
CSE216 Programming Abstractions
Data Abstractions

YoungMin Kwon

Overview: 3 Elements of Data

 The 3 elements of data
 Primitive data
 Compound data
 Data abstraction

 Like 3 elements of programming
 Primitive expression
 Means of combination
 Means of abstraction

Overview: Primitive Data
 Integers

 -1, 0, 1, 2, …

 Floats
 -1.0, 0, 1.0, 3.141592, …

 Boolean
 true, false

 Character
 'a', 'b', 'c’,

 String
 "hello world"

1;;
- : int = 1

1.0;;
- : float = 1.

true;;
- : bool = true

'a';;
- : char = 'a'

"hello";;
- : string = "hello"

Overview: Compound Data

 Compound data
 A way to glue data together

 Closure property: can glue combined data objects again

 Needs a way to access individual components

 Compound data can increase the modularity of
programs

Overview: Compound Data

 E.g.) Rational number with two integers
 Without compound data: needs to manage sets

of two integer variables

 Combine num and den into rat

let num1 = 1 in let den1 = 2 in
let num2 = 3 in let den2 = 4 in
let num3 = add_rat_num(num1, den1, num2, den2) in
let den3 = add_rat_den(num1, den1, num2, den2) in …

let rat1 = make_rat(1,2) in
let rat2 = make_rat(3,4) in
let rat3 = add_rat(rat1, rat2) in …

Overview: Data Abstraction
 Data abstraction means isolating

 how data objects are represented from
 how data objects are used

 E.g.)

 a is a complex number in the rectangular form
 b is a complex number in the polar form
 However, we can use them the same way without

distinguishing their implementations

let example () =
let (+) = arith "add" in
let (-) = arith "sub" in
let (*) = arith "mul" in
let (/) = arith "div" in
let a = complex 2. 3. in
let b = polar 1. 3.14 in
(a + b) * a / b

Primitive Data

 OCaml Basic types

CommentsType

31-bit signed int on 32-bit processors,
63-bit signed int on 64-bit processors

int

IEEE double-precision floating pointfloat

A booleanbool

An 8-bit charchar

A stringstring

Like void in Cunit

Compound Data: Tuples

 Tuple
 Ordered collection of values that can be of

different type

 E.g.)

(1, "hello", true);;
- : int * string * bool = (1, "hello", true)

(1, ("hello", true));;
- : int * (string * bool) = (1, ("hello", true))

Compound Data: Tuples

 Pattern matching to access components

let (x, y) = (1, ("hello", true));;
val x : int = 1
val y : string * bool = ("hello", true)

let (x, (y, z)) = (1, ("hello", true));;
val x : int = 1
val y : string = "hello"
val z : bool = true

let (_, (y, _)) = (1, ("hello", true));;
val y : string = "hello"

Building Rational Numbers

 Example: building rational numbers
 Assume that the constructor and selectors are available as

 make_rat n d,
 num x, den x

let add_rat x y =
 make_rat ((num x) * (den y) + (num y) * (den x))
 ((den x) * (den y));;

let sub_rat x y =
 make_rat ((num x) * (den y) - (num y) * (den x))
 ((den x) * (den y));;

Building Rational Numbers

let mul_rat x y =
 make_rat ((num x) * (num y)) ((den x) * (den y));;

let div_rat x y =
 make_rat ((num x) * (den y)) ((den x) * (num y));;

let equal_rat x y =
 (num x) * (den y) = (den x) * (num y);;

let print_rat x =
 Printf.printf "%d/%d\n" (num x) (den x);;

Building Rational Numbers

 Representing rational numbers as a pair
 Implementing pair using a tuple: constructor and accessors

 The constructor and accessors for rational numbers

let make_rat n d = pair n d;;
let num x = first x;;
let den x = second x;;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

let pair a b = (a, b);;
let first x = let (a, _) = x in a;;
let second x = let (_, b) = x in b;;

Building Rational Numbers
 Reduce rational numbers to their lowest terms

 Divide n and d by their gcd in make_rat

 Because of the data abstraction, this change does not
affect other parts of the program

let make_rat n d =
 let rec gcd x y =
 if x > y then gcd (x - y) y
 else if x < y then gcd (y - x) x
 else x in
 let g = gcd n d in
 pair (n/g) (d/g);;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

Building Rational Numbers

 Implementing pair using a function

 Again, because of the data abstraction, this change does
not affect any other parts of the program

let pair a b = fun z -> if z then a else b;;
let first x = x true in;;
let second x = x false in;;

print_rat (sub_rat (make_rat 1 2)
 (make_rat 1 3));;

