Complex Transform Painters

let rec right_split painter $n=$ if $\mathrm{n}=0$ then painter else
let smaller = right_split painter ($n-1$) in beside painter (below smaller smaller)
right_split returns a painter: it takes a frame and draws on it

Complex Transform Painters

let rec up_split painter $n=$
if $\mathrm{n}=0$ then painter else
let smaller = up_split painter ($n-1$) in below (beside smaller smaller) painter

Complex transform on painter

let rec corner_split painter $n=$
if $\mathrm{n}=0$ then painter
else

let up	split	er ($\mathrm{n}-1$)
let right	= right_split	painter ($\mathrm{n}-1$) in
let top_Left	= beside	up up
let bottom_right	below	right righ
et corner	rner_	rer

(below corner bottom_right)

Without up up or right right, the pictures look squeezed.

Complex Transform Painters

let rec rot_scale painter $n=$ if $\mathrm{n}=0$ then painter
else

```
            let \(r s=\) painter |> scale 0.950 .95
                                    |> rotate (-10.) (0.7, 0.3)
                                    |> fun p -> rot_scale p (n-1) in
```

fun frame -> painter frame; rs frame

Drawing on a window

*)
let draw painter frame = open_graph " 600x600"; clear_graph (); painter frame; (*close_graph ();*)

This space is not a () mistake

A Picture Language: Overall Program

```
#load "graphics.cma";; Load Graphics module
    After open, you can
(*vector 2d*)
(*frame*)
(*base painter*)
use lineto instead of
Graphics.lineto
(*simple transform on painter*)
(*complex transform on painter*)
(*draw*)
let rs = rot_scale (scale 0.5 0.5 base_painter) 50
let p1 = base_painter
let p2 = flip_ver rs
let p3 = flip_hor rs
let p4 = beside rs rs
let p5 = below rs rs
let p6 = flipped_pairs rs
let p7 = right_split rs 8
let p8 = up_split rs 8
let p9 = corner_split rs 8
let pa = rot_scale (scale 0.5 0.5 rs) 50
let _ = draw p9 frame_g
```


Compound Data: Lists

- List
- Any number of items of the same type
- Tuple: fixed number of possibly different types
- E.g.)

```
# [1; 2; 3];;
- : int list = [1; 2; 3]
# ["hello"; "world"];;
- : string list = ["hello"; "world"]
# [1, 2, 3];; (*semicolons vs commas*)
- : (int * int * int) list = [(1, 2, 3)]
```


Compound Data: Lists

- Constructing lists with : :

```
# 1::2::3::[];; (* two list constructors: [] and :: *)
- : int list = [1; 2; 3]
# 1::(2::(3::[]));;
- : int list = [1; 2; 3]
# [1;2;3] @ [4;5;6];; (* list concatenation *)
- : int list = [1; 2; 3; 4; 5; 6]
# [];;
- : 'a list = []
```


Compound Data: Lists

- Use pattern matching to extract components
- Two list constructors: [] and : :

```
let rec sum L =
    match l with
    | [] -> 0
    | hd :: tl -> hd + sum tl
sum [1;2;3];;
- : int = 6
let rec sum = function {}{\begin{array}{l}{\mathrm{ function is equivalent to }}\\{<\mathrm{ <param> match <param> with}}
    | [] -> 0
    | hd :: tl -> hd + sum tl
```


Compound Data: Lists

- Mapping over list

- Apply a transform to each element in a list and generate the list of results

```
let rec map f L =
    match l with
    | [] -> []
    | hd :: tl -> (f hd) :: map f tl;;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
let _ = map (fun x -> x * x) [1; 2; 3];;
- : int list = [1; 4; 9]
```


Compound Data: Lists

- Filter
- Apply a predicate function to each element in a list and generate a filtered list

```
let rec filter f L =
    match l with
    | [] -> []
        | hd :: tl -> if f hd
        then hd :: filter f tl
        else filter f tl
let _ = filter ((fun x -> x mod 2 = 0)) [1; 2; 3; 4; 5]
- : int list = [2; 4]
```


