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Elements of Programming

 Primitive expressions
 The simplest entries the language is concerned with

 Means of combination
 By which compound elements are built from simpler 

ones

 Means of abstraction
 By which compound elements can be named and 

manipulated as units



Numbers

 Number
 A primitive expression
 Type 123;; to the OCaml interactive system (a.k.a. 

toplevel)

# 123;;
- : int = 123

prompt a number expr. ask top level to
evaluate

result valueresult type



Combining Numbers

 Arithmetic operators
 Using arithmetic operators

 + - * / mod    +. -. *. /. **

 Type 1 + 2 * 3 in the OCaml top level

 Type 1. +. 2. *. 3.

# 1 + 2 * 3;;
- : int = 7

# 1. +. 2. *. 3.;;
- : float = 7.



Combining Numbers

 Arithmetic operators
 For each operator, there is a corresponding 

function

 Function application
 No parenthesis around parameters
 Parameters are separated by spaces

# (+) 1 2;;
- : int = 3

# (+);;
- : int -> int -> int = <fun>



Combining Numbers
 Type coercion is not automatic in OCaml

# 1.0 + 2.0;;
Characters 0-3:

1.0 + 2.0;;
^^^

Error: This expression has type float but an expression
was expected of type int

# 1.0 +. 2.0;;
- : float = 3.
# (+.);;
- : float -> float -> float = <fun>

# float_of_int 1;;  (* or float 1 *)
- : float = 1.
# int_of_float 1.5;;
- : int = 1



Abstraction by Names
 Names are to refer to objects

 Name: variable
 Its value: object
 Names provide a mean of abstraction

 Create a variable to name a value
 let binding

let <variable> = <expr>

# let x = 1 + 2;;
val x : int = 3

# let add = (+);;
val add : int -> int -> int = <fun>



Abstraction by Names

 Environment
 A data structure that keeps track of name-value 

pairs

# x;;
- : int = 3

# add;;
- : int -> int -> int = <fun>

# add x 1;;
- : int = 4



Evaluating Combinations

 How to evaluate a combination (prefix 
operator case)

1. Evaluate the sub-expressions of the combination

2. Apply the function (the first sub-expr) to the 
arguments (the other sub-exprs)



Evaluating Combinations

 To evaluate sub-expressions
 If a sub-expr is a combination: recursively evaluate 

the combination

 If a sub-expr is a primitive expression
 Number: the value of the number
 Built-in operator: the code that executes the operation
 Name: object associated with the name in the 

environment



Evaluating Combinations

 Example
# let add = (+);;
val add : int -> int -> int = <fun>

# let mul = ( *);;  
val mul : int -> int -> int = <fun>

# let x = 5;;
val x : int = 5

# mul (add 1 (mul 2 3))
(add 4 x);;

- : int = 63

notice the space:
(* would start a comment



Evaluating Combinations

 Example

# mul (add 1 (mul 2 3))
(add 4 x);;

- : int = 63

*

*

+ +1

2 3

4 5



Abstraction by Functions

 Function definition
 With compound operations, it provides a powerful 

abstraction mechanism

let <name> <formal parameters> = <body>

# let square x = x * x;;
val square : int -> int = <fun>

name formal
parameter

body



Abstraction by Functions

 Function application

<operator-expr> <operand-expr>

# square 2;;
- : int = 4

function actual parameter



Abstraction by Functions
 Examples

# square 3;;
- : int = 9

# square (1+2);;
- : int = 9

# square (square 3);;
- : int = 81

# let sum_of_squares x y = square x + square y;;
val sum_of_squares : int -> int -> int = <fun>

# sum_of_squares 3 4;;
- : int = 25

square is used as a building block
of another procedure



Abstraction by Functions

 Anonymous function definition

fun <formal parameters> -> <body>

# fun x -> x * x;;
- : int -> int = <fun>

# (fun x -> x * x) 3;;
- : int = 9

# let square = fun x -> x * x;;
val square : int -> int = <fun>

anonymous
function

formal
parameter

body



Abstraction by Functions
 Multi-parameter functions

 Nested single parameter functions

 Pattern matching on a tuple
let add (x, y) = x + y
add (2, 3)

