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Standard Error 
 A particular kind of standard deviation 

 Standard Error := standard deviation of the sampling 
distribution of a statistic 

 Statistic := a function of a dataset (e.g., mean, median, 
variance, correlations, accuracy, f-score, ROUGE, BLEU) 

 

 There is a nice closed form for computing standard 
error for sample mean (via Central Limit Theorem), but 
for most other statistics (e.g., median, variances, 
correlations, accuracy, f-score, ROUGE, BLEU), no 
general closed form formula available 



Bootstrap Estimate of Standard Error 
 proposed by Efron (1979) 

 an instance of “plug-in principle”: plug-in sample 
statistics for unknown parameter values 

 Bootstrap Samples: Using the empirical distribution 
(i.e., distribution of the dataset), randomly generate a 
number of new samples (a number of new datasets), 
where each sample (dataset) is of the same size as the 
original dataset. 

 

 

 



Bootstrap Estimate of Standard Error 
 Bootstrap Samples: Using the empirical distribution (i.e., 

distribution of the dataset), randomly generate a number 
of new samples (a number of new datasets), where each 
sample (dataset) is of the same size as the original dataset. 

 Compute the standard error of your statistic from these 
bootstrap samples. Recall sample standard deviation is 
defined by 

 

 

 

 Don’t forget to use N − 1 instead of N! This correction is 
known as Bessel’s correction. 

 

 



Confidence Interval 
 Given confidence level (confidence co-efficient) 0 <= a 

<= 1, we want to compute confidence interval [l, u] of a 
parameter x (a quantity we want to estimate) such that 

 p(l < x < u) >= 1 – a 

 



Confidence Interval 



Confidence Interval 
 Given confidence level (confidence co-efficient) 0 <= a 

<= 1, we want to compute confidence interval [l, u] of a 
parameter x (a quantity we want to estimate) such that 

 p(l < x < u) >= 1 – a 

 

 Bootstrap Percentile Interval:  

1. Generate bootstrap samples 

2. Sort the statistics computed from bootstrap 
samples 

3. Find the a/2 and 1-a/2 quantiles 



Hypothesis Testing 
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Null Hypothesis / Alternative Hypothesis 

 You have a baseline A and your own invention B 

 B performs better than A by 1 % based on 10-fold cross 
validation 

 How good is it? 

 

 Ho Null Hypothesis: A and B have the same performance.  

 that is, 1% difference is only a fluke 

 Skeptic’s point of view 

 Ha Alternative Hypothesis: B is indeed better than A 

 

 



Statistical Test  

 A number of choices: 

 Paired Student t-test 

 Sign test 

 Wilcoxon test 

 McNemar test 

 Permutation test 

 Bootstrap test 

 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 
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Statistical Test  

 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 

 

 whether we should accept null hypothesis? 

 whether we accept alternative hypothesis? 

 which hypothesis is better? 

 

 Not rejecting Null Hypothesis… is the same as accepting 
Null Hypothesis? 

     NO! (it just means neither accepting nor rejecting) 

 



P-value  
 They all try to answer the following question:  

 should we reject Null Hypothesis (Ho) or not? 

 We reject Null based on a threshold called p-value 

 p-value: conditional probability of seeing MORE 
extreme results that what have been observed, 
conditional on the assumption that Null Hypothesis is 
true. 

 typical p-value threshold is 0.05 (5%) 

 very small p-value == observation unlikely if Null is true 

 



Type I & II Error 
 Type I Error:  

 When a test rejects a true null hypothesis 
 aka, False Positive 

 Type II Error:  
 When a test fails to reject a false null hypothesis 
 aka, False Negative 
 

 p-value bounds Type I error  

 p-value: conditional probability of seeing MORE extreme 
results that what have been observed, conditional on the 
assumption that Null Hypothesis is true. 