Compound Data: Lists

- Function composition by |> operator

$$
\begin{aligned}
& \text { let sum_of_odd_squares } L= \\
& 1 \text { |> filter (fun } x \rightarrow x \bmod 2=1 \text {) } \\
& \text { |> map (fun } x->x * x \text {) } \\
& \text { |> sum } \\
& \text { let _ = sum_of_odd_squares }[1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10] ; \\
& \text { - : int = } 165
\end{aligned}
$$

Compound Data: Records

- Records
- Similar to tuples
- Individual fields are named
- Defining new data type

$$
\begin{aligned}
& \text { \# type point2d }=\{x: \text { float; } y: \text { float }\} ; ; \\
& \text { type point2d }=\{x: \text { float; } y: \text { float; }\} \\
& \# \text { let } p=\{x=3 . ; y=-4 .\} ; ; \\
& \text { val } p: \text { point2d }=\{x=3 . ; y=-4 .\}
\end{aligned}
$$

- Accessing data

function parameter

```
let mag1 { x = _x; y = _y } = (*pattern matching*)
    sqrt (_x ** 2. +. _y ** 2.)
```

let mag2 $\{x ; y\}=(* f i e l d$ punning*)
sqrt ($\mathrm{x}^{* *}$ 2. +. $\mathrm{y}^{* *}$ 2.)
let $\operatorname{mag} 3 p=(* d o t$ notation*)
omitting param. names when they are equal to field names
sqrt (p.x ** 2. +. p.y ** 2.)
let $\operatorname{mag}=\operatorname{mag} 3$
let dist p q (*distance between p and q^{*})
$\operatorname{mag}\{x=\mathrm{p} \cdot \mathrm{x}-\mathrm{q} \cdot \mathrm{x} ; \mathrm{y}=\mathrm{p} \cdot \mathrm{y}-\mathrm{q} \cdot \mathrm{y}\}$
let $p=\{x=3 . ; y=-4$.
let $q=\{x=4 . ; y=-5$.
let _= dist p q

- : float = 1.4142135623730951

Assignment 3

- Implement a Tic-Tac-Toe game
- Download robot.zip

- Implement all TODO parts
- After finishing the assignment, you should be able to play the Tic-Tac-Toe game with the robot
- Upload basis.ml board.ml, command.ml, drawer.ml, pose.ml, vector.ml in a single zip file to Brightspace
- Due date: 4/4/2024

Abstraction Barriers

Game Plays the game
winner, next_mark, game, ...

Command moves robots

Drawer draws a robot and a board w.r.t. a basis

Pose pose of a robot

Basis as a tuple of vectors

> 3D vectors as tuples

Assignment 3

- To play Tic-Tac-Toe
- Press the number keys (1~9) to put a mark at the position
- Press q to quit
- The robot should mark on the position, where
- it will win the game if the position is
 marked by the robot
- it will lose the game if the position is marked by the other
- Otherwise, mark any empty position

```
(*app.mL*)
```

...
\#use "globals.ml"
\#use "vector.ml"
\#use "basis.ml"
\#use "board.ml"
\#use "pose.ml"
\#use "drawer.ml"
\#use "command.ml"
\#use "game.ml"

Abstraction levels

You can test each file by uncommenting test codes
let $\operatorname{app}()=$
(*camera basis*)
let b_camera = (b_rotx (-60.) (b_rotz (-210.) gb_basis)) in
(*initial pose*)
let ipose = (90., 30., 60., 0., mark_n) in
(*initial board*)
let iboard = [mark_n; mark_n; mark_n; mark_n; mark_n; mark_n; mark_n; mark_n; mark_n; mark_o (*9*); mark_x (*10*)] in