≡ let p = (2, 3)
add p

let add x y = x + y
≡ let add = fun x -> fun y -> x + y
≡ let add = fun x -> (fun y -> x + y)

add 2 3
≡ (add 2) 3

≡ let add2 = add 2
add2 3



Currying
 Currying

 Tuple parameter function  nested single 
parameter functions

# let add (a, b) = a + b;;
val add : int * int -> int = <fun>
# add (1, 2);;
- : int = 3

# let add' a b = a + b;;
val add' : int -> int -> int = <fun>
# add' 1 2;;
- : int = 3

# let inc = add' 1;;
val inc : int -> int = <fun>
# inc 2;;
- : int = 3



Currying

 A curry function

(*take x and y separately and apply them together as a pair*)
let curry f = fun x -> fun y -> f (x, y)

let add' = curry add
let inc = add' 1
let _ = inc 3

val curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>
val add : int * int -> int = <fun>
val add' : int -> int -> int = <fun>
val inc : int -> int = <fun>
- : int = 4



Function Composition
 Function composition operator (|>)

 A way to avoid nested function calls
 A way to bind a temporary result to a variable

(*function composition operator*)

let (|>) x f = f x

let inc x = (+) 1

let _ = 1 |> inc |> inc |> inc
- : int = 4



Function Composition

(*function composition*)
let (|>) x f = f x
val ( |> ) : 'a -> ('a -> 'b) -> 'b = <fun>

let square x = x * x
val square : int -> int = <fun>

let sum_of_squares x y =
square x |> fun xx -> (*bind result to a temp. var. xx*)
square y |> fun yy -> xx + yy

val sum_of_squares : int -> int -> int = <fun>

let _ = sum_of_squares 3 4
- : int = 25



Order of Evaluation

 Application order
 Evaluate the parameters and then apply the 

function

# let if_then_else p t f = if p then t else f;;
val if_then_else : bool -> 'a -> 'a -> 'a = <fun>

# if_then_else (1 < 2) 1 2;;
- : int = 1

# if_then_else (1 < 2) (1 / 1) (1 / 0);;
Exception: Division_by_zero.



Order of Evaluation
 Substitution model for function application

 Evaluate the body with each formal parameter 
replaced by its actual parameter

sum_of_squares 3 4

⇒ square 3 + square 4

⇒ (mul 3 3) + (mul 4 4)

⇒ (( * ) 3 3) + (( * ) 4 4))

⇒ 9 + 16

⇒ 25

let mul = ( * )

let square x = mul x x

let sum_of_squares x y =
square x + square y



Order of Evaluation

 Normal order
 Substitute operand expressions for parameters 

until only primitive expressions left
 Do not evaluate the operands until their values are 

needed

# if_then_else (1 < 2) (1 / 1) (1 / 0);; ??

# if 1 < 2 then 1 / 1 else 1 / 0;;
- : int = 1



Boolean Expression
 Bool

 Primitive expressions

# true;;
- : bool = true
# false;;
- : bool = false

prompt a bool expr. ask top level to
evaluate

result valueresult type



Comparisons
# (=);;
- : 'a -> 'a -> bool = <fun>
# (<>);;
- : 'a -> 'a -> bool = <fun>
# (>);;
- : 'a -> 'a -> bool = <fun>

# 2 > 1;;
- : bool = true

# 2. > 1.;;
- : bool = true

# 2 > 1.;;
Characters 4-6:

2 > 1.;;
^^

Error: This expression has
Type float but an expression
was expected of type int

# int_of_float 1. > 2;;
- : bool = false

# float_of_int 1 > 2.;;
- : bool = false

# float 1 > 2.;;
- : bool = false

# "abc" = "abc";;
- : bool = true

# "abc" <> "abc";;
- : bool = false

# "abc" < "def";;
- : bool = true



Comparisons
# let v = "hello";;
val v : string = "hello"
# v = v;;
- : bool = true
# v <> v;;
- : bool = false
# v == v;;
- : bool = true
# v != v;;
- : bool = false

