-

Markov Models
and
Hidden Markov Models (HMMs)

(Following slides are modified from Prof. Claire Cardie’s slides and Prof.
Raymond Mooney’s slides. Some of the graphs are taken from the textbook.)

Markov Model (= Markov Chain)

A sequence of random variables visiting a set of states

Transition probability specifies the probability of
transiting from one state to the other.

Language Model!

Markov Assumption: next state depends only on the
current state and independent of previous history.

Pr{ X=Xy = @1 K= Toyeo 5= %4) = PrlXgp = 2| Xa=8x).

Sample Markov Model for POS

start | _
3 / P(PropNoun Verb Det Noun) = ?

Sample Markov Model for POS

005

0.5

0.1
start
Q P(PropNoun Verb Det Noun) = 0.4*0.8*%0.25*0.95*0.1=0.0076

0.1

-

Hidden Markov Model (HMM)

Probabilistic generative model for sequences.

HMM Definition with respect to POS tagging:

e States = POS tags

e Observation = a sequence of words

* Transition probability = bigram model for POS tags

e Observation probability = probability of generating each
token (word) from a given POS tag

“Hidden” means the exact sequence of states (a

sequence of POS tags) that generated the

observation (a sequence of words) are hidden.

e
Hidden Markov Model (HMM)
represented as finite state machine

e

Hidden Markov Model (HMM)
represented as finite state machine

B,
P("aardvark" | TO) - ——— e ——-
P("race" | TO)
P("the" | TO)

P("to" | TO)

P("zebra" | TO)

B,
P("aardvark” | VB)

B;
P("aardvark" | NN)
P("race" | VB)

P("race" | NN)
P("the" | VB) P("the” | NN)
P("to" | VB) P("to" | NN)

is("zebra" | VB)

P("zebra” | NN)

-

* Note that in this representation, the number of nodes
(states) = the size of the set of POS tags

Hidden Markov Model (HMM)
represented as a graphical model

EASAGA:

Secretariat IS expected to race tomorrow
Secretariat IS expected to race tomorrow

* Note that in this representation, the number of nodes
(states) = the length of the word sequence.

-

e

9

Formal Definition of an HMM

Q=q1q2-..qN
A ="11017 = - Opl= st

0= 0103 ...0T

B:bj(()f)

90-9F

a set of NV states

a transition probability matrix A, each a;; rep-

resenting the probability of moving from state i
. n . .

to state j,s.t.) 5_ja;;=1 Vi

a sequence of 7" observations, each one drawn

from a vocabulary V =v,vs, ...,y

a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state 7

a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agiag; .. .ag, out of the
start state and ajrarF . .. ayF 1nto the end state

What are the parameters of HMM?

Three important problems in HMM

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|1).

Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

“Likelihood” function L(0 ;X)

e Strictly speaking, likelihood is not a probability.
* Likelihood is proportionateto P (X | 0)

10

Three important problems in HMM

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).

Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

Problem 1 (Likelihood) = Forward Algorithm
Problem 2 (Decoding) =» Viterbi Algorithm
Problem 3 (Learning) =2 Forward-backward Algorithm

11

HMM Decoding: Viterbi Algorithm

Decoding finds the most likely sequence of states that
produced the observed sequence.

* A sequence of states = pos-tags
* A sequence of observation = words

Naive solution: brute force search by enumerating all
possible sequences of states.

=» problem?
Dynamic Programming!

Standard procedure is called the Viterbi algorithm
(Viterbi, 1967) and has O(N?T) time complexity.