 

 



Type I & II Error 
 Type I Error:  

 When a test rejects a true null hypothesis 
 aka, False Positive 

 Type II Error:  
 When a test fails to reject a false null hypothesis 
 aka, False Negative 
 

 p-value bounds Type I error  

 With typical p-value = 0.05 (5%), 1 out of 20 papers 
claims a scientific advance that is not there! 

 



Paired Student t-test 
 Assumption: Di are independent and normally 

distributed 

 Di is the difference between statistics of two different 
studies. For instance, the difference of accuracy (or f-
score) of baseline and the proposed approach.  

 Typically, we obtain N number of differences from N-
fold cross validation. 

 “paired” test in that the difference is computed from 
paired numbers that belong to the same evaluation 
setting (e.g., same fold in the N-fold cross validation) 

 Null hypothesis := 
¹D = 0



Paired Student t-test 

tD =

p
NmD

sD

 D is the set of differences of statistics (e.g., N difference in 
accuracies between 2 approaches with N-fold cross validation) 

 mD is the sample mean of D 

 sD is the sample standard deviation of D (with N-1 instead of 
N!) 

 Above tD score follows t-distribution with N-1 degree of 
freedom, using which we can find the confidence interval 
efficiently. 

 



Paired Student t-test 

 Above tD score follows t-distribution with N-1 degree of 
freedom (== º), using which we can find the confidence 
interval efficiently.  

 

 

 

 Many tools available for which you only need to provide 
an array of paired numbers (R, various websites etc) 

 

 

tD =

p
NmD

sD



Paired Student t-test: Issues to consider 

 The power of a test is the probability of (correctly) rejecting 
the null hypothesis when it is in fact false.  

 If D indeed satisfies the normality assumption, than T-test is 
very powerful in detecting statistical differences that other 
approaches may not able to detect. 

 If D violates the normality assumption, or D is not 
independently distributed, or D has outliers or noises, then 
T-test is not powerful in detecting statistical differences. For 
those cases, consider non-parametric approaches instead. 

 Non-parametric approaches: sign-test, Wilcoxson test, 
NcNemar test, permutation test, bootstrap test 



Parametric test 
 Student t-test 

 Paired Student t-test 

 Wald test 

 

 Assumes the data follows certain probabilistic 
distribution that are parameterized (e.g., normal 
distribution) 



Non-parametric test 
 Sign test 

 Wilcoxon signed-rank test 

 NcNemar test 

 permutation test 

 bootstrap test 

 

All of these assumes the data is independently 
distributed, but do not make assumptions based on 
well-known parametric distributions. 

More powerful if the data do not follow certain 
parametric distributions (e.g., normal distribution) 



Sign Test & Wilcoxon test 
 Let V=v1, …, vN and U=u1, … uN be the set of statistics of 

method A and method B respectively 

 E.g., they are prediction accuracy from N-fold cross validation. 

 Let D=d1, …, dN be the difference between these paired 
statistics so that di = vi – ui 

Student t-test & Wald test: whether the mean of di is 0 

Sign test: whether the number of cases where di > 0 is 
different from the number of cases where di < 0 

Wilcoxon test: whether the median of the difference di is 0. 

This means, Sign test and Wilcoxon test depend only on the 
sign of the differences, not the magnitude! 



Sign Test 
 Let D=d1, …, dN be the difference between these paired 

statistics so that di = vi – ui 

 The null hypothesis H_0 of Sign Test := the sign of each di is 
drawn from a bernoulli distribution so that 
 p(di > 0) = 0.5 

 p(di < 0) = 0.5 
 Cases such that di = 0 are ignored in this test 

 Then pdf of k = the number of cases where di > 0 is 
 

 
 

 where M is the number of non-zero cases in D, and p = 0.5 

 can compute p-value using cdf of binomial distribution 
 

P(K = k) =
¡
M

k

¢
pk(1 ¡ p)M¡ k



McNemar Test 
 Let V=v1, …, vN and U=u1, … uN be the set of statistics 

of method A and method B respectively. 

