CSE216 Programming Abstractions Procedural Abstraction

YoungMin Kwon

Elements of Programming

- Primitive expressions
- The simplest entries the language is concerned with
- Means of combination
- By which compound elements are built from simpler ones
- Means of abstraction
- By which compound elements can be named and manipulated as units

Numbers

- Number
- A primitive expression
- Type 123;; to the OCaml interactive system (a.k.a. toplevel)

Combining Numbers

- Arithmetic operators
- Using arithmetic operators

$$
-+-* / \bmod +.-. * . / . * *
$$

- Type $1+2$ * 3 in the OCaml top level

$$
\begin{aligned}
& \# 1+2 \text { * } 3 ; \text {; } \\
& -: \text { int }=7
\end{aligned}
$$

- Type 1. +. 2. *. 3.

$$
\begin{aligned}
& \text { \# 1. +. 2. *. 3.; ; } \\
& -: \text { float }=7 .
\end{aligned}
$$

Combining Numbers

- Arithmetic operators
- For each operator, there is a corresponding function

```
# (+);;
- : int -> int -> int = <fun>
```

- Function application
- No parenthesis around parameters
- Parameters are separated by spaces

$$
\begin{aligned}
& \text { \# (+) } 12 ; \text {; } \\
& \text { - : int }=3
\end{aligned}
$$

Combining Numbers

- Type coercion is not automatic in OCaml

```
# 1.0 + 2.0;;
Characters 0-3:
    1.0 + 2.0;;
    ^^^
Error: This expression has type float but an expression
    was expected of type int
# 1.0 +. 2.0;;
- : float = 3.
# (+.);;
- : float -> float -> float = <fun>
# float_of_int 1;; (* or float 1 *)
- : float = 1.
# int_of_float 1.5;;
- : int = 1
```


Abstraction by Names

- Names are to refer to objects
- Name: variable
- Its value: object
- Names provide a mean of abstraction
- Create a variable to name a value
- let binding

```
Let <variable> = <expr>
# let x = 1 + 2;;
val x : int = 3
# let add = (+);;
val add : int -> int -> int = <fun>
```


Abstraction by Names

- Environment
- A data structure that keeps track of name-value pairs

```
# x;;
    - : int = 3
# add;;
    - : int -> int -> int = <fun>
# add x 1;;
    - : int = 4
```


Evaluating Combinations

- How to evaluate a combination (prefix operator case)

1. Evaluate the sub-expressions of the combination
2. Apply the function (the first sub-expr) to the arguments (the other sub-exprs)

Evaluating Combinations

- To evaluate sub-expressions
- If a sub-expr is a combination: recursively evaluate the combination
- If a sub-expr is a primitive expression
- Number: the value of the number
- Built-in operator: the code that executes the operation
- Name: object associated with the name in the environment

Evaluating Combinations

- Example

```
# let add = (+);;
val add : int -> int -> int = <fun>
# let mul = (*);;
val mul : int -> Not -> int = <fun>
# let x = 5;; notice the space:
val x : int = 5 (* would start a comment
# mul (add 1 (mul 2 3))
    (add 4 x);;
- : int = 63
```


Evaluating Combinations

\author{

- Example
 ```

mul (add 1 (mul 2 3))
 (add 4 x);;
 - : int = 63

```
}
mu (add 1 (mule 2 3)) (add \(4 x\) )


\section*{Abstraction by Functions}
- Function definition
- With compound operations, it provides a powerful abstraction mechanism
Let <name> <formal parameters> = <body>


\section*{Abstraction by Functions}
- Function application
<operator-expr> <operand-expr>
\# square 2; ;
- \(:\) int \(=4\)
function
actual parameter

\section*{Abstraction by Functions}
- Examples
```


square 3;;

- : int = 9

square (1+2);;

- : int = 9

square (square 3);;

- : int = 81

let sum_of_squares x y = square x + square y;;

val sum_of_squares : int -> int -> int = <fun>

sum_of_squares 3 4;;

- : int = 25

```

\section*{Abstraction by Functions}
- Anonymous function definition
fun <formal parameters> -> <body>