# let u = v;;
val u : string = "hello"
# u == v;;
- : bool = true
# u != v;;
- : bool = false

(* =,  <>: compare structures,
==, !=: compare addresses *)

# (==);;
- : 'a -> 'a -> bool = <fun>
# (!=);;
- : 'a -> 'a -> bool = <fun>

# "hello" = "hello";;
- : bool = true

# "hello" <> "hello";;
- : bool = false

# "hello" == "hello";;
- : bool = false

# "hello" != "hello";;
- : bool = true



Logical Connectives
 Logical connectives: &&, ||, not

 ! is a dereference operator

# (&&);;
- : bool -> bool -> bool = <fun>

# let inside lb ub x = lb <= x && x <= ub;;
val inside : 'a -> 'a -> 'a -> bool = <fun>

# inside 0 10 5;;
- : bool = true

# let outside lb ub x = not (inside lb ub x);;
val outside : 'a -> 'a -> 'a -> bool = <fun>

# outside 0 10 5;;
- : bool = false



Logical Connectives
 Evaluation order of && and ||

# false && 1/0 > 0;;
- : bool = false

# (&&) false (1/0 > 0);; (* not exactly normal order
- : bool = false            eval., but similar to it *)

# true || 1/0 > 0;;
- : bool = true

# false || 1/0 > 0;;
Exception: Division_by_zero.



Conditional Expressions
 Predicate

 An expression whose value is interpreted as either 
true or false

 Conditional expression
if <predicate> then <consequent>

else <alternative>

# let abs x = if x >= 0 then x else - x;;
val abs : int -> int = <fun>

# abs (-3);;
- : int = 3



Conditional Expressions

 Example: factorial

 To define a recursive function, use let rec

# let rec factorial x =
if x = 0
then 1
else x * factorial (x - 1);;

val factorial : int -> int = <fun>

# factorial 4;;
- : int = 24



Conditional Expressions
 Example: even and odd

 To define mutually recursive functions, use let rec and

# let rec even x =
if x = 0 then true else odd (x - 1)

and odd x =
if x = 0 then false else even (x - 1);;

val even : int -> bool = <fun>
val odd : int -> bool = <fun>

# even 3;;
- : bool = false

# odd 3;;
- : bool = true



Conditional Expressions

 Example gcd

# let rec gcd x y =
if x > y then gcd (x - y) y
else if x < y then gcd (y - x) x
else x;;

val gcd : int -> int -> int = <fun>

# gcd 15 6;;
- : int = 3



Assignment 1

 Implement move function
 Download TowerOfHanoi.ml and implement its 

move function

 Upload TowerOfHanoi.ml to Brightspace
 Due date: 3/14/2024



(* Tower of Hanoi
*)

(* TODO: implement move function

move n src dst aux:
moves n disks from src to dst using aux

if n is 1,
print the movement from src to dst

otherwise,
move n-1 disks from src to aux,
move 1 disk from src to dst, and
move n-1 disks from aux to dst.

hint: use Printf.printf "move from %s to %s\n" ...
hint: for a series of expressions use begin ... end

e.g. begin move...; move...; move... end
*)

let main () =
move 3 "A" "B" "C"

let _ = main ()



(*
expected result:
#use "TowerOfHanoi.ml";;
val move : int -> string -> string -> string -> unit = <fun>
val main : unit -> unit = <fun>
move from A to B
move from A to C
move from B to C
move from A to B
move from C to A
move from C to B
move from A to B
- : unit = ()
*)



Procedural Abstraction

 Procedural abstraction
 Regard procedures as a black box

 Concern only with the fact that a procedure 
computes the correct result, but not with how

 Any procedures that compute the result are 
equally good



Procedural Abstraction
 Example

 A user should not need to know how the procedure is 
implemented in order to use it

