
Markov Models 
and 

Hidden Markov Models (HMMs) 

(Following slides are modified from Prof. Claire Cardie’s slides and Prof. 
Raymond Mooney’s slides. Some of the graphs are taken from the textbook.) 



2 

Markov Model ( = Markov Chain) 

 A sequence of random variables visiting a set of states 

 Transition probability specifies the probability of 
transiting from one state to the other.  

 Language Model! 

 Markov Assumption: next state depends only on the 
current state and independent of previous history. 



3 

Sample Markov Model for POS 

0.95 

0.05 

0.9 

0.05 
stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 

0.4 

Det Noun 

PropNoun 

Verb 

P(PropNoun Verb Det Noun) = ? 



4 

Sample Markov Model for POS 

0.95 

0.05 

0.9 

0.05 
stop 

0.5 

0.1 

0.8 

0.1 

0.1 

0.25 

0.25 

start 
0.1 

0.5 

0.4 

Det Noun 

PropNoun 

Verb 

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076 



5 

Hidden Markov Model (HMM) 
 Probabilistic generative model for sequences. 

 HMM Definition with respect to POS tagging: 
 States = POS tags 
 Observation = a sequence of words 

 Transition probability = bigram model for POS tags 
 Observation probability = probability of generating each 

token (word)  from a given POS tag 

 “Hidden” means the exact sequence of states (a 
sequence of POS tags) that generated the 
observation (a sequence of words) are hidden. 

 . 



Figure 5.13 Hidden Markov Model (HMM) 
represented as finite state machine 



Figure 5.14 Hidden Markov Model (HMM) 
represented as finite state machine 

 Note that in this representation, the number of nodes 
(states) = the size of the set of POS tags 



Figure 5.12 Hidden Markov Model (HMM) 
represented as a graphical model  

 Note that in this representation, the number of nodes 
(states) = the length of the word sequence. 



9 

Formal Definition of an HMM 

 

 What are the parameters of HMM? 



10 

Three important problems in HMM 

 

 “Likelihood” function 𝐿  𝜃 ; 𝑋  
 Strictly speaking, likelihood is not a probability. 

 Likelihood is proportionate to 𝑃  𝑋  𝜃 ) 

 



11 

Three important problems in HMM 

 

 Problem 1 (Likelihood)  Forward Algorithm 

 Problem 2 (Decoding)  Viterbi Algorithm 

 Problem 3 (Learning)  Forward-backward Algorithm 



12 

HMM Decoding: Viterbi Algorithm 
 Decoding finds the most likely sequence of states that 

produced the observed sequence. 

 A sequence of states = pos-tags 

 A sequence of observation = words 

 Naïve solution: brute force search by enumerating all 
possible sequences of states.  

  problem? 

 Dynamic Programming! 

 Standard procedure is called the Viterbi algorithm 
(Viterbi, 1967) and has O(N2T) time complexity. 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 



HMM Decoding: Viterbi Algorithm 
Intuition: 







24 

HMM Likelihood of Observation  
 Given a sequence of observations, O, and a model 

with a set of parameters, λ, what is the probability 
that this observation was generated by this model: 
P(O| λ) ? 
 



25 

HMM Likelihood of Observation  

 Due to the Markov assumption, the probability of 
being in any state at any given time t only relies on 
the probability of being in each of the possible 
states at time t−1. 

 Forward Algorithm: Uses dynamic programming to 
exploit this fact to efficiently compute observation 
likelihood in O(TN2) time. 
 Compute a forward trellis that compactly and implicitly 

encodes information about all possible state paths. 



Forward Probabilities 

 Let t(j) be the probability of being in state j after 
seeing the first t observations (by summing over all 
initial paths leading to j). 

26 

)|  ,,...,()( 21  jttt sqoooPj 



Forward Step 

27 

s1 

s2 

sN 

 

 

 

sj 

t-1(i) t(i) 

a1j 

a2j 

aNj 

a2j 

 Consider all possible ways of 
getting to sj at time t by coming 
from all possible states si and 
determine probability of each. 

 Sum these to get the total 
probability of being in state sj  at 
time t  while accounting for the 
first t −1 observations. 

 Then multiply by the probability 
of actually observing ot in sj. 





Forward Trellis  

29 

s1 

s2 

sN 

 

 

 

 

 

 

s0 sF 
 

 

 

 

 

 

 

 

 

        

        

        

        

t1 t2 t3 tT-1 tT 

 Continue forward in time until reaching final time 
point and sum probability of ending in final state. 





Forward Computational Complexity 
 Requires only O(TN2) time to compute the probability 

of an observed sequence given a model. 

 Exploits the fact that all state sequences must merge 
into one of the N possible states at any point in time 
and the Markov assumption that only the last state 
effects the next one. 

 

31 



HMM Learning 
 Supervised Learning:   

 All training sequences are completely labeled (tagged). 

 That is, nothing is really “hidden” strictly speaking. 

 Learning is very simple  by MLE estimate 

 Unsupervised Learning:  

 All training sequences are unlabeled (tags are unknown) 

 We do assume the number of tags, i.e. states 

 True HMM case.  Forward-Backward Algorithm, (also 
known as “Baum-Welch algorithm”) which is a special 
case of Expectation Maximization (EM) training  

32 



HMM Learning: Supervised 
 Estimate state transition probabilities based on tag 

bigram and unigram statistics in the labeled data. 