12

HMM Decoding: Viterbi Algorithm
Intuition:

students/V need/V another/V break/V
4 students/N need/N another/N break/N

Y students/P need/P another/P break/P
students/ART need/ART another/ART break/ART

HMM Decoding: Viterbi Algorithm

Intuition:

7.6 * 10°

students/V
////f 00725

tudents/N
el

~_ 0
students/P
0
students/ART

need/V

need/N

need/P

need/ART

another/V break/V
another/N break/N
another/P break/P

another/ART break/ART

HMM Decoding: Viterbi Algorithm

Intuition:

7.6 *10°

students/V
////f 00725
tudents/N

el

. 0
students/P
0
students/ART

00031
need/V

1.3 %107
need/N

.0002
need/P

0
need/ART

another/V break/V
another/N break/N
another/P break/P
another/ART break/ART

HMM Decoding: Viterbi Algorithm

Intuition:

7.6 * 10

students/V
/ 00725
tudents/N
el

\ 0
students/P
0
students/ART

00031
need/V

1.3 * 10
need/N

.0002
need/P

0
need/ART

0
another/V break/V
1.2 * 107
another/N break/N

0
another/P break/P
7.2 %107
another/ART break/ART

HMM Decoding: Viterbi Algorithm

Intuition:

7.6 * 10°
students/V
/ 00725
tudents/N
el
0

\ students/P
0
students/ART

00031
need/V

1.3 %10
need/N

.0002
need/P

0
need/ART

0 2.6 * 107
another/V \ , break/V
1.2 * 107 4.3 * 10°
another/N break/N

0 0
another/P break/P

72%105 0
another/ART ¢ break/ART

HMM Decoding: Viterbi Algorithm

Intuition:

7.6 * 10°
students/V
00725
/ students/N
\ students/P
0
students/ART

.00031
need/V

1.3 %107
need/N

0002
need/P

0
need/ART

0 2.6 * 107
another/V ’ break/V
1.2 * 107 4.3 *10°
another/N break/N

0 0
another/P break/P

7.2*10° g\ O
another/ART s break/ART

HMM Decoding: Viterbi Algorithm

Intuition:
7.6 * 10 00031 0 2.6 * 107
students/V ’ need/V another/V brealdV
00725 1.3 %107 1.2 * 107 4.3 * 10
/ students/N need/N another/N /) ';/ break/N

/0 ~_ 0 0002 0 0
students/P - ¥ need/P another/P break/P
0 \ 0 7.2*%10° g/\\ O
students/ART 3 need/ART another/ART * break/ART

HMM Decoding: Viterbi Algorithm
Intuition:

7.6 * 10° 00031 0 2.6 * 107
students/V need/V another/V , break/V
/ 00725 1.3 %107 1.2 * 107 4.3 *10°
students/N need/N another/N break/N
/
0 .0002 0 0
\- students/P need/P another/P break/P
0 0 7.2*10° 0
students/ART need/ART another/ART break/ART

HMM Decoding: Viterbi Algorithm
Intuition:

7.6 * 10° 00031 0 2.6 * 107
students/V need/V another/V \ , break/V
/ 00725 1.3 *10° 1.2 * 107 4.3 *10°
students/N need/N another/N break/N
/
/¢ ~_ 0 0002 0 0
students/P need/P another/P break/P
0 0 7.2 %107 § 0
students/ART need/ART another/ART break/ART

v;_1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢;

bj(or) the state observation likelihood of the observation symbol o; given
the current state j

-y -

d2

v,(1) = max(.32".15; 102%30) = .048 J

~ i/

do -'\,start\';
3 1 3
0, O, Og

/ v;_1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢;

Dj(or) the state observation likelihood of the observation symbol o; given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do . Initialization step
viterbi[s,1]1<—ag s * Ds(01)
backpointer[s,1]1—0

for each time step 7 from 2 to 7'do ; recursion step

for each state s fr(])vm 1to Ndo
viterbi[s,t] — max virerbi[s’,r— 1] % ag 5 * bs(or)

s'=1

N
2 4 : sl ;
backpointer([s,t] < argmax viterbi[s .1 — 1] % ay s

s'=1
; . N . . : om
viterbi[qr ,T]— max viterbi[s,T| x s gr . termination step
=1 '
) 1\7
backpointer[qr ,T]1+— argmax viterdi[s,T| * as g4, . termination step
s=1

return the backtrace path by following backpointers to states back in
time from backpointer[qr.,T']

HMM Likelihood of Observation

Given a sequence of observations, O, and a model
with a set of parameters, A, what is the probability

that this observation was generated by this model:
P(O| A) ?