 Procedure definitions should be able to suppress 
details

# let square x = x *. x;;
val square : float -> float = <fun>

# let square x = exp (log x +. log x);;
val square : float -> float = <fun>



Procedural Abstraction

 Local names
 Formal parameter names should not matter to the 

user of the procedure
 Parameter names should be local to procedure body

 These procedures should not be distinguishable

# let square x = x *. x;;
val square : float -> float = <fun>

# let square y = y *. y;;
val square : float -> float = <fun>



Procedural Abstraction

 Local names

 x in the body of square should be different from 
the x in the body of sum_of_squares

# let square x = x *. x;;
val square : float -> float = <fun>

# let sum_of_squares x y = (square x) +. (square y);;
val sum_of_squares : float -> float -> float = <fun>



Procedural Abstraction
 Computing  (Nilakantha series)

 How to run a program from a file
 To test large programs.
 Write pi.ml with the definition of pi above
 In the OCaml top level type  #use "pi.ml";;



Procedural Abstraction

(* pi.ml
Computes pi using Nilakantha series

*)

let abs x =
if x < 0. then -. x else x

let good_enough guess old_guess tol =
(abs (guess -. old_guess)) <= tol;;

let term x sign =
sign *. 4. /. (x *. (x +. 1.) *. (x +. 2.))



Procedural Abstraction
let rec pi_iter guess old_guess x sign tol =

if good_enough guess old_guess tol
then guess
else pi_iter (guess +. (term x sign))

guess
(x +. 2.)
(-. sign)
tol

let pi tol =
pi_iter 3. 0. 2. 1. tol

let _ = pi 1e-10

# #use "pi.ml";;
val abs : float -> float = <fun>
val good_enough : float -> float -> float -> bool = <fun>
val term : float -> float -> float = <fun>
val pi_iter : float -> float -> float -> float -> float -> float…
val pi : float -> float = <fun>
- : float = 3.1415926535398846



Procedural Abstraction

 Internal definitions
 In the previous program,

 pi is the only procedure that is important to users
 The other procedures only clutter up their minds

 Solution ⇒ allow procedures to have internal
definitions that are local to the procedure



Procedural Abstraction
 Block structure

 Nesting of definitions

 In expr2, variable is equal to expr1
 let binding is equivalent to

let <variable> = <expr1> in <expr2>

( fun <variable> -> <expr2> ) <expr1>  or
<expr1> |> fun <variable> -> <expr2>

let foo () =
let x = 1 in
let y = x + 1 in
let z = y + 1 in
z + 3

let foo' () =
(fun x ->

(fun y ->
(fun z -> z + 3)
(y + 1))

(x + 1))
1

let foo'' () =
1 |> fun x ->
x + 1 |> fun y ->
y + 1 |> fun z ->
z + 3



(* compute pi, Nilakantha series *)
let pi tol =

let rec pi_iter guess old_guess step sign =
let good_enough () = (*(), called unit, is like void*)

let abs x =
if x < 0. then -. x else x in

(abs (guess -. old_guess)) <= tol in

let term x =
sign *. 4. /. (x *. (x +. 1.) *. (x +. 2.)) in

if good_enough ()
then guess
else pi_iter (guess +. (term step))

guess
(step +. 2.)
(-. sign) in

pi_iter 3. 0. 2. 1.

let _ = pi 1e-10

# #use "pi_iter2.ml";;
val pi : float -> float = <fun>
- : float = 3.1415926535398846



Variable Binding

 Variable binding
 Associate variable names with values

 Bound variable: a variable that is bound to a value
 Free variable: a variable that is not bound
 Scope: the set of expressions for which a binding 

defines a name



Variable Binding

 Variable binding
 Formal parameters are bound to actual parameters
 The scope of formal parameters is the procedure body

# (fun x y -> x + y) 1;;
- : int -> int = <fun>

x is bound to 1

y is free

scope of x and y



Variable Binding

 Lexical (static) scoping
 Find the binding from the closest nesting 

procedures and let bindings

 Dynamic scoping
 Each time a function is invoked, a new scope is 

pushed onto the stack



Variable Binding

let first x =
    let a = 1 in
    let second x =
        let b = 2 in
        let third x =
            x + a + b in
        let fourth x =
            let a = 3 in
            let b = 4 in
            x + third b in
        x + fourth b in
    x + second a in
first 10 -> 20