What is Meant by Data

 We can think of data as
 Some collection of selectors and constructors, and
 Conditions that these procedures must satisfy

 E.g.) pairs of rational number
 Constructor: pair
 Selectors: first, second
 Conditions: if x is a pair of a and b, then first x is a and
second x is b

What is Meant by Data

 E.g.) Representing pair

 Both representations have the same constructor,
selectors, and the condition

let pair a b z =
 if z then a
 else b
let first x = x true
let second x = x false

let pair a b = (a, b)
let first (a, _) = a
let second (_, b) = b

uncurried function:
pattern matching
at parameters

Abstraction Barriers

 Abstraction barriers
 Isolate different levels of a system
 The barrier at each level

 Separates the program above that uses the data
 From the program below that implements the data

abstraction

 Procedures at each level are interfaces that define
the abstraction barriers

Abstraction Barriers
PPrograms that use rational numbers

Rational numbers in problem domain

add_rat sub_rat …

Rational numbers as numerators and denominators

make_rat num den

Rational numbers as pairs

pair first second

Pairs as tuples

(a, b) let (a, b) = x

However tuples are implemented

Example: A Picture Language

 Demonstrates the power of
 Data abstraction
 High order procedures
 Closure property

 Results of an operation can be
used for the same operation

Install Graphics Package

 Run the following commands in Ubuntu
 sudo apt install pkg-config (may not necessary)
 opam init
 opam update
 opam install graphics

Install Graphics Package

 Copy graphics.cmi and graphics.cma to your local
directory
 opam config list graphics

 Find where the graphics library is installed
 Look for graphics:lib or library directory for this package

 Copy graphics.cmi and graphics.cma from the library
to your local directory
 E.g.:
 cp ~/.opam/default/lib/graphics/graphics.cmi .
 cp ~/.opam/default/lib/graphics/graphics.cma .

Test Graphics

 Run the following commands from your ocaml
top level

Install X11 Server

 You may need to install X11 server
 Windows: install xming from

https://sourceforge.net/projects/xming/

 WSL: may need to add export DISPLAY=127.0.0.1:0 to
.bashrc file

 Mac: install XQuartz

To Use Graphics in Cygwin
 Check if Graphics package is installed

 Install Graphics package if it is not installed

 Run Ocaml with -I (include) option

 If ocamlfind is not installed, install it using

$ opam list
Packages matching: installed
Name # Installed # Synopsis
base-bigarray base
...
graphics 5.1.1 The OCaml graphics library
ocaml 4.11.1 The OCaml compiler (virtual package)
...

$ opam install graphics

$ ocaml -I $(ocamlfind query graphics)

$ opam install ocamlfind

Picture Language:
Abstraction Barriers

PPrograms that use transforms

Complex transform operations on painter

right_split, up_split, corner_split…

Simple transform operations on painter

tf_painter, flip, scale, translate, rotate

Frames as a tuple of vectors

new_frame, frame_to_globalcoord_map

2D vectors as tuples

add, sub, prod, smul

However tuples are implemented

A Picture Language

 Key elements
 Painter

 A function that takes a frame and draws on
the frame

 Frame
 Decides where and how the painter draws

image
 A tuple of o, u, and v vectors in the global

coordinate
 o: origin vector,
 u: edge1 vector, v: edge2 vector

A Picture Language

 Key elements
 Mapping

 Frame coordinate  screen
coordinate

 p o + p.x * u + p.y * v

 Painter draws on the frame
 We transform the frames

A Picture Language

 Vector 2d

(*vector 2d--------------------------------------
*)

(*add, sub*)
let add (x1, y1) (x2, y2) = (x1 +. x2, y1 +. y2)
let sub (x1, y1) (x2, y2) = (x1 -. x2, y1 -. y2)

(*scalar multiplication*)
let smul s (x, y) = (s *. x, s *. y)

(*inner product*)
let prod (x1, y1) (x2, y2) = x1 *. x2 +. y1 *. y2

A Picture Language

 Vector 2d

let pi = acos (- 1.)
let deg2rad deg = deg /. 180. *. pi
let rad2deg rad = rad /. pi *. 180.

(*rotate v a degree from center*)
let rot a center v =

let cv = sub v center in
let cosx = cos (deg2rad a) in
let sinx = sin (deg2rad a) in
let x = prod (cosx, -. sinx) cv in
let y = prod (sinx, cosx) cv in
add (x, y) center

Frame and
Coordinate Mapping

(*frame--
*)

let new_frame o u v = (o, u, v)
let frame_g = new_frame (0.,0.) (1.,0.) (0.,1.)