\section*{Abstraction by Functions}
- Multi-parameter functions
- Nested single parameter functions
```

let add x y = x + y
\equiv let add = fun x -> fun y -> x + y
\equiv let add = fun x -> (fun y
add 2 3

(add 2) 3

\equiv let add2 = add 2

```
- Pattern matching on a tuple
\[
\begin{aligned}
& \frac{\text { let }}{\text { add }}(2,3) \\
& \equiv \frac{\text { let }}{\text { add }} p=(2, y)=x+y
\end{aligned}
\]

\section*{Currying}
- Currying
- Tuple parameter function \(\rightarrow\) nested single parameter functions
```


let add (a, b) = a + b;;

val add : int * int -> int = <fun>

add (1, 2);;

- : int = 3

let add' a b = a + b;;

val add' : int -> int -> int = <fun>

add' 1 2;;

- : int = 3

let inc = add' 1;;

val inc : int -> int = <fun>

inc 2;;

- : int = 3

```

\section*{Currying}

\section*{- A curry function}
(*take \(x\) and \(y\) separately and apply them together as a pair*) let curry \(f=\) fun \(x\)-> fun \(y \rightarrow f(x, y)\)
let add' = curry add
let inc = add' 1
let _ = inc 3
val curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c = <fun>
val add : int * int -> int = 〈fun>
val add' : int -> int -> int = 〈fun>
val inc : int -> int = <fun>
- : int = 4

\section*{Function Composition}
- Function composition operator (| \(>\) )
- A way to avoid nested function calls
- A way to bind a temporary result to a variable
\[
\begin{aligned}
& \text { (*function composition operator*) } \\
& \text { let }(\mid>) x f=f x \\
& \text { let inc } x=(+) 1 \\
& \frac{\text { let }}{- \text { l }}=1 \text { int }=4
\end{aligned}
\]

\section*{Function Composition}
```

(*function composition*)
let (|>) x f = f x
val (|>) : 'a -> ('a -> 'b) -> 'b = <fun>
let square x = x * x
val square : int -> int = <fun>
let sum_of_squares x y =
square x |> fun xx -> (*bind result to a temp. var. xx*)
square y |> fun yy -> xx + yy
val sum_of_squares : int -> int -> int = <fun>
let _ = sum_of_squares 34

- : int = 25

```

\section*{Order of Evaluation}

\section*{- Application order}
- Evaluate the parameters and then apply the function
```


let if_then_else p t f = if p then t else f;;

val if_then_else : bool -> 'a -> 'a -> 'a = <fun>

if_then_else (1 < 2) 1 2;;

- : int = 1

if_then_else (1 < 2) (1 / 1) (1 / 0);;

Exception: Division_by_zero.

```

\section*{Order of Evaluation}
- Substitution model for function application
- Evaluate the body with each formal parameter replaced by its actual parameter
\[
\begin{aligned}
& \text { sum_of_squares } 34 \\
& \Rightarrow \text { square } 3+\text { square } 4 \\
& \Rightarrow(\text { mul } 33)+(\text { mul } 44) \\
& \Rightarrow((*) 33)+((*) 44)) \\
& \Rightarrow 9+16 \\
& \Rightarrow 25
\end{aligned}
\]
```

```
let mul = ( * )
```

```
let mul = ( * )
let square x = mul x x
let square x = mul x x
let sum_of_squares x y =
let sum_of_squares x y =
    square x + square y
```

```
    square x + square y
```

```

\section*{Order of Evaluation}
- Normal order
- Substitute operand expressions for parameters until only primitive expressions left
- Do not evaluate the operands until their values are needed
```


if_then_else (1 < 2) (1 / 1) (1 / 0);; ??

if 1 < 2 then 1 / 1 else 1 / 0;;

- : int = 1

```

\section*{Boolean Expression}
- Bool
- Primitive expressions


\section*{Comparisons}
```


(=); ;

 - : 'a -> 'a -> bool = <fun>

(<>);;

- : 'a -> 'a -> bool = <fun>

(>);;

- : 'a -> 'a -> bool = <fun>

2 > 1;;

- : bool = true

2. > 1.;;

- : bool = true

2 > 1.;;

Characters 4-6:
2 > 1.;;
Error: This expression has
Type float but an expression
was expected of type int