Lexical scoping Dynamic scoping

first:
x = 10, a = 1, second = …

second:    x = 1, b = 2,
third = …, fourth = …

fourth:
x = 2, a = 3, b = 4

third:
x = 4

first 10 -> 24



Higher-Order Procedures

 First-class elements
 Named by variables
 Passed as arguments to procedures
 Returned as the results of procedures
 Included in data structures

 Procedures are a first-class element



Higher-Order Procedures

 Abstractions with higher-order procedures
 The same programming pattern will be used with 

different procedures
 To express such patterns as concepts, we need 

higher-order procedures

 Higher-order procedures are procedures that
 Accept procedures as arguments
 Return procedures as values



Higher-Order Procedures

 Example
 Sigma notation: an abstraction of summation of a 

series

let rec sum term n next b =
if n > b then 0.
else (term n) +. (sum term (next n) next b)



let sum_cubes a b =
let cube x = x ** 3. in
let inc x = x +. 1. in
sum cube a inc b

let _ = sum_cubes 0. 3.

- : float = 36.

let sum_ints a b =
let identity x = x in
let inc x = x +. 1. in
sum identity a inc b

let _ = sum_ints 0. 10.

- : float = 55.

Higher-Order Procedures



Higher-Order Procedures

 Computing  (Nilakantha series)

let sum_pi n =
let term x =

let y = x *. 2. in
let sign = -1. ** (x +. 1.) in
sign *. 4. /. (y *. (y +. 1.) *. (y +. 2.)) in

let inc x = x +. 1. in
3. +. sum term 1. inc n

let _ = sum_pi 100.

- : float = 3.1415924109719806



Higher-Order Procedures

 Numerical integration

let integral f a b dx =
let term x = f (x +. dx /. 2.) in
let next x = x +. dx in
dx *. (sum term a next b)

let _ = integral sin 0. 3.141592 0.001

- : float = 2.0000000003679608



Lambda
 Anonymous function definition

 Anonymous recursive function definition

let <name> = fun <formal parameters> -> <body>

# let square = fun x -> x * x;;
val square : int -> int = <fun>

let rec <name> = fun <formal parameters> -> <body>

# let rec fact = fun x -> 
if x = 0 then 1 else x * fact (x - 1);;

val fact : int -> int = <fun>



Lambda
 Examples

let sum_cubes a b =
let cube x = x ** 3. in
let inc x = x +. 1. in
sum cube a inc b

let sum_cubes2 a b =
sum (fun x -> x ** 3.) a (fun x -> x +. 1.) b

let sum_ints a b =
let identity x = x in
let inc x = x +. 1. in
sum identity a inc b

let sum_ints2 a b =
sum (fun x -> x) a (fun x -> x +. 1.) b



Lambda

 let and lambda
 let bindings can be rewritten using lambda
 The following two expressions are equivalent

let <name_1> = <expr_1> in
let <name_2> = <expr_2> in
…
let <name_n> = <expr_n> in
<body>

# let x = 3 in
let y = 4 in
x + y;;

- : int = 7

(fun <name_1>
<name_2> …
<name_n> -> <body>)
<expr_1>
<expr_2> …
<expr_n>

# (fun x y -> x + y) 3 4;;
- : int = 7



Example: Bisection Method
let bisection f a b =

let eps = 1e-10 in
let abs x = if x < 0. then -. x else x in
let rec iter a b fa fb =

let m = (a +. b) /. 2. in
let fm = f m in
if abs (a -. b) < eps then

m
else if fa *. fm < 0. then

iter a m fa fm
else

iter m b fm fb in
iter a b (f a) (f b)

let sqrt x =
bisection (fun y -> y *. y -. x) 0. 10.

let sqrt2 = sqrt 2.

