
CSE216 Programming Abstractions
Overview

YoungMin Kwon

Major Topics to Cover

 Functional Programming
 Procedural abstraction, Data abstraction, Modular

abstraction
 Advanced techniques: CPS, Stream
 Lambda calculus

 Imperative Programming
 C, memory management
 Event driven programming

Programming Language Paradigms

 Imperative programming
 Relying on assignments
 E.g. rand()

 Functional programming
 No side effects: functions are mathematical functions
 E.g. sin(x)

 Logic programming
 Search goals through logical rules and axioms

Abstraction
 Abstraction: hide unnecessary details and

provide the most essential information

Procedural Abstractions

 Elements of programming
 Primitive expressions
 Means of combination
 Means of abstraction

 Topics on procedures
 Variable binding and scoping
 High-order functions

 integrator, differentiator, map, filter, …

Data Abstractions

 Elements of data
 Primitive data
 Compound data (tuple, list, record, …)
 Data abstraction

 Isolating data representation from data usage

 What is meant by data
 Constructor, selector, and conditions that they meet
first(pair(1, 2)) = 1, second(pair(1, 2)) = 2

 Abstraction barriers

Modula Abstraction

 To build a large system
 Needs an organizational principle

 Structure large systems
 Divide naturally into coherent parts

 Objects
 Viewing a large system as a collection of distinct

objects
 Local states, state variables, assignments

Useful Techniques for Functional Programming

 Make recursive calls 1M times

 OCaml program crashes. Why?
 Continuation Passing Style (CPS)

 rand() in functional programming?
 Streams

Lambda Calculus
 Lambda Calculus ≡ Turing Machine

 Lambda expressions
 Numbers, Arithmetic Opr: Church numeral
 Boolean, Boolean Opr: Church Boolean
 Recursion: Y-combinator

expr = name
| name . expr
| expr1 expr2

Type System

 Type checking

 Type inference
 What is the type of f?

x = 1 + 2

x = 1 + False

if "Hello World": …

f = lambda x: x + 1

Imperative Programming

 C Programming language
 Procedures
 Parameter passing modes
 C data types

 Primitive types, arrays, pointers, structures

 Variable scope and lifetime

Imperative Programming

 Dynamic memory allocation

 Memory management
 Automatic garbage collection
 Reference counting

Event Driven Programming

 Event driven programming
 You do not call me; we will call you
 Applications register callback functions (signal

handlers)
 Event loop will call callbacks later

Event Driven Programming

 X Window Programming

