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Elements of Programming

 Primitive expressions
 The simplest entries the language is concerned with

 Means of combination
 By which compound elements are built from simpler 

ones

 Means of abstraction
 By which compound elements can be named and 

manipulated as units



Numbers

 Number
 A primitive expression
 Type 123;; to the OCaml interactive system (a.k.a. 

toplevel)

# 123;;
- : int = 123

prompt a number expr. ask top level to
evaluate

result valueresult type



Combining Numbers

 Arithmetic operators
 Using arithmetic operators

 + - * / mod    +. -. *. /. **

 Type 1 + 2 * 3 in the OCaml top level

 Type 1. +. 2. *. 3.

# 1 + 2 * 3;;
- : int = 7

# 1. +. 2. *. 3.;;
- : float = 7.



Combining Numbers

 Arithmetic operators
 For each operator, there is a corresponding 

function

 Function application
 No parenthesis around parameters
 Parameters are separated by spaces

# (+) 1 2;;
- : int = 3

# (+);;
- : int -> int -> int = <fun>



Combining Numbers
 Type coercion is not automatic in OCaml

# 1.0 + 2.0;;
Characters 0-3:

1.0 + 2.0;;
^^^

Error: This expression has type float but an expression
was expected of type int

# 1.0 +. 2.0;;
- : float = 3.
# (+.);;
- : float -> float -> float = <fun>

# float_of_int 1;;  (* or float 1 *)
- : float = 1.
# int_of_float 1.5;;
- : int = 1



Abstraction by Names
 Names are to refer to objects

 Name: variable
 Its value: object
 Names provide a mean of abstraction

 Create a variable to name a value
 let binding

let <variable> = <expr>

# let x = 1 + 2;;
val x : int = 3

# let add = (+);;
val add : int -> int -> int = <fun>



Abstraction by Names

 Environment
 A data structure that keeps track of name-value 

pairs

# x;;
- : int = 3

# add;;
- : int -> int -> int = <fun>

# add x 1;;
- : int = 4



Evaluating Combinations

 How to evaluate a combination (prefix 
operator case)

1. Evaluate the sub-expressions of the combination

2. Apply the function (the first sub-expr) to the 
arguments (the other sub-exprs)



Evaluating Combinations

 To evaluate sub-expressions
 If a sub-expr is a combination: recursively evaluate 

the combination

 If a sub-expr is a primitive expression
 Number: the value of the number
 Built-in operator: the code that executes the operation
 Name: object associated with the name in the 

environment



Evaluating Combinations

 Example
# let add = (+);;
val add : int -> int -> int = <fun>

# let mul = ( *);;  
val mul : int -> int -> int = <fun>

# let x = 5;;
val x : int = 5

# mul (add 1 (mul 2 3))
(add 4 x);;

- : int = 63

notice the space:
(* would start a comment



Evaluating Combinations

 Example

# mul (add 1 (mul 2 3))
(add 4 x);;

- : int = 63

*

*

+ +1

2 3

4 5



Abstraction by Functions

 Function definition
 With compound operations, it provides a powerful 

abstraction mechanism

let <name> <formal parameters> = <body>

# let square x = x * x;;
val square : int -> int = <fun>

name formal
parameter

body



Abstraction by Functions

 Function application

<operator-expr> <operand-expr>

# square 2;;
- : int = 4

function actual parameter



Abstraction by Functions
 Examples

# square 3;;
- : int = 9

# square (1+2);;
- : int = 9

# square (square 3);;
- : int = 81

# let sum_of_squares x y = square x + square y;;
val sum_of_squares : int -> int -> int = <fun>

# sum_of_squares 3 4;;
- : int = 25

square is used as a building block
of another procedure



Abstraction by Functions

 Anonymous function definition

fun <formal parameters> -> <body>

# fun x -> x * x;;
- : int -> int = <fun>

# (fun x -> x * x) 3;;
- : int = 9

# let square = fun x -> x * x;;
val square : int -> int = <fun>

anonymous
function

formal
parameter

body



Abstraction by Functions
 Multi-parameter functions

 Nested single parameter functions

 Pattern matching on a tuple
let add (x, y) = x + y
add (2, 3)