(*convert (x,y) in frame coord to global coord*)
let frame_to_global_coord_map frame =

let (o, u, v) = frame in
fun (x, y) -> add o (add (smul x u) (smul y v))

o

uv

Base Painter
(*base painter-----------------------------------
draw a box of a nearly entire frame

*)
let base_painter =

let scale a s = truncate (a *. float s) in
let move_to (x, y) = scale x (size_x ()) |> fun sx ->

scale y (size_y ()) |> fun sy ->
moveto sx sy in

let line_to (x, y) = scale x (size_x ()) |> fun sx ->
scale y (size_y ()) |> fun sy ->
lineto sx sy in

fun frame ->
let map = frame_to_global_coord_map frame in
let b = 0.99 in
let a = 1. -. b in
set_color red;
move_to (map (a, a));
line_to (map (a, b));
line_to (map (b, b));
line_to (map (b, a));
line_to (map (a, a))

Sequence Operator:
append next expr
if prev expr is ()

Returns a painter, a
function that takes a
frame and draws on it

o

yx

Simple Transform
Painters

(*simple transform on painters----------------
*)

(*tf_painter make painter draw on the local
coordinate system of o, x, y w.r.t. frame
i.e. paint on the new frame of o, x, y w.r.t. frame*)

let tf_painter painter o x y =
fun frame ->

let map = frame_to_global_coord_map frame in
let (go, gu, gv) = (map o, map x, map y) in

(*make the frame for o, x, y local coord. sys.*)
painter (new_frame go (sub gu go) (sub gv go))

Closure property:
tf_painter returns a
painter. It takes a frame
and draws on it

Simple Transform Painters

let flip_ver painter =
tf_painter painter (0.,1.) (1.,1.) (0.,0.)
(* ^o ^x ^y *)

=>

Simple Transform Painters

let flip_hor painter =
tf_painter painter (1.,0.) (0.,0.) (1.,1.)
(* ^o ^x ^y *)

=>

Simple Transform Painters

let scale sx sy painter =
tf_painter painter (0., 0.) (sx, 0.) (0., sy)

let translate tx ty painter =
tf_painter painter (tx, ty) (1. +. tx, 0. +. ty)

(0. +. tx, 1. +. ty)

let rotate a center painter =
let r = rot a center in
tf_painter painter (r (0., 0.)) (r (1., 0.)) (r (0., 1.))

let rotate90 painter = rotate 90. (0.5, 0.5) painter
let rotate180 painter = rotate 180. (0.5, 0.5) painter
let rotate270 painter = rotate 270. (0.5, 0.5) painter

Simple Transform Painters

Closure property: beside
returns a painter. It takes a
frame and draws on it

let beside painter_l painter_r =
let paint_left = tf_painter painter_l (0.,0.) (0.5,0.) (0.,1.) in
let paint_right = tf_painter painter_r (0.5,0.) (1.,0.) (0.5,1.) in
fun frame ->

paint_left frame;
paint_right frame

=>

let below painter_t painter_b =
let paint_top = tf_painter painter_t (0.,0.5) (1.,0.5) (0.,1.) in
let paint_bottom = tf_painter painter_b (0.,0.) (1.,0.) (0.,0.5) in
fun frame ->

paint_top frame;
paint_bottom frame

Simple Transform Painters

=>

(*complex transform on painters------------------
*)
let flipped_pairs painter =

let painter2 = beside (flip_hor painter) painter in
below painter2 (flip_ver painter2)

Complex Transform
Painters

=>

let rec right_split painter n =
if n = 0 then painter
else

let smaller = right_split painter (n-1) in
beside painter (below smaller smaller)

Complex Transform Painters

right_split returns a
painter: it takes a frame
and draws on it

let rec up_split painter n =
if n = 0 then painter
else

let smaller = up_split painter (n-1) in
below (beside smaller smaller) painter

Complex Transform Painters

Without up up or right
right, the pictures look
squeezed.

let rec corner_split painter n =
if n = 0 then painter
else

let up = up_split painter (n-1) in
let right = right_split painter (n-1) in
let top_left = beside up up in
let bottom_right = below right right in
let corner = corner_split painter (n-1) in
beside (below top_left painter)

(below corner bottom_right)

Complex transform on painter

let rec rot_scale painter n =
if n = 0 then painter
else

let rs = painter |> scale 0.95 0.95
|> rotate (-10.) (0.7, 0.3)
|> fun p -> rot_scale p (n-1) in

fun frame ->
painter frame;
rs frame

Complex Transform Painters

=>

Drawing on a window
(*draw---
*)
let draw painter frame =

open_graph " 600x600";
clear_graph ();
painter frame;
(*close_graph ();*)
()