```
```


int_of_float 1. > 2;;

```
# int_of_float 1. > 2;;
- : bool = false
- : bool = false
# float_of_int 1 > 2.;;
# float_of_int 1 > 2.;;
- : bool = false
- : bool = false
# float 1 > 2.;;
# float 1 > 2.;;
- : bool = false
- : bool = false
# "abc" = "abc";;
# "abc" = "abc";;
- : bool = true
- : bool = true
# "abc" <> "abc";;
# "abc" <> "abc";;
- : bool = false
- : bool = false
# "abc" < "def";;
# "abc" < "def";;
- : bool = true
- : bool = true
Type float but an expression was expected of type int
```


Comparisons

```
(* =, <>: compare structures,
    ==, !=: compare addresses *)
# (==); ;
- : 'a -> 'a -> bool = <fun>
# (!=);;
- : 'a -> 'a -> bool = <fun>
# "hello" = "hello";;
- : bool = true
# "hello" <> "hello";;
- : bool = false
# "hello" == "hello";;
- : bool = false
# "hello" != "hello";;
- : bool = true
```

```
# let v = "hello";;
```


let v = "hello";;

val v : string = "hello"
val v : string = "hello"

v = v;;

v = v;;

- : bool = true
- : bool = true

v <> v;;

v <> v;;

- : bool = false
- : bool = false

v == v;;

v == v;;

- : bool = true
- : bool = true

v != v;;

v != v;;

- : bool = false
- : bool = false

let u = v;;

let u = v;;

val u : string = "hello"
val u : string = "hello"

u == v;;

u == v;;

- : bool = true
- : bool = true

u != v;;

u != v;;

- : bool = false

```
- : bool = false
```


Logical Connectives

- Logical connectives: \&\&, ||, not
-! is a dereference operator

```
# (&&);;
- : bool -> bool -> bool = <fun>
# let inside lb ub x = lb <= x && x <= ub;;
val inside : 'a -> 'a -> 'a -> bool = <fun>
# inside 0 10 5;;
- : bool = true
# let outside lb ub x = not (inside lb ub x);;
val outside : 'a -> 'a -> 'a -> bool = <fun>
# outside 0 10 5;;
- : bool = false
```


Logical Connectives

- Evaluation order of \&\& and ||

```
# false && 1/0 > 0;;
- : bool = false
# (&&) false (1/0 > 0);; (* not exactly normal order
- : bool = false eval., but similar to it *)
# true || 1/0 > 0;;
- : bool = true
# false || 1/0 > 0;;
Exception: Division_by_zero.
```


Conditional Expressions

- Predicate
- An expression whose value is interpreted as either true or false
- Conditional expression
if <predicate> then <consequent> else <alternative>
\# let abs $x=$ if $x>=0$ then x else - $x ;$;
val abs : int -> int = <fun>
\# abs (-3); ;
- : int = 3

Conditional Expressions

- Example: factorial

```
# let rec factorial x =
    if x = 0
    then 1
    else x * factorial (x - 1);;
val factorial : int -> int = <fun>
# factorial 4;;
- : int = 24
```

- To define a recursive function, use let rec

Conditional Expressions

- Example: even and odd

```
# let rec even x =
        if x = 0 then true else odd ( }x\mathrm{ - 1)
        and odd }x
        if x = 0 then false else even (x - 1);;
val even : int -> bool = <fun>
val odd : int -> bool = <fun>
# even 3;;
- : bool = false
# odd 3;;
- : bool = true
```

- To define mutually recursive functions, use let rec and

Conditional Expressions

- Example gcd