≡ let p = (2, 3)
add p

let add x y = x + y
≡ let add = fun x -> fun y -> x + y
≡ let add = fun x -> (fun y -> x + y)

add 2 3
≡ (add 2) 3

≡ let add2 = add 2
add2 3



Currying
 Currying

 Tuple parameter function  nested single 
parameter functions

# let add (a, b) = a + b;;
val add : int * int -> int = <fun>
# add (1, 2);;
- : int = 3

# let add' a b = a + b;;
val add' : int -> int -> int = <fun>
# add' 1 2;;
- : int = 3

# let inc = add' 1;;
val inc : int -> int = <fun>
# inc 2;;
- : int = 3



Currying

 A curry function

(*take x and y separately and apply them together as a pair*)
let curry f = fun x -> fun y -> f (x, y)

let add' = curry add
let inc = add' 1
let _ = inc 3

val curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>
val add : int * int -> int = <fun>
val add' : int -> int -> int = <fun>
val inc : int -> int = <fun>
- : int = 4



Function Composition
 Function composition operator (|>)

 A way to avoid nested function calls
 A way to bind a temporary result to a variable

(*function composition operator*)

let (|>) x f = f x

let inc x = (+) 1

let _ = 1 |> inc |> inc |> inc
- : int = 4



Function Composition

(*function composition*)
let (|>) x f = f x
val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

let square x = x * x
val square : int -> int = <fun>

let sum_of_squares x y =
square x |> fun xx -> (*bind result to a temp. var. xx*)
square y |> fun yy -> xx + yy

val sum_of_squares : int -> int -> int = <fun>

let _ = sum_of_squares 3 4
- : int = 25



Order of Evaluation

 Application order
 Evaluate the parameters and then apply the 

function

# let if_then_else p t f = if p then t else f;;
val if_then_else : bool -> 'a -> 'a -> 'a = <fun>

# if_then_else (1 < 2) 1 2;;
- : int = 1

# if_then_else (1 < 2) (1 / 1) (1 / 0);;
Exception: Division_by_zero.



Order of Evaluation
 Substitution model for function application

 Evaluate the body with each formal parameter 
replaced by its actual parameter

sum_of_squares 3 4

⇒ square 3 + square 4

⇒ (mul 3 3) + (mul 4 4)

⇒ (( * ) 3 3) + (( * ) 4 4))

⇒ 9 + 16

⇒ 25

let mul = ( * )

let square x = mul x x

let sum_of_squares x y =
square x + square y



Order of Evaluation

 Normal order
 Substitute operand expressions for parameters 

until only primitive expressions left
 Do not evaluate the operands until their values are 

needed

# if_then_else (1 < 2) (1 / 1) (1 / 0);; ??

# if 1 < 2 then 1 / 1 else 1 / 0;;
- : int = 1



Boolean Expression
 Bool

 Primitive expressions

# true;;
- : bool = true
# false;;
- : bool = false

prompt a bool expr. ask top level to
evaluate

result valueresult type



Comparisons
# (=);;
- : 'a -> 'a -> bool = <fun>
# (<>);;
- : 'a -> 'a -> bool = <fun>
# (>);;
- : 'a -> 'a -> bool = <fun>

# 2 > 1;;
- : bool = true

# 2. > 1.;;
- : bool = true

# 2 > 1.;;
Characters 4-6:

2 > 1.;;
^^

Error: This expression has
Type float but an expression
was expected of type int

# int_of_float 1. > 2;;
- : bool = false

# float_of_int 1 > 2.;;
- : bool = false

# float 1 > 2.;;
- : bool = false

# "abc" = "abc";;
- : bool = true

# "abc" <> "abc";;
- : bool = false

# "abc" < "def";;
- : bool = true



Comparisons
# let v = "hello";;
val v : string = "hello"
# v = v;;
- : bool = true
# v <> v;;
- : bool = false
# v == v;;
- : bool = true
# v != v;;
- : bool = false