This space is not a
mistake

A Picture Language: Overall Program
#load "graphics.cma";;
open Graphics;;

(*vector 2d*)
(*frame*)
(*base painter*)
(*simple transform on painter*)
(*complex transform on painter*)
(*draw*)

let rs = rot_scale (scale 0.5 0.5 base_painter) 50
let p1 = base_painter
let p2 = flip_ver rs
let p3 = flip_hor rs
let p4 = beside rs rs
let p5 = below rs rs
let p6 = flipped_pairs rs
let p7 = right_split rs 8
let p8 = up_split rs 8
let p9 = corner_split rs 8
let pa = rot_scale (scale 0.5 0.5 rs) 50
let _ = draw p9 frame_g

After open, you can
use lineto instead of
Graphics.lineto

Load Graphics module

Compound Data: Lists

 List
 Any number of items of the same type
 Tuple: fixed number of possibly different types
 E.g.)

[1; 2; 3];;
- : int list = [1; 2; 3]

["hello"; "world"];;
- : string list = ["hello"; "world"]

[1, 2, 3];; (*semicolons vs commas*)
- : (int * int * int) list = [(1, 2, 3)]

Compound Data: Lists

 Constructing lists with ::

1::2::3::[];; (* two list constructors: [] and :: *)
- : int list = [1; 2; 3]

1::(2::(3::[]));;
- : int list = [1; 2; 3]

[1;2;3] @ [4;5;6];; (* list concatenation *)
- : int list = [1; 2; 3; 4; 5; 6]

[];;
- : 'a list = []

Compound Data: Lists

 Use pattern matching to extract components
 Two list constructors: [] and ::

let rec sum l =
match l with
| [] -> 0
| hd :: tl -> hd + sum tl

sum [1;2;3];;

- : int = 6

let rec sum = function
| [] -> 0
| hd :: tl -> hd + sum tl

function is equivalent to
<param> match <param> with

Compound Data: Lists

 Mapping over list
 Apply a transform to each element in a list and

generate the list of results

let rec map f l =
match l with
| [] -> []
| hd :: tl -> (f hd) :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

let _ = map (fun x -> x * x) [1; 2; 3];;

- : int list = [1; 4; 9]

Compound Data: Lists

 Filter
 Apply a predicate function to each element in a

list and generate a filtered list

let rec filter f l =
match l with
| [] -> []
| hd :: tl -> if f hd

then hd :: filter f tl
else filter f tl

let _ = filter ((fun x -> x mod 2 = 0)) [1; 2; 3; 4; 5]

- : int list = [2; 4]

Compound Data: Lists

 Function composition by |> operator

let sum_of_odd_squares l =
l |> filter (fun x -> x mod 2 = 1)

|> map (fun x -> x * x)
|> sum

let _ = sum_of_odd_squares [1;2;3;4;5;6;7;8;9;10];;
- : int = 165

Compound Data: Records

 Records
 Similar to tuples
 Individual fields are named

 Defining new data type
type point2d = { x : float; y : float };;
type point2d = { x : float; y : float; }

let p = { x = 3.; y = -4. };;
val p : point2d = {x = 3.; y = -4.}

 Accessing data
let mag1 { x = _x; y = _y } = (*pattern matching*)

sqrt (_x ** 2. +. _y ** 2.)

let mag2 { x; y } = (*field punning*)
sqrt (x ** 2. +. y ** 2.)

let mag3 p = (*dot notation*)
sqrt (p.x ** 2. +. p.y ** 2.)

let mag = mag3

let dist p q = (*distance between p and q*)
mag { x = p.x -. q.x; y = p.y -. q.y}

let p = { x = 3.; y = -4. }
let q = { x = 4.; y = -5. }

let _= dist p q
- : float = 1.4142135623730951

function parameter

omitting param. names
when they are equal to
field names

Assignment 3

 Implement a Tic-Tac-Toe game
 Download robot.zip
 Implement all TODO parts
 After finishing the assignment,

you should be able to play the Tic-Tac-Toe game
with the robot

 Upload basis.ml board.ml, command.ml,
drawer.ml, pose.ml, vector.ml in a single zip file
to Brightspace