24

HMM Likelihood of Observation

Due to the Markov assumption, the probability of
being in any state at any given time t only relies on
the probability of being in each of the possible
states at time t-1.

Forward Algorithm: Uses dynamic programming to
exploit this fact to efficiently compute observation
likelihood in O(TN?) time.

e Compute a forward trellis that compactly and implicitly
encodes information about all possible state paths.

25

Forward Probabilities

Let o,(j) be the probability of being in state j after
seeing the first t observations (by summing over all
initial paths leading to j).

Olt(j) — P(01102""Ot’ 0, =3; | 4)

26

Forward Step

Consider all possible ways of
getting to s; at time t by coming
from all possible states s; and
determine probability of each.

Sum these to get the total
probability of being in state s; at
time t while accounting for the
first t =1 observations.

Then multiply by the probability
of actually observing o, in s;

27

the previous forward path probability from the previous time step

ajj the transition probability from previous state ¢; to current state g j
b j(o,) the state observation likelihood of the observation symbol o; given
the current state j

“E-sz) a_4(N) s
Ay = i 'I\ qN\,:
) \ aNj Gt(J)— ZI Gt_1(|) aij bj(ot) e

° e "

. . \ .

<] ® ®
?E_?f?) (11_1(3) 83] -
.’\ q3 "l \ ! q3)
N a ; e
) e 9
ey a oS bj(o’[) ')
) O @) £

- ;‘
a, (1) 0o 4(1)
) (@) <D 9,

y

;.5 O4d O Oty

-

Forward Trellis

Continue forward in time until reaching final time
point and sum probability of ending in final state.

29

o;_1(i) the previous forward path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢;

b j(o,) the state observation likelihood of the observation symbol o; given
the current state j

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; initialization step
Jorward[s,1]1—aqg s * bs(01)
for each time step 7 from 2 to 7 do , recursion step
for each state s from 1 to N do
N
forward[s,t] — Z forward(s',t —1] x ag s * bs(oy)
i=1
N
forward(qp , T] — Z forward[s,T| * as g4 . termination step

s=1
return forward[qr,T]

Forward Computational Complexity

Requires only O(TN?) time to compute the probability
of an observed sequence given a model.

Exploits the fact that all state sequences must merge
into one of the N possible states at any point in time
and the Markov assumption that only the last state
effects the next one.

31

HMM Learning

Supervised Learning:

* All training sequences are completely labeled (tagged).
* That is, nothing is really “hidden” strictly speaking.

* Learning is very simple =2 by MLE estimate

Unsupervised Learning:
» All training sequences are unlabeled (tags are unknown)
* We do assume the number of tags, i.e. states

* True HMM case. =2 Forward-Backward Algorithm, (also
known as “Baum-Welch algorithm”) which is a special
case of Expectation Maximization (EM) training

32

HMM Learning: Supervised

Estimate state transition probabilities based on tag
bigram and unigram statistics in the labeled data.

a9 = C(0, =5, Uy :Sj)
: C(qt :Si)

Estimate the observation probabilities based on
tag/word co-occurrence statistics in the labeled

data.

C(q =350, = V)
C(qi :Sj)

Use appropriate smoothing if training data is sparse.

b, (k) =

33

HMM Learning: Unsupervised

34

/
Sketch of Baum-Welch (EM) Algorithm

for Training HMMs

Assume an HMM with N states.
Randomly set its parameters A=(A,B)

(making sure they represent legal distributions)
Until converge (1.e. A no longer changes) do:

E Step: Use the forward/backward procedure to
determine the probability of various possible
state sequences for generating the training data

M Step: Use these probability estimates to

re-estimate values for all of the parameters A

35

Backward Probabilities

Let 3,(/) be the probability of observing the final set of
observations from time t+1 to T given that one is in
state j at time t.