# let u = v;;
val u : string = "hello"
# u == v;;
- : bool = true
# u != v;;
- : bool = false

(* =,  <>: compare structures,
==, !=: compare addresses *)

# (==);;
- : 'a -> 'a -> bool = <fun>
# (!=);;
- : 'a -> 'a -> bool = <fun>

# "hello" = "hello";;
- : bool = true

# "hello" <> "hello";;
- : bool = false

# "hello" == "hello";;
- : bool = false

# "hello" != "hello";;
- : bool = true



Logical Connectives
 Logical connectives: &&, ||, not

 ! is a dereference operator

# (&&);;
- : bool -> bool -> bool = <fun>

# let inside lb ub x = lb <= x && x <= ub;;
val inside : 'a -> 'a -> 'a -> bool = <fun>

# inside 0 10 5;;
- : bool = true

# let outside lb ub x = not (inside lb ub x);;
val outside : 'a -> 'a -> 'a -> bool = <fun>

# outside 0 10 5;;
- : bool = false



Logical Connectives
 Evaluation order of && and ||

# false && 1/0 > 0;;
- : bool = false

# (&&) false (1/0 > 0);; (* not exactly normal order
- : bool = false            eval., but similar to it *)

# true || 1/0 > 0;;
- : bool = true

# false || 1/0 > 0;;
Exception: Division_by_zero.



Conditional Expressions
 Predicate

 An expression whose value is interpreted as either 
true or false

 Conditional expression
if <predicate> then <consequent>

else <alternative>

# let abs x = if x >= 0 then x else - x;;
val abs : int -> int = <fun>

# abs (-3);;
- : int = 3



Conditional Expressions

 Example: factorial

 To define a recursive function, use let rec

# let rec factorial x =
if x = 0
then 1
else x * factorial (x - 1);;

val factorial : int -> int = <fun>

# factorial 4;;
- : int = 24



Conditional Expressions
 Example: even and odd

 To define mutually recursive functions, use let rec and

# let rec even x =
if x = 0 then true else odd (x - 1)

and odd x =
if x = 0 then false else even (x - 1);;

val even : int -> bool = <fun>
val odd : int -> bool = <fun>

# even 3;;
- : bool = false

# odd 3;;
- : bool = true



Conditional Expressions

 Example gcd

# let rec gcd x y =
if x > y then gcd (x - y) y
else if x < y then gcd (y - x) x
else x;;

val gcd : int -> int -> int = <fun>

# gcd 15 6;;
- : int = 3



Assignment 1

 Implement move function
 Download TowerOfHanoi.ml and implement its 

move function

 Upload TowerOfHanoi.ml to Brightspace
 Due date: 3/14/2024



(* Tower of Hanoi
*)

(* TODO: implement move function

move n src dst aux:
moves n disks from src to dst using aux

if n is 1,
print the movement from src to dst

otherwise,
move n-1 disks from src to aux,
move 1 disk from src to dst, and
move n-1 disks from aux to dst.

hint: use Printf.printf "move from %s to %s\n" ...
hint: for a series of expressions use begin ... end

e.g. begin move...; move...; move... end
*)

let main () =
move 3 "A" "B" "C"

let _ = main ()



(*
expected result:
#use "TowerOfHanoi.ml";;
val move : int -> string -> string -> string -> unit = <fun>
val main : unit -> unit = <fun>
move from A to B
move from A to C
move from B to C
move from A to B
move from C to A
move from C to B
move from A to B
- : unit = ()
*)



Procedural Abstraction

 Procedural abstraction
 Regard procedures as a black box

 Concern only with the fact that a procedure 
computes the correct result, but not with how

 Any procedures that compute the result are 
equally good



Procedural Abstraction
 Example

 A user should not need to know how the procedure is 
implemented in order to use it