 Due date: 4/4/2024

Pmove_to_pose, pick, drop, mark , …

Drawer draws a robot and a board w.r.t. a basis

draw_box, draw_robot, draw_arm1, …

Pose pose of a robot

get_pose, chg_pose, find_pose, …

Basis as a tuple of vectors

scale, translate, rot, v2g, b2g, …

3D vectors as tuples

add, sub, prod, smul, …

Game Plays the game

winner, next_mark, game, …

Command moves robots

Abstraction Barriers

Assignment 3
 To play Tic-Tac-Toe

 Press the number keys (1 ~ 9) to put a
mark at the position

 Press q to quit

 The robot should mark on the position,
where
 it will win the game if the position is

marked by the robot
 it will lose the game if the position is

marked by the other
 Otherwise, mark any empty position

(*app.ml*)
…
#use "globals.ml"
#use "vector.ml"
#use "basis.ml"
#use "board.ml"
#use "pose.ml"
#use "drawer.ml"
#use "command.ml"
#use "game.ml"

let app () =
…

(*camera basis*)
let b_camera = (b_rotx (-60.) (b_rotz (-210.) gb_basis)) in
(*initial pose*)
let ipose = (90., 30., 60., 0., mark_n) in
(*initial board*)
let iboard = [mark_n; mark_n; mark_n;

mark_n; mark_n; mark_n;
mark_n; mark_n; mark_n;
mark_o (*9*); mark_x (*10*)] in

Graphics.open_graph " 800x800";
Graphics.auto_synchronize false;
game b_camera (ipose, iboard) |> print_result;
Graphics.auto_synchronize true

let _ = app ()

Abstraction levels

You can test each file by uncommenting
test codes

(*drawer.ml*)

(*convert b w.r.t. basis to the global coordinate*)
let b2g_basis b basis =
…

let draw_arm1 pose =
let s = 0.9 in
let v_ta2 = (0.0,0.0,0.56) in
fun basis ->

let b_a2 = gb_basis (*b_a2: basis for arm 2*)
(*TODO: rotate gb_basis by arm2 angle of pose around y axis*)
(*TODO: scale the result by 0.5*)
(*TODO: translate the result by v_ta2*)
(*TODO: convert the result in basis coord to global coord*)
|> b_roty (get_pose pose "arm2")
|> b_scale 0.5
|> b_translate v_ta2
|> fun b -> b2g_basis b basis in

(*draw arm2 in b_a2 basis*)
draw_arm2 pose b_a2;

(*draw arm1*)
draw_box (0.12/.s) (0.12/.s) (0.5/.s) Graphics.black basis

These are not in your
assignment file

(*pose.ml*)

type pose = float * float * float * float * float;;

(*find the angle of joints to get to x y z*)
let find_pose (x, y, z) =

fun f m ->
(*TODO: find b, a1, and a2 and return the pose (b, a1, a2, f, m)

b: angle (deg) of base measured from x axis (use atan2),
a1: angle (deg) of arm1 measured from z axis
a2: angle (deg) of arm2 measured from arm1 … *)

(*command.ml*)

(*move from pose to target_pose*)
let moveto_pose b_camera (pose, board) target_pose =

let db = (get_pose target_pose "base") -. (get_pose pose "base") in
let da1 = (get_pose target_pose "arm1") -. (get_pose pose "arm1") in
let da2 = (get_pose target_pose "arm2") -. (get_pose pose "arm2") in
let df = (get_pose target_pose "finger") -. (get_pose pose "finger") in

(*move the joint <ang> angle in <step> steps
e.g. rotate arm1 30 deg in 5 steps

=> rotate arm1 5 times 6 deg each
*)
let rot_joint pose joint ang step =

(*TODO: implement this method
- on each step, draw the robot and the board
- wait for 50ms by calling Thread.delay 0.05
- after rotating step times, return the final pose

*)

(*move the joints in base, arm1, arm2, and finger order*)
let p = pose

|> fun p -> rot_joint p "base" db 5
|> fun p -> rot_joint p "arm1" da1 5
|> fun p -> rot_joint p "arm2" da2 5
|> fun p -> rot_joint p "finger" df 3 in

(p, board)

(*command.ml*)

(*put mark at dst*)
let mark b_camera (pose, board) mrk dst =

let src = if mrk = mark_o then 9 else 10 in
let f = get_pose pose "finger" in
let m = get_pose pose "mark" in

(*TODO: 1) find b, a1, and a2 for dst_pose and src_pose
using find_pose, mark_pos then

2) pass two params for the fun returned by find_pose
*)
let dst_pose = in (*robot's pose for the dst-th mark with finger is f, mark is mrk*)
let src_pose = in (*robot's pose for the src-th mark with finger is 0, mark is m*)

(*moveto_pose with the first param applied*)
let mvp = moveto_pose b_camera in

(*TODO: 1. move to pose src_pose (use mvp)
2. pick the mark at src (use pick)
3. lift (use mvp and lift_pose)
4. move to pose dst_pose (use mvp)
5. drop the mark at dst (use drop)
6. lift (use mvp and lift_pose)
7. return the resulting pose and the board*)