Graphics.open_graph " 800x800";
Graphics.auto_synchronize false;
game b_camera (ipose, iboard) |> print_result;
Graphics.auto_synchronize true
let _ = app ()
(*convert b w.r.t. basis to the global coordinate*) let b2g_basis b basis =
let draw_arm1 pose =
let $s=0.9$ in
let $v_{-} t a 2=(0.0,0.0,0.56)$ in
fun basis ->
let b_a2 = gb_basis (*b_a2: basis for arm 2*)
(*TODO: rotate gb_basis by arm2 angle of pose around y axis*)
(*TODO: scale the result by 0.5*)
(*TODO: translate the result by v_ta2*)
(*TODO: convert the result in basis coord to global coord*)
|> b_roty (get_pose pose "arm2")
|> b_scale 0.5
|> b_translate v_ta2
|> fun b -> b2g_basis b basis in

These are not in your assignment file
(*draw arm2 in b_a2 basis*)
draw_arm2 pose b_a2;
(*draw arm1*)
draw_box (0.12/.s) (0.12/.s) (0.5/.s) Graphics.black basis
(*pose.mL*)

```
type pose = float * float * float * float * float;;
```

(*find the angle of joints to get to $x y z^{*}$)
let find_pose $(x, y, z)=$
fun $f m$->
(*TODO: find $b, a 1$, and $a 2$ and return the pose ($b, a 1, a 2, f, m$)
b : angle (deg) of base measured from x axis (use atan2),
a1: angle (deg) of arm1 measured from z axis
a2: angle (deg) of arm2 measured from arm1 ... *)

$$
\begin{aligned}
& d=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \left(d_{1}+d_{+} \cos \theta\right)^{2}+\left(d_{2} \sin \theta\right)^{2}=d^{2} \\
& \sin \alpha=d 2 \sin \theta / d \\
& \sin \delta=z / d \\
& \tan b=\frac{y}{x}
\end{aligned}
$$


```
(*move from pose to target_pose*)
let moveto_pose b_camera (pose, board) target_pose =
    let db = (get_pose target_pose "base") -. (get_pose pose "base") in
    let da1 = (get_pose target_pose "arm1") -. (get_pose pose "arm1") in
    let da2 = (get_pose target_pose "arm2") -. (get_pose pose "arm2") in
    let df = (get_pose target_pose "finger") -. (get_pose pose "finger") in
```

 (*move the joint <ang> angle in <step> steps
 e.g. rotate arm1 30 deg in 5 steps
 => rotate arm1 5 times 6 deg each
 *)
 let rot_joint pose joint ang step =
 (*TODO: implement this method
 - on each step, draw the robot and the board
 - wait for 50ms by calling Thread.delay 0.05
 - after rotating step times, return the final pose
 *)
 (*move the joints in base, arm1, arm2, and finger order*)
 let \(p=\) pose

(*move the joints in base, arm1, arm2, and finger order*)
let $p=$ pose

```
        |> fun p -> rot_joint p "base" db 5
        |> fun p -> rot_joint p "arm1" da1 5
        |> fun p -> rot_joint p "arm2" da2 5
        |> fun p -> rot_joint p "finger" df 3 in
```


(p, board)

```
(*command.mL*)
```

(*put mark at dst*)
let mark b_camera (pose, board) mrk dst =
let src = if mrk = mark_o then 9 else 10 in
let $f=$ get_pose pose "finger" in let $m=$ get_pose pose "mark" in

```
(*TODO: 1) find b, a1, and a2 for dst_pose and src_pose
                using find_pose, mark_pos then
    2) pass two params for the fun returned by find_pose
*)
let dst_pose = in (*robot's pose for the dst-th mark with finger is f, mark is mrk*)
let src_pose = in (*robot's pose for the src-th mark with finger is 0, mark is m*)
(*moveto_pose with the first param applied*)
let mvp = moveto_pose b_camera in
(*TODO: 1. move to pose src_pose (use mvp)
    2. pick the mark at src (use pick)
    3. lift (use mvp and lift_pose)
    4. move to pose dst_pose (use mvp)
    5. drop the mark at dst (use drop)
    6. Lift (use mvp and lift_pose)
    7. return the resulting pose and the board*)
```