```
# let rec gcd x y =
        if x > y then gcd (x - y) y
        else if x < y then gcd (y - x) x
        else x;;
val gcd : int -> int -> int = <fun>
# gcd 15 6;;
- : int = 3
```


Assignment 1

- Implement move function
- Download TowerOfHanoi.ml and implement its move function

- Upload TowerOfHanoi.ml to Brightspace
- Due date: 3/14/2024
(* Tower of Hanoi
*)
(* TODO: implement move function
move n src dst aux:
moves n disks from src to dst using aux
if n is 1,
print the movement from src to dst otherwise,
move n-1 disks from src to aux, move 1 disk from src to dst, and move $n-1$ disks from aux to dst.
hint: use Printf.printf "move from \%s to \%s\n" ... hint: for a series of expressions use begin ... end e.g. begin move...; move...; move... end
*)
let main () =
move 3 "A" "B" "C"
let _ = main ()

```
(*
expected result:
#use "TowerOfHanoi.mL";;
val move : int -> string -> string -> string -> unit = <fun>
val main : unit -> unit = <fun>
move from A to B
move from A to C
move from B to C
move from A to B
move from }C\mathrm{ to }
move from C to B
move from }A\mathrm{ to }
- : unit = ()
*)
```


Procedural Abstraction

- Procedural abstraction
- Regard procedures as a black box

- Concern only with the fact that a procedure computes the correct result, but not with how
- Any procedures that compute the result are equally good

Procedural Abstraction

- Example

```
# let square x = x *. x; ;
val square : float -> float = <fun>
# let square x = exp (log x +. log x);;
val square : float -> float = <fun>
```

- A user should not need to know how the procedure is implemented in order to use it
- Procedure definitions should be able to suppress details

Procedural Abstraction

- Local names
- Formal parameter names should not matter to the user of the procedure
- Parameter names should be local to procedure body

```
# let square x = x *. x;;
val square : float -> float = <fun>
# let square y = y *. y;;
val square : float -> float = <fun>
```

- These procedures should not be distinguishable

Procedural Abstraction

- Local names

```
# let square x = x *. x;;
val square : float -> float = <fun>
# let sum_of_squares x y = (square x) +. (square y);;
val sum_of_squares : float -> float -> float = <fun>
```

- x in the body of square should be different from the x in the body of sum_of_squares

Procedural Abstraction

- Computing π (Nilakantha series)

$$
\pi=3+\frac{4}{2 \times 3 \times 4}-\frac{4}{4 \times 5 \times 6}+\frac{4}{6 \times 7 \times 8}-\frac{4}{8 \times 9 \times 10}+\ldots
$$

- How to run a program from a file
- To test large programs.
- Write pi.ml with the definition of pi above
- In the OCaml top level type \#use "pi.ml";

Procedural Abstraction

$$
\pi=3+\frac{4}{2 \times 3 \times 4}-\frac{4}{4 \times 5 \times 6}+\frac{4}{6 \times 7 \times 8}-\frac{4}{8 \times 9 \times 10}+\ldots
$$

(* pi.ml
Computes pi using Nilakantha series
*)
let $a b s x=$
if x < 0 . then -. x else x
let good_enough guess old_guess tol =
(abs (guess -. old_guess)) <= tol;
let $\operatorname{term} \times \operatorname{sign}=$
sign *. 4. /. ($\left.x^{*} .(x+.1 .)^{*} .(x+.2).\right)$

Procedural Abstraction

```
let rec pi_iter guess old_guess x sign tol =
    if good_enough guess old_guess tol
    then guess
    else pi_iter (guess +. (term x sign))
        guess
        (x +. 2.)
        (-. sign)
        tol
let pi tol =
                                \pi=3+\frac{4}{2\times3\times4}-\frac{4}{4\times5\times6}+\frac{4}{6\times7\times8}-\frac{4}{8\times9\times10}+\ldots
    pi_iter 3. 0. 2. 1. tol
let _ = pi 1e-10
# #use "pi.ml";;
val abs : float -> float = <fun>
val good_enough : float -> float -> float -> bool = <fun>
val term : float -> float -> float = <fun>
val pi_iter : float -> float -> float -> float -> float -> float...
val pi : float -> float = <fun>
- : float = 3.1415926535398846
```


Procedural Abstraction

- Internal definitions
- In the previous program,

- pi is the only procedure that is important to users
- The other procedures only clutter up their minds
- Solution \Rightarrow allow procedures to have internal definitions that are local to the procedure

Procedural Abstraction

- Block structure
- Nesting of definitions
Let <variable> = <expr1> in <expr2>
- In expr2, variable is equal to expr1
- let binding is equivalent to