val sqrt2 : float = 1.414213562347868



Assignment 2
 Implement Newton’s method for complex 

functions

 Download newton.zip

 Implement all TODOs in complex.ml, 
complex_arith.ml and newton.ml

 Zip the three modified files and upload the single 
zip file to Brightspace

 Due date: 3/21/2024



Newton’s Method
 Newton’s method is a numerical method that 

can find a root of an equation as below
 xn+1 = xn - f(xn) / f’(xn)
 i.e. xn+1 = next(xn) : x1 = next(x0), x2 = next(x1), x3 = 

next(x2), … 



Newton’s Method
 Fixed point of a function f:  is x such that f(x) = x

 fixedPoint: (  ) is a function that returns the fixed 
point of f

 Apply f to xn until the difference between xn+1 and  xn
becomes less than , where xn+1 = f(xn)

 Given a function f:  , next: (  )  (  ) is a 
function such that
 (next f) x = x - (f x) / (f’ x)

 Given a function f:  , Newton’s method finds a 
fixed point of next f
 fixed_point (next f)



Program Overview
 App.ml will run the unit test cases

(*app.ml*)
#use "complex.ml"
#use "complex_arith.ml"
#use "newton.ml"

(*run the test cases*)
let _ = test_complex ()
let _ = test_polar ()

let _ = test_arith_complex ()
let _ = test_arith_polar ()

let _ = test_sqrt ()
let _ = test_poly ()

Expected output

> ocaml
…
# #use "app.ml";;
…
testing complex...
success.
- : unit = ()
…
testing arith...
success.
- : unit = ()
testing newton (sqrt -2)...
sa: 0.000000 + i 1.414214
sb: 1.414214 \_ 1.000000
success.
- : unit = ()
testing newton (solve x^2 + 1)...
ans: 0.000000 + i 1.000000
success.
- : unit = ()#



(*complex.ml*)

(*complex number in rectangular form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let complex r i = (*TODO: implement this function*)

fun sel ->

(*complex number in polar form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let polar m a = (*TODO: implement this function*)

fun sel ->

(*test*)
…
let test_complex () =

Printf.printf "testing complex...\n";
…
let test_polar () =

Printf.printf "testing polar...\n";



(*complex_arith.ml*)
#use "complex.ml"

(*arithmetic operations on complex numbers*)
(*opr is one of "add", "sub", "mul", and "div"*)
let rec complex_arith opr =

let add a b = (*TODO: implement add in rectangular form: using real and imag*)

let sub a b = (*TODO: implement sub in rectangular form: using real and imag*)

let mul a b = (*TODO: implement mul in polar form: using mag and ang*)

let div a b = (*TODO: implement div in polar form: using mag and ang*)

(*TODO: return add, sub, mul or div depending on opr*)

(*test*)
…
let test_arith a b =

Printf.printf "testing arith...\n";
…
let test_arith_complex () =
…
let test_arith_polar () =



(*newton.ml*)
#use "complex_arith.ml"

(*TODO: implement newton's method*)
let newton f x0 =

let ( + ) = complex_arith "add" in
let ( - ) = complex_arith "sub" in
let ( / ) = complex_arith "div" in
let eps = 1e-8 in (*epsillon: a small number*)
let delta = complex eps eps in

(*difference*)
let diff a b =

(a - b) "mag" in

(*the derivative of f: (f(x + delta) - f(x)) / delta*)
(*TODO: implement derivative*)
let derivative f =



(*return a function that finds the next guess from the current guess*)
(*TODO: implement next*)
let next f =

let dfdx = derivative f in (*f'(x)*)

(*fixed point of f is x such that x = f(x) *)
(*TODO: recursively apply f(x) to f until the difference

between x and f(x) is less than eps*)
let rec fixed_point f x =

(*return the solution*)
(*TODO: find a fixed point of next f starting from x0*)



let complex_sqrt x =
let ini = complex 1. 1. in
let ( - ) = complex_arith "sub" in
let ( * ) = complex_arith "mul" in
newton (fun y -> y * y - x) ini

(*test*)
…
let test_sqrt () =

Printf.printf "testing newton (sqrt -2)...\n";

let test_poly () =
Printf.printf "testing newton (solve x^2 + 1)...\n";