 Procedure definitions should be able to suppress 
details

# let square x = x *. x;;
val square : float -> float = <fun>

# let square x = exp (log x +. log x);;
val square : float -> float = <fun>



Procedural Abstraction

 Local names
 Formal parameter names should not matter to the 

user of the procedure
 Parameter names should be local to procedure body

 These procedures should not be distinguishable

# let square x = x *. x;;
val square : float -> float = <fun>

# let square y = y *. y;;
val square : float -> float = <fun>



Procedural Abstraction

 Local names

 x in the body of square should be different from 
the x in the body of sum_of_squares

# let square x = x *. x;;
val square : float -> float = <fun>

# let sum_of_squares x y = (square x) +. (square y);;
val sum_of_squares : float -> float -> float = <fun>



Procedural Abstraction
 Computing  (Nilakantha series)

 How to run a program from a file
 To test large programs.
 Write pi.ml with the definition of pi above
 In the OCaml top level type  #use "pi.ml";;



Procedural Abstraction

(* pi.ml
Computes pi using Nilakantha series

*)

let abs x =
if x < 0. then -. x else x

let good_enough guess old_guess tol =
(abs (guess -. old_guess)) <= tol;;

let term x sign =
sign *. 4. /. (x *. (x +. 1.) *. (x +. 2.))



Procedural Abstraction
let rec pi_iter guess old_guess x sign tol =

if good_enough guess old_guess tol
then guess
else pi_iter (guess +. (term x sign))

guess
(x +. 2.)
(-. sign)
tol

let pi tol =
pi_iter 3. 0. 2. 1. tol

let _ = pi 1e-10

# #use "pi.ml";;
val abs : float -> float = <fun>
val good_enough : float -> float -> float -> bool = <fun>
val term : float -> float -> float = <fun>
val pi_iter : float -> float -> float -> float -> float -> float…
val pi : float -> float = <fun>
- : float = 3.1415926535398846



Procedural Abstraction

 Internal definitions
 In the previous program,

 pi is the only procedure that is important to users
 The other procedures only clutter up their minds

 Solution ⇒ allow procedures to have internal
definitions that are local to the procedure



Procedural Abstraction
 Block structure

 Nesting of definitions

 In expr2, variable is equal to expr1
 let binding is equivalent to

let <variable> = <expr1> in <expr2>

( fun <variable> -> <expr2> ) <expr1>  or
<expr1> |> fun <variable> -> <expr2>

let foo () =
let x = 1 in
let y = x + 1 in
let z = y + 1 in
z + 3

let foo' () =
(fun x ->

(fun y ->
(fun z -> z + 3)
(y + 1))

(x + 1))
1

let foo'' () =
1 |> fun x ->
x + 1 |> fun y ->
y + 1 |> fun z ->
z + 3



(* compute pi, Nilakantha series *)
let pi tol =

let rec pi_iter guess old_guess step sign =
let good_enough () = (*(), called unit, is like void*)

let abs x =
if x < 0. then -. x else x in

(abs (guess -. old_guess)) <= tol in

let term x =
sign *. 4. /. (x *. (x +. 1.) *. (x +. 2.)) in

if good_enough ()
then guess
else pi_iter (guess +. (term step))

guess
(step +. 2.)
(-. sign) in

pi_iter 3. 0. 2. 1.

let _ = pi 1e-10

# #use "pi_iter2.ml";;
val pi : float -> float = <fun>
- : float = 3.1415926535398846



Variable Binding

 Variable binding
 Associate variable names with values

 Bound variable: a variable that is bound to a value
 Free variable: a variable that is not bound
 Scope: the set of expressions for which a binding 

defines a name



Variable Binding

 Variable binding
 Formal parameters are bound to actual parameters
 The scope of formal parameters is the procedure body

# (fun x y -> x + y) 1;;
- : int -> int = <fun>

x is bound to 1

y is free

scope of x and y



Variable Binding

 Lexical (static) scoping
 Find the binding from the closest nesting 

procedures and let bindings

 Dynamic scoping
 Each time a function is invoked, a new scope is 

pushed onto the stack



Variable Binding

let first x =
    let a = 1 in
    let second x =
        let b = 2 in
        let third x =
            x + a + b in
        let fourth x =
            let a = 3 in
            let b = 4 in
            x + third b in
        x + fourth b in
    x + second a in
first 10 -> 20