```
( fun <variable> -> <expr2> ) <expr1> or
<expr1> |> fun <variable> -> <expr2>
```

```
let foo () =
    let}y=x+1 i
    let}z=y+1 \underline{\mathrm{ in}
    z+3
```

 let \(x=1\) in (fun \(x\)->
    ```
let \(f 0{ }^{\prime}\) () =
        (fun \(y\)->
        ( \(x+1\) ) ) \((x+1))\)
```

 (fun \(z->z+3\)) \(\quad y+1 \mid>\) fun \(z->\)
 \((y+1)) \quad z+3\)
 | let $f o o^{\prime}$ | ()$=$ | |
| :---: | :--- | :--- |
| 1 | $\mid>$ | fun $x->$ |
| $x+1$ | $\mid>$ | fun $y->$ |
| $y+1$ | $\mid>$ | fun $z->$ |
| $z+3$ | | |

```
(* compute pi, Nilakantha series *)
let pi tol =
    let rec pi_iter guess old_guess step sign =
        let good_enough () = (*(), called unit, is like void*)
            let abs x =
            if x < 0. then -. x else x in
            (abs (guess -. old_guess)) <= tol in
        let term x =
            sign *. 4. /. (x *. (x +. 1.) *. (x +. 2.)) in
        if good_enough ()
        then guess
        else pi_iter (guess +. (term step))
        guess
        (step +. 2.)
                                (-. sign) in
    pi_iter 3. 0. 2. 1.
let _ = pi 1e-10
# #use "pi_iter2.ml";;
val pi : float -> float = <fun>
- : float = 3.1415926535398846
```


Variable Binding

- Variable binding
- Associate variable names with values
- Bound variable: a variable that is bound to a value
- Free variable: a variable that is not bound
- Scope: the set of expressions for which a binding defines a name

Variable Binding

- Variable binding
- Formal parameters are bound to actual parameters
- The scope of formal parameters is the procedure body

Variable Binding

- Lexical (static) scoping
- Find the binding from the closest nesting procedures and let bindings
- Dynamic scoping
- Each time a function is invoked, a new scope is pushed onto the stack

Variable Binding

Lexical scoping
third:
$x=4$
fourth:
$x=2, a=3, b=4$
second: $\quad x=1, b=2$, third $=$..., fourth $=$...
first:
$x=10, a=1$, second $=$...
first 10 -> 24

Dynamic scoping

Higher-Order Procedures

- First-class elements
- Named by variables
- Passed as arguments to procedures
- Returned as the results of procedures
- Included in data structures
- Procedures are a first-class element

Higher-Order Procedures

- Abstractions with higher-order procedures
- The same programming pattern will be used with different procedures
- To express such patterns as concepts, we need higher-order procedures
- Higher-order procedures are procedures that
- Accept procedures as arguments
- Return procedures as values

Higher-Order Procedures

- Example
- Sigma notation: an abstraction of summation of a series

$$
\sum_{n=a}^{b} f(n)=f(a)+\cdots+f(b)
$$

let rec sum term n next $b=$ if $n>b$ then 0 .
else (term n) +. (sum term (next n) next b)

Higher-Order Procedures

$$
\begin{aligned}
& \text { let sum_cubes } a b= \\
& \text { let cube } x=x^{* *} 3 \text {. in } \\
& \text { let inc } x=x+\text {. 1. in } \\
& \text { sum cube a inc b } \\
& \text { let _ = sum_cubes } 0.3 \text {. } \\
& \text { - : float = } 36 . \\
& \text { let sum_ints } a b= \\
& \text { let identity } x=x \text { in } \\
& \text { let inc } x=x+\text {. 1. in } \\
& \text { sum identity } a \text { inc } b \\
& \text { let _ = sum_ints 0. 10. } \\
& \text { - : float = } 55 .
\end{aligned}
$$