 

 

 Estimate the observation probabilities based on 
tag/word co-occurrence statistics in the labeled 
data. 

 

 

 Use appropriate smoothing if training data is sparse. 

33 

)(

)q ,( 1t

it

jit

ij
sqC

ssqC
a








)(

),(
)(

ji

kiji

j
sqC

vosqC
kb








HMM Learning: Unsupervised 

34 



35 

Sketch of Baum-Welch  (EM) Algorithm  
for Training HMMs 

Assume an HMM with N states. 

Randomly set its parameters λ=(A,B)  

   (making sure they represent legal distributions) 

Until converge (i.e. λ no longer changes) do: 

      E Step:  Use the forward/backward procedure to   

                    determine the probability of various possible  

                    state sequences for generating the training data 

      M Step: Use these probability estimates to  

                    re-estimate values for all of the parameters λ 



Backward Probabilities 

 Let t(i) be the probability of observing the final set of 
observations from time t+1 to T  given that one is in 
state i at time t. 

36 

) |,...,()( ,21  itTttt sqoooPi  



Computing the Backward Probabilities 

 Initialization 

 

 Recursion 

 

 

 Termination 

37 

Niai iFT  1)(

TtNijobai ttj

N

j

ijt  



 1   ,1)()()( 11

1



)()()()()|( 11

1

001 jobassOP j

N

j

jFT  






Estimating Probability of State Transitions 

 Let t(i,j) be the probability of being in state i at 
time t and state j at time t + 1 

),|,(),( 1  OsqsqPji jtitt  

)|(

)()()(

)|(

)|,,(
),(

111










OP

jobai

OP

OsqsqP
ji

ttjijtjtit

t







s1 

s2 

sN 

 

 

 

si 

a1i 

a2i 

aNi 

a3i 

s1 

s2 

sN 

 

 

 

sj 

aj1 

aj2 

ajN 

aj3 

t-1 t t+1 t+2 

)(it )(1 jt

)( 1tjij oba



Re-estimating A  

i

ji
aij

 state from ns transitioofnumber  expected

  to state from ns transitioofnumber  expected
ˆ 






 




1

1 1

1

1

),(

),(

ˆ
T

t

t

N

j

T

t

t

ij

ji

ji

a







Estimating Observation Probabilities  

 Let t(i) be the probability of being in state i at 
time t given the observations and the model. 

)|(

)()(

)|(

)|,(
),|()(










OP

jj

OP

OsqP
OsqPj ttjt

jtt 






Re-estimating B 

j

vj
vb k

kj
 statein   timesofnumber  expected

 observing  statein   timesofnumber  expected
)(ˆ 










T

t

t

T

v

t

kj

j

j

vb k

1

o s.t. 1,t

)(

)(

)(ˆ t







42 

 Pseudocode for Baum-Welch  (EM) Algorithm 
for Training HMMs 

Assume an HMM with N states. 

Randomly set its parameters λ=(A,B)  

   (making sure they represent legal distributions) 

Until converge (i.e. λ no longer changes) do: 

      E Step: 

                   Compute values for t(j) and t(i,j) using current 

                    values for parameters A and B. 

      M Step: 

                   Re-estimate parameters: 

ijij aa ˆ

)(ˆ)( kjkj vbvb 











EM Properties 
 Each iteration changes the parameters in a way that is 

guaranteed to increase the likelihood of the data: 
P(O|). 

 Anytime algorithm: Can stop at any time prior to 
convergence to get approximate solution. 

 Converges to a local maximum. 

 



Semi-Supervised Learning 
 EM algorithms can be trained with a mix of 

labeled and unlabeled data. 
 EM basically predicts a probabilistic (soft) labeling 

of the instances and then iteratively retrains using 
supervised learning on these predicted labels 
(“self training”). 

 EM can also exploit supervised data:  
 1) Use supervised learning on labeled data to initialize 

the parameters (instead of initializing them randomly). 
 2) Use known labels for supervised data instead of 

predicting soft labels for these examples during 
retraining iterations. 



Semi-Supervised Results 
 Use of additional unlabeled data improves on 

supervised learning when amount of labeled data 
is very small and amount of unlabeled data is 
large. 

 Can degrade performance when there is sufficient 
labeled data to learn a decent model and when 
unsupervised learning tends to create labels that 
are incompatible with the desired ones. 
 There are negative results for semi-supervised POS 

tagging since unsupervised learning tends to learn 
semantic labels (e.g. eating verbs, animate nouns) that 
are better at predicting the data than purely syntactic 
labels (e.g. verb, noun). 



Conclusions 
 POS Tagging is the lowest level of syntactic 

analysis. 

 It is an instance of sequence labeling, a collective 
classification task that also has applications in 
information extraction, phrase chunking, semantic 
role labeling, and bioinformatics. 

 HMMs are a standard generative probabilistic 
model for sequence labeling that allows for 
efficiently computing the globally most probable 
sequence of labels and supports supervised, 
unsupervised and semi-supervised learning. 