Lexical scoping Dynamic scoping

first:
x = 10, a = 1, second = …

second:    x = 1, b = 2,
third = …, fourth = …

fourth:
x = 2, a = 3, b = 4

third:
x = 4

first 10 -> 24



Higher-Order Procedures

 First-class elements
 Named by variables
 Passed as arguments to procedures
 Returned as the results of procedures
 Included in data structures

 Procedures are a first-class element



Higher-Order Procedures

 Abstractions with higher-order procedures
 The same programming pattern will be used with 

different procedures
 To express such patterns as concepts, we need 

higher-order procedures

 Higher-order procedures are procedures that
 Accept procedures as arguments
 Return procedures as values



Higher-Order Procedures

 Example
 Sigma notation: an abstraction of summation of a 

series

let rec sum term n next b =
if n > b then 0.
else (term n) +. (sum term (next n) next b)



let sum_cubes a b =
let cube x = x ** 3. in
let inc x = x +. 1. in
sum cube a inc b

let _ = sum_cubes 0. 3.

- : float = 36.

let sum_ints a b =
let identity x = x in
let inc x = x +. 1. in
sum identity a inc b

let _ = sum_ints 0. 10.

- : float = 55.

Higher-Order Procedures



Higher-Order Procedures

 Computing  (Nilakantha series)

let sum_pi n =
let term x =

let y = x *. 2. in
let sign = -1. ** (x +. 1.) in
sign *. 4. /. (y *. (y +. 1.) *. (y +. 2.)) in

let inc x = x +. 1. in
3. +. sum term 1. inc n

let _ = sum_pi 100.

- : float = 3.1415924109719806



Higher-Order Procedures

 Numerical integration

let integral f a b dx =
let term x = f (x +. dx /. 2.) in
let next x = x +. dx in
dx *. (sum term a next b)

let _ = integral sin 0. 3.141592 0.001

- : float = 2.0000000003679608



Lambda
 Anonymous function definition

 Anonymous recursive function definition

let <name> = fun <formal parameters> -> <body>

# let square = fun x -> x * x;;
val square : int -> int = <fun>

let rec <name> = fun <formal parameters> -> <body>

# let rec fact = fun x -> 
if x = 0 then 1 else x * fact (x - 1);;

val fact : int -> int = <fun>



Lambda
 Examples

let sum_cubes a b =
let cube x = x ** 3. in
let inc x = x +. 1. in
sum cube a inc b

let sum_cubes2 a b =
sum (fun x -> x ** 3.) a (fun x -> x +. 1.) b

let sum_ints a b =
let identity x = x in
let inc x = x +. 1. in
sum identity a inc b

let sum_ints2 a b =
sum (fun x -> x) a (fun x -> x +. 1.) b



Lambda

 let and lambda
 let bindings can be rewritten using lambda
 The following two expressions are equivalent

let <name_1> = <expr_1> in
let <name_2> = <expr_2> in
…
let <name_n> = <expr_n> in
<body>

# let x = 3 in
let y = 4 in
x + y;;

- : int = 7

(fun <name_1>
<name_2> …
<name_n> -> <body>)
<expr_1>
<expr_2> …
<expr_n>

# (fun x y -> x + y) 3 4;;
- : int = 7



Example: Bisection Method
let bisection f a b =

let eps = 1e-10 in
let abs x = if x < 0. then -. x else x in
let rec iter a b fa fb =

let m = (a +. b) /. 2. in
let fm = f m in
if abs (a -. b) < eps then

m
else if fa *. fm < 0. then

iter a m fa fm
else

iter m b fm fb in
iter a b (f a) (f b)

let sqrt x =
bisection (fun y -> y *. y -. x) 0. 10.

let sqrt2 = sqrt 2.