Higher-Order Procedures

- Computing π (Nilakantha series)

$$
\begin{aligned}
& \pi=3+\frac{4}{2 \times 3 \times 4}-\frac{4}{4 \times 5 \times 6}+\frac{4}{6 \times 7 \times 8}-\frac{4}{8 \times 9 \times 10}+\ldots \\
& \text { let sum_pi } n= \\
& \text { let term } x= \\
& \text { let } y=x{ }^{*} \text {. 2. in } \\
& \text { let } \operatorname{sign}=-1 .{ }^{* *}(x+.1 .) \text { in } \\
& \text { sign } \left.{ }^{*} \text {. 4. /. (} y^{*} .(y+.1 .)^{*} .(y+.2 .)\right) \text { in } \\
& \text { let inc } x=x+.1 \text { in } \\
& \text { 3. +. sum term 1. inc } n \\
& \text { let _ = sum_pi } 100 \text {. } \\
& \text { - : float = } 3.1415924109719806
\end{aligned}
$$

Higher-Order Procedures

- Numerical integration

$$
\int_{a}^{b} f=\left[f\left(a+\frac{d x}{2}\right)+f\left(a+d x+\frac{d x}{2}\right)+f\left(a+2 d x+\frac{d x}{2}\right)+\ldots\right] d x
$$

let integral $f a b d x=$
let term $x=f(x+. d x / .2$.$) in$
let next $x=x+. d x$ in
dx *. (sum term a next b)
let _ = integral sin 0. 3.1415920 .001

- : float = 2.0000000003679608

Lambda

- Anonymous function definition

```
Let <name> = fun <formal parameters> -> <body>
# let square = fun x -> x * x;;
val square : int -> int = <fun>
```

- Anonymous recursive function definition

```
Let rec <name> = fun <formal parameters> -> <body>
# let rec fact = fun x ->
    if x = 0 then 1 else x * fact (x - 1);;
val fact : int -> int = <fun>
```


Lambda

- Examples

```
let sum_cubes a b =
    let cube x = x ** 3. in
    let inc x = x +. 1. in
    sum cube a inc b
let sum_cubes2 a b =
    sum (fun x -> x** 3.) a (fun x -> x +. 1.) b
let sum_ints a b =
    let identity x = x in
    let inc x = x +. 1. in
    sum identity a inc b
let sum_ints2 a b =
    sum (fun x -> x) a (fun x -> x +. 1.) b
```


Lambda

- let and lambda
- let bindings can be rewritten using lambda
- The following two expressions are equivalent

```
Let <name_1> = <expr_1> in
Let <name_2> = <expr_2> in
..
Let <name_n> = <expr_n> in
<body>
# let x = 3 in
    let y = 4 in
    x + y;;
- : int = 7
```

```
(fun <name_1>
    <name_2> ...
    <name_n> -> <body>)
    <expr_1>
    <expr_2> ...
    <expr_n>
# (fun x y -> x + y) 3 4;;
- : int = 7
```


Example: Bisection Method

```
    let bisection f a b =
    let eps = 1e-10 in
    let abs x = if x < 0. then -. x else x in
    let rec iter a b fa fb =
    let m = (a +. b) /. 2. in
        let fm = f m in
        if abs (a -. b) < eps then
            m
        else if fa *. fm < 0. then
        iter a m fa fm
    else
        iter m b fm fb in
    iter a b (f a) (f b)
let sqrt x =
    bisection (fun y -> y *. y -. x) 0. 10.
let sqrt2 = sqrt 2.
val sqrt2 : float = 1.414213562347868
```


Assignment 2

- Implement Newton's method for complex functions
- Download newton.zip
- Implement all TODOs in complex.ml, complex_arith.ml and newton.ml
- Zip the three modified files and upload the single zip file to Brightspace
- Due date: 3/21/2024

Newton's Method

- Newton's method is a numerical method that can find a root of an equation as below
- $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- ie. $x_{n+1}=\operatorname{next}\left(x_{n}\right): x_{1}=\operatorname{next}\left(x_{0}\right), x_{2}=\operatorname{next}\left(x_{1}\right), x_{3}=$ $\operatorname{next}\left(x_{2}\right), \ldots$

