
CSE216 Programming Abstractions
Programming Paradigms

YoungMin Kwon

Some UNIX commands
 About directories

 ls: list directory contents.
e.g. ls –al

 pwd: print working directory.
e.g. pwd

 mkdir: make a directory.
e.g. mkdir abc

 cd: change directory.
e.g. cd abc, cd ..

 rmdir: remove a directory.
e.g. rmdir abc

Some UNIX commands
 About files

 cp: copy files.
e.g. cp * abc/, cp a.txt b.txt

 mv: move files.
e.g. mv abc/* bcd/*, mv a.txt b.txt

 cat: print the contents of a file.
e.g. cat a.txt

 grep: looking for a pattern.
e.g. grep hello *

 man (manual page)
 section number 2 is for system calls, 3 is for

library routines
 man 3 printf
 man 2 fork
 man sin

Abstractions
 Programming languages provide means of

abstractions
 Abstraction: hiding unwanted details and providing

the most essential details

Abstractions

 Abstractions in your program
 To build a large program: build layers of

abstractions

Programming Language Paradigms

 Imperative programming
 Focus on how to achieve the goal
 Update the state and take actions based on the

state

 Declarative programming
 Focus on describing what is the goal
 Describe the logic of the program without

specifying the order of evaluations

Programming Language Paradigms

Procedural Programming

 Procedural programming
 A kind of imperative programming
 Abstraction mechanisms are procedures
 COBOL, Fortran, C, Pascal

 Procedures
 Contains a series of computational steps
 State: local or global variables

Object Oriented Programming

 Object-oriented programming
 A kind of imperative programming
 A program comprises objects that interact with

each other
 C++, Java, OCaml, Smalltalk

 Objects
 State: fields
 Code: methods

public class Account {
private int balance;

public int getBalance() {
return balance;

}
public void deposit(int amount) {

balance += amount;
}
public void withdraw(int amount) {

balance -= amount;
}

}

Object Oriented Programming

 Class-based
 Class: definitions for the data format and

procedures
 Object: instance of a class

Object Oriented Programming

 Prototype-based
 Objects have their own properties and methods
 Objects delegate to their prototypes

Object Oriented Programming
 Dispatching

 Objects do select the method to run (not the external
code)

 Dynamic dispatching: decide the method to invoke at
run time based on the object’s actual type

 Message passing
 Messages are exchanged between objects to

communicate

Functional Programming

 Functional programming
 Based on recursive definition

of functions
 Inspired from the lambda calculus

developed by Alonzo Church

 A program is viewed as a mathematical function
that transforms an input to an output

 Lisp, Scheme, ML, Haskell, …

Logic Programming

 Logic programming
 Find solutions through logical rules and axioms
 Goal: find a specific relation that is true by

applying logical rules to axioms
 Prolog

 Prolog program: collection of rules (theorems) and facts
(axioms)

 Running a program: checks if a given query (goal) is
provable from the axioms using the theorems

Prolog Example
/*simpsons.pl
*/

/*facts (axioms)*/
male(homer).
male(bart).

parent(homer, bart).
parent(homer, lisa).
parent(homer, maggie).
parent(marge, bart).
parent(marge, lisa).
parent(marge, maggie).

/*rules (theorems)*/
female(X) :- \+ male(X). /*\+: not*/
child(C, P) :- parent(P, C).
father(F, C) :- parent(F, C), male(F).
mother(M, C) :- parent(M, C), female(M).
son(S, P) :- child(S, P), male(S).
daughter(D, P) :- child(D, P), female(D).

?- consult('simpsons.pl').
true.

?- father(homer, bart).
true .

?- mother(marge, bart).
true .

?- daughter(bart, marge).
false.

?- son(bart, marge).
true .

?- daughter(X, homer).
X = lisa ;
X = maggie.

?- halt.

GCD in Different Paradigms

 Imperative programming
int gcd(int a, int b) {
 while(a != b) {
 if(a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

GCD in Different Paradigms

 Functional programming

let rec gcd a b =
 if a = b then a
 else if a > b then
 gcd (a - b) b
 else
 gcd (b - a) a

GCD in Different Paradigms

 Logic programming

 The proposition gcd(A, B, G) is true if
 A, B, and G are all equal or
 A > B and there is a number C such that C is A - B and

gcd(C, B, G) is true or
 B > A and there is a number C such that C is B - A and

gcd(C, A, G) is true

gcd(A, B, G) :- A = B, G = A.
gcd(A, B, G) :- A > B, C is A - B, gcd(C, B, G).
gcd(A, B, G) :- B > A, C is B - A, gcd(C, A, G).

Compilation and Interpretation

 Pure compilation
 Compiler translates high-level source programs

into an equivalent target program
 Later, the user tells the OS to run the program

Compilation and Interpretation

 Pure interpretation
 Interpreter implements a virtual machine

 Its machine language is the high-level language

 The interpreter reads the statements in that
language and executes them

Compilation and Interpretation

 Mixing compilation and interpretation
 A compiler generates an intermediate program
 An interpreter reads the intermediate program

and executes it

Compilation

 Many compilers generate
assembly code
 Assembler generates the

machine code
 Separates the source code from

underlying h/w or OS changes

Compilation

 Linking library routines
 Your program does not

implement everything
 E.g.) sin, cos, printf, …

 Your program is linked with
these library routines to make an
executable object file

Compilation

 Source-to-source translation
 AT&T’s original C++ compiler
 Generates C codes from C++

programs

Compilation
 How does one compile the first compiler?

 Bootstrapping
 Need only to implement P-code interpreter in machine

language for each machine (e.g. jvm)
 Need to implement Pascal to P-code compiler in P-code only

once (e.g. java2class.class)

java2exe.java

run java2class.class on jvm
java.exe java2class java2exe.java
-> java2exe.class

run java2exe.class on jvm
java.exe java2exe java2exe.java
-> java2exe.exe

Compilation
 Just-In-Time (JIT) compilation

 Java bytecode is a machine-independent code
 The bytecode is translated

into the machine code
immediately before
the execution