val sqrt2 : float = 1.414213562347868



Assignment 2
 Implement Newton’s method for complex 

functions

 Download newton.zip

 Implement all TODOs in complex.ml, 
complex_arith.ml and newton.ml

 Zip the three modified files and upload the single 
zip file to Brightspace

 Due date: 3/21/2024



Newton’s Method
 Newton’s method is a numerical method that 

can find a root of an equation as below
 xn+1 = xn - f(xn) / f’(xn)
 i.e. xn+1 = next(xn) : x1 = next(x0), x2 = next(x1), x3 = 

next(x2), … 



Newton’s Method
 Fixed point of a function f:  is x such that f(x) = x

 fixedPoint: (  ) is a function that returns the fixed 
point of f

 Apply f to xn until the difference between xn+1 and  xn
becomes less than , where xn+1 = f(xn)

 Given a function f:  , next: (  )  (  ) is a 
function such that
 (next f) x = x - (f x) / (f’ x)

 Given a function f:  , Newton’s method finds a 
fixed point of next f
 fixed_point (next f)



Program Overview
 App.ml will run the unit test cases

(*app.ml*)
#use "complex.ml"
#use "complex_arith.ml"
#use "newton.ml"

(*run the test cases*)
let _ = test_complex ()
let _ = test_polar ()

let _ = test_arith_complex ()
let _ = test_arith_polar ()

let _ = test_sqrt ()
let _ = test_poly ()

Expected output

> ocaml
…
# #use "app.ml";;
…
testing complex...
success.
- : unit = ()
…
testing arith...
success.
- : unit = ()
testing newton (sqrt -2)...
sa: 0.000000 + i 1.414214
sb: 1.414214 \_ 1.000000
success.
- : unit = ()
testing newton (solve x^2 + 1)...
ans: 0.000000 + i 1.000000
success.
- : unit = ()#



(*complex.ml*)

(*complex number in rectangular form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let complex r i = (*TODO: implement this function*)

fun sel ->

(*complex number in polar form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let polar m a = (*TODO: implement this function*)

fun sel ->

(*test*)
…
let test_complex () =

Printf.printf "testing complex...\n";
…
let test_polar () =

Printf.printf "testing polar...\n";



(*complex_arith.ml*)
#use "complex.ml"

(*arithmetic operations on complex numbers*)
(*opr is one of "add", "sub", "mul", and "div"*)
let rec complex_arith opr =

let add a b = (*TODO: implement add in rectangular form: using real and imag*)

let sub a b = (*TODO: implement sub in rectangular form: using real and imag*)

let mul a b = (*TODO: implement mul in polar form: using mag and ang*)

let div a b = (*TODO: implement div in polar form: using mag and ang*)

(*TODO: return add, sub, mul or div depending on opr*)

(*test*)
…
let test_arith a b =

Printf.printf "testing arith...\n";
…
let test_arith_complex () =
…
let test_arith_polar () =



(*newton.ml*)
#use "complex_arith.ml"

(*TODO: implement newton's method*)
let newton f x0 =

let ( + ) = complex_arith "add" in
let ( - ) = complex_arith "sub" in
let ( / ) = complex_arith "div" in
let eps = 1e-8 in (*epsillon: a small number*)
let delta = complex eps eps in

(*difference*)
let diff a b =

(a - b) "mag" in

(*the derivative of f: (f(x + delta) - f(x)) / delta*)
(*TODO: implement derivative*)
let derivative f =



(*return a function that finds the next guess from the current guess*)
(*TODO: implement next*)
let next f =

let dfdx = derivative f in (*f'(x)*)

(*fixed point of f is x such that x = f(x) *)
(*TODO: recursively apply f(x) to f until the difference

between x and f(x) is less than eps*)
let rec fixed_point f x =

(*return the solution*)
(*TODO: find a fixed point of next f starting from x0*)



let complex_sqrt x =
let ini = complex 1. 1. in
let ( - ) = complex_arith "sub" in
let ( * ) = complex_arith "mul" in
newton (fun y -> y * y - x) ini

(*test*)
…
let test_sqrt () =

Printf.printf "testing newton (sqrt -2)...\n";

let test_poly () =
Printf.printf "testing newton (solve x^2 + 1)...\n";