Newton's Method

- Fixed point of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is x such that $f(x)=x$
- fixedPoint: $(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R}$ is a function that returns the fixed point of f
- Apply f to x_{n} until the difference between x_{n+1} and x_{n} becomes less than ε, where $x_{n+1}=f\left(x_{n}\right)$
- Given a function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$, next: $(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow(\mathbb{R} \rightarrow \mathbb{R})$ is a function such that
- (next f) $x=x-(f x) /\left(f^{\prime} x\right)$
- Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, Newton's method finds a fixed point of next f
- fixed_point (next f)

Program Overview

- App.ml will run the unit test cases

```
(*app.ml*)
#use "complex.ml"
#use "complex_arith.ml"
#use "newton.ml"
(*run the test cases*)
let _ = test_complex ()
let _ = test_polar ()
let _ = test_arith_complex ()
let _ = test_arith_polar ()
let _ = test_sqrt ()
let _ = test_poly ()
```

```
Expected output
> ocaml
# #use "app.ml";;
testing complex...
success.
- : unit = ()
testing arith...
success.
- : unit = ()
testing newton (sqrt -2)...
sa: 0.000000 + i 1.414214
sb: 1.414214 \_ 1.000000
success.
- : unit = ()
testing newton (solve x^2 + 1)...
ans: 0.000000 + i 1.000000
success.
- : unit = ()#
```

```
(*complex.mL*)
(*complex number in rectangular form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let complex r i = (*TODO: implement this function*)
    fun sel ->
(*complex number in polar form*)
(*sel is one of "real", "imag", "mag", and "ang"*)
let polar m a = (*TODO: implement this function*)
    fun sel ->
(*test*)
let test_complex () =
    Printf.printf "testing complex...\n";
let test_polar () =
    Printf.printf "testing polar...\n";
```

```
(*complex_arith.mL*)
#use "complex.ml"
(*arithmetic operations on complex numbers*)
(*opr is one of "add", "sub", "mul", and "div"*)
let rec complex_arith opr =
    let add a b = (*TODO: implement add in rectangular form: using real and imag*)
    let sub a b = (*TODO: implement sub in rectangular form: using real and imag*)
    let mul a b = (*TODO: implement mul in polar form: using mag and ang*)
    let div a b = (*TODO: implement div in polar form: using mag and ang*)
    (*TODO: return add, sub, mul or div depending on opr*)
(*test*)
...
let test_arith a b =
    Printf.printf "testing arith...\n";
let test_arith_complex () =
...
let test_arith_polar () =
```

```
(*newton.mL*)
#use "complex_arith.ml"
(*TODO: implement newton's method*)
let newton f x0 =
    let ( + ) = complex_arith "add" in
    let ( - ) = complex_arith "sub" in
    let ( / ) = complex_arith "div" in
    let eps = 1e-8 in (*epsillon: a small number*)
    let delta = complex eps eps in
    (*difference*)
    let diff a b =
        (a - b) "mag" in
    (*the derivative of f: (f(x + delta) - f(x)) / delta*)
    (*TODO: implement derivative*)
    let derivative f=
```

(*return a function that finds the next guess from the current guess*)
(*TODO: implement next*)
let next $f=$
let $d f d x=$ derivative f in $\left({ }^{*} f^{\prime}(x)^{*}\right)$
(*fixed point of f is x such that $x=f(x) *$)
(*TODO: recursively apply $f(x)$ to f until the difference between x and $f(x)$ is Less than eps*)
let rec fixed_point $f x=$
(*return the solution*)
(*TODO: find a fixed point of next f starting from $x 0^{*}$)

```
let complex_sqrt x =
    let ini = complex 1. 1. in
    let ( - ) = complex_arith "sub" in
    let ( * ) = complex_arith "mul" in
    newton (fun y -> y * y - x) ini
(*test*)
let test_sqrt () =
    Printf.printf "testing newton (sqrt -2)...\n";
let test_poly () =
    Printf.printf "testing newton (solve x^2 + 1)...\n";
```