:Bt(l) — P(Ot+1’ot+2""OT ‘qt =53 /1)

36/

Computing the Backward Probabilities

Initialization
B.()=a. 1<i<N
RecursNion
ﬁt (I) — Zaijbj (Ot+1)ﬁt+1(j) 1<1< N, 1<t<T
TermiJn:altion

P(O|A)=a;(s¢) =B.(S,) = Zanbj (0)5.())

37/

Estimating Probability of State Transitions

Let &,(i,j) be the probability of being in state i at
time t and statejattime t + 1

& (1, 1) =P(G, =8;,0.,, =5; |0, 4)

£)= P(0, =501 =5;,014) _ & (Da;b; (0.1) As ()

P(O]4) P(O4)

ﬂt+1(j)

—p
t+1 t+2

Re-estimating A

. expected number of transitions fromstatei to]
! expected number of transitions from statei

IE)
> &)

t=1 j=1

&j =1

Estimating Observation Probabilities

Let y,(/) be the probability of being in state i at
time t given the observations and the model.

_P@@,=5,014) «())A3)
~ P(O]4) P(O]A)

7:(1)=P(q =5;]0,4)

Re-estimating B

expected number of times in state j observing v,

ISj(Vk):

expected number of times in state |

2. 7:(i)
b (Vk) =1 stot—vk

Z%(J)

4 N
Pseudocode for Baum-Welch (EM) Algorithm

for Training HMMs

Assume an HMM with N states.
Randomly set its parameters A=(A,B)
(making sure they represent legal distributions)
Until converge (1.e. A no longer changes) do:
E Step:
Compute values for y,(J) and &(i,J) using current
values for parameters A and B.
M Step:
Re-estimate parameters:

a; = a
bj (Vk) = bj (Vk)

42/

e
s Ay
/ \
1 Qo
\ N/
N

1 O3 ".

o
’ \
L Qo)
v 12
_’1

(O‘t+1)

Ot42

function FORWARD-BACKWARD(observations of len T, output vocabulary V., hidden state
ser Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
. o .
1(J) = TIS(O| Brlj) 7 tand j
50,)) = 2 “"fl’;(r"({,;*,§)‘3’+1(’) Vi,i, and |
M-step
T-1
Z & (i, J)
Al t=1
A = F A LN
Et(lﬂj)
t=1 j=1

Y §
Z)/t(j)

T
Z vt (J)

t=1

return A. B

EM Properties

Each iteration changes the parameters in a way that is
guaranteed to increase the likelihood of the data:

P(O|A).
Anytime algorithm: Can stop at any time prior to
convergence to get approximate solution.

Converges to a local maximum.

Semi-Supervised Learning

EM algorithms can be trained with a mix of
labeled and unlabeled data.

EM basically predicts a probabilistic (soft) labeling
of the instances and then iteratively retrains using
supervised learning on these predicted labels
(“self training”).

EM can also exploit supervised data:

e 1) Use supervised learning on labeled data to initialize
the parameters (instead of initializing them randomly).

» 2) Use known labels for supervised data instead of
predicting soft labels for these examples during
retraining iterations.

Semi-Supervised Results

Use of additional unlabeled data improves on
supervised learning when amount of labeled data
is very small and amount of unlabeled data is
large.

Can degrade performance when there is sufficient
labeled data to learn a decent model and when
unsupervised learning tends to create labels that
are incompatible with the desired ones.

e There are negative results for semi-supervised POS
tagging since unsupervised learning tends to learn
semantic labels (e.g. eating verbs, animate nouns) that
are better at predicting the data than purely syntactic
labels (e.g. verb, noun).

Conclusions

POS Tagging is the lowest level of syntactic
analysis.

It is an instance of sequence labeling, a collective
classification task that also has applications in
information extraction, phrase chunking, semantic
role labeling, and bioinformatics.

HMMs are a standard generative probabilistic
model for sequence labeling that allows for
efficiently computing the globally most probable
sequence of labels and supports supervised,
unsupervised and semi-supervised learning.