 McNemar test is applicable when v_i and u_i are 
binary values: 0 or 1 

 need to compute the “contingency table”: 

vi = 0 vi = 1 marginal 

ui = 0 freq(0, 0) freq(1, 0) freq (*, 0) 

ui = 1 freq(0, 1) freq(1, 1) freq(*, 1) 

marginal freq(0, *) freq(1, *) N 



McNemar  
Test  

 

 The null hypothesis of McNemar test := marginal probabilities 
of each outcome (0 or 1) is the same over V and U. That is,  
 p(*, 0) = p(0, *) 
 p(1, *) = p(*, 1) 

Intuitively, null hypothesis means freq(0, 1) and freq(1, 0) 
are close 

Can map to binomial distribution with n = freq(0, 1) + 
freq (1, 0) and p=0.5 

can also use chi-squared distribution, but not as exact as 
binomial if either freq(0, 1) or freq(1, 0) is small 

vi = 0 vi = 1 marginal 

ui = 0 freq(0, 0) freq(1, 0) freq (*, 0) 

ui = 1 freq(0, 1) freq(1, 1) freq(*, 1) 

marginal freq(0, *) freq(1, *) N 



Bootstrap test 
 Generate “bootstrap samples” 

 Compute the confidence interval from the sorted list 
of statistics 

 Reject the null hypothesis if the measured statistic is 
outside this confidence interval 

 



Bootstrap samples 

Original Dataset 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 3 
x_1, x_3, x_3, x_4, x_5 

Bootstrap Sample 4 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 5 
x_1, x_1, x_3, x_5, x_5 

Bootstrap Sample 6 
x_2, x_2, x_3, x_3, x_3 

Bootstrap Sample 7 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 1 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 2 
x_1, x_2, x_3, x_4, x_5 

 Generate N bootstrap samples, 
where each bootstrap sample is 
the same size as the original 
dataset  

 Each bootstrap sample contains 
data points that are randomly 
sampled with replacement from 
the original dataset 



Bootstrap samples 

Original Dataset 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 3 
x_1, x_3, x_3, x_4, x_5 

Bootstrap Sample 4 
x_1, x_2, x_3, x_4, x_5 

Bootstrap Sample 5 
x_1, x_1, x_3, x_5, x_5 

Bootstrap Sample 6 
x_2, x_2, x_3, x_3, x_3 

Bootstrap Sample 7 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 1 
x_1, x_1, x_3, x_4, x_5 

Bootstrap Sample 2 
x_1, x_2, x_3, x_4, x_5 

 Compute N different statistics 
V=v1, …, vN using these N samples 

 Compute the confidence interval 
(e.g., 95%) from the sorted list of V 

 If the (assumed) statistic of null 
hypothesis is outside this 
confidence interval, reject the null 
hypothesis 



permutation test 
 Generate a number of new samples (similarly as 

bootstrapping) 

 By randomly permuting the predicted labels between 
the two approaches (baseline V.S. the proposed 
approach) == permutation on prediction 

 How many different permutations?  

 2N 

too many to enumerate all. Therefore, sample a subset 
using binomial distribution with p=0.5 and n=N 

confidence interval is computed from the sorted list of 
statistics 



permutation test V.S. bootstrapping test: 

 permutation test:  

 sampling without replacement 

 sampling operates on the statistics (e.g. 
prediction) directly 

 

 bootstrapping test:  

 sampling with replacement 

 sampling operates on the dataset 
 statistics are computed later on the generated bootstrap 

samples 



Parametric test (Recap) 
 Student t-test 

 Paired Student t-test 

 Wald test 

 

 Assumes the data follows certain probabilistic 
distribution that are parameterized (e.g., normal 
distribution) 



Non-parametric test (Recab) 
 Sign test 

 Wilcoxon signed-rank test 

 NcNemar test 

 permutation test 

 bootstrap test 

 

All of these assumes the data is independently 
distributed, but do not make assumptions based on 
well-known parametric distributions. 

More powerful if the data do not follow certain 
parametric distributions (e.g., normal distribution) 


