Standard Error & Confidence Interval
Standard Error

- A particular kind of standard deviation
- Standard Error := standard deviation of the sampling distribution of a statistic
- Statistic := a function of a dataset (e.g., mean, median, variance, correlations, accuracy, f-score, ROUGE, BLEU)

- There is a nice closed form for computing standard error for sample mean (via Central Limit Theorem), but for most other statistics (e.g., median, variances, correlations, accuracy, f-score, ROUGE, BLEU), no general closed form formula available
Bootstrap Estimate of Standard Error

- proposed by Efron (1979)
- an instance of “plug-in principle”: plug-in sample statistics for unknown parameter values
- **Bootstrap Samples**: Using the empirical distribution (i.e., distribution of the dataset), *randomly generate* a number of new samples (a number of new datasets), where each sample (dataset) is of the same size as the original dataset.
Bootstrap Estimate of Standard Error

- **Bootstrap Samples:** Using the empirical distribution (i.e., distribution of the dataset), *randomly generate* a number of new samples (a number of new datasets), where each sample (dataset) is of the same size as the original dataset.
- Compute the standard error of your statistic from these bootstrap samples. Recall *sample standard deviation* is defined by
 \[
 s = \sqrt{\frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \bar{x})^2},
 \]
- Don’t forget to use \(N - 1\) instead of \(N!\) This correction is known as Bessel’s correction.
Confidence Interval

- Given confidence level (confidence co-efficient) $0 \leq a \leq 1$, we want to compute confidence interval $[l, u]$ of a parameter x (a quantity we want to estimate) such that $p(l < x < u) = 1 - a$
Confidence Interval
Confidence Interval

- Given confidence level (confidence co-efficient) $0 \leq a \leq 1$, we want to compute confidence interval $[l, u]$ of a parameter x (a quantity we want to estimate) such that $p(l < x < u) \geq 1 - a$

- **Bootstrap Percentile Interval:**
 1. Generate bootstrap samples
 2. Sort the statistics computed from bootstrap samples
 3. Find the $a/2$ and $1-a/2$ quantiles
Hypothesis Testing
Null Hypothesis / Alternative Hypothesis

• You have a baseline A and your own invention B
• B performs better than A by 1% based on 10-fold cross validation
• How good is it?

• \(H_0 \) Null Hypothesis: A and B have the same performance.
 • that is, 1% difference is only a fluke
 • Skeptic’s point of view
• \(H_a \) Alternative Hypothesis: B is indeed better than A
Statistical Test

- A number of choices:
 - Paired Student t-test
 - Sign test
 - Wilcoxon test
 - McNemar test
 - Permutation test
 - Bootstrap test

- They all try to answer the following question:
 - should we *reject* Null Hypothesis \((H_0)\) or not?
Statistical Test

- They all try to answer the following question:
 - should we *reject* Null Hypothesis (H_0) or not?
 - whether we should accept null hypothesis?
 - whether we accept alternative hypothesis?
 - which hypothesis is better?
Statistical Test

- They all try to answer the following question:
 - should we reject Null Hypothesis \((H_0) \) or not?
 - whether we should accept null hypothesis?
 - whether we accept alternative hypothesis?
 - which hypothesis is better?

- Not rejecting Null Hypothesis... is the same as accepting Null Hypothesis?
Statistical Test

- They all try to answer the following question:
 - should we **reject** Null Hypothesis \((H_0)\) or not?
 - whether we should accept null hypothesis?
 - whether we accept alternative hypothesis?
 - which hypothesis is better?

- Not rejecting Null Hypothesis… is the same as accepting Null Hypothesis?
 ➔ NO! (it just means neither accepting nor rejecting)
P-value

- They all try to answer the following question:
 - should we reject Null Hypothesis \((H_0)\) or not?
- We reject Null based on a threshold called **p-value**
- **p-value**: conditional probability of seeing MORE extreme results than what have been observed, conditional on the assumption that Null Hypothesis is true.
- typical **p-value** threshold is **0.05 (5%)**
- very small **p-value** == observation unlikely if Null is true
Type I & II Error

- **Type I Error:**
 - When a test rejects a true null hypothesis
 - aka, False Positive

- **Type II Error:**
 - When a test fails to reject a false null hypothesis
 - aka, False Negative

- p-value bounds **Type I error**
- p-value: conditional probability of seeing MORE extreme results that what have been observed, conditional on the assumption that Null Hypothesis is true.
Type I & II Error

- **Type I Error:**
 - When a test rejects a true null hypothesis
 - aka, False Positive
- **Type II Error:**
 - When a test fails to reject a false null hypothesis
 - aka, False Negative

- p-value bounds **Type I error**
 - With typical p-value = 0.05 (5%), 1 out of 20 papers claims a scientific advance that is not there!
Paired Student t-test

- Assumption: D_i are independent and normally distributed
- D_i is the difference between statistics of two different studies. For instance, the difference of accuracy (or f-score) of baseline and the proposed approach.
- Typically, we obtain N number of differences from N-fold cross validation.
- “paired” test in that the difference is computed from paired numbers that belong to the same evaluation setting (e.g., same fold in the N-fold cross validation).
- Null hypothesis := $\mu_D = 0$
Paired Student t-test

\[t_D = \frac{\sqrt{N} m_D}{s_D} \]

- \(D \) is the set of differences of statistics (e.g., N difference in accuracies between 2 approaches with N-fold cross validation)
- \(m_D \) is the sample mean of \(D \)
- \(s_D \) is the sample standard deviation of \(D \) (with N-1 instead of N!)
- Above \(t_D \) score follows t-distribution with N-1 degree of freedom, using which we can find the confidence interval efficiently.
Paired Student t-test

\[t_D = \frac{\sqrt{N} m_D}{s_D} \]

- Above \(t_D \) score follows t-distribution with \(N-1 \) degree of freedom (\(== \nu \)), using which we can find the confidence interval efficiently.

\[f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}} \]

- Many tools available for which you only need to provide an array of paired numbers (R, various websites etc)
Paired Student t-test: Issues to consider

- The **power** of a test is the probability of (correctly) rejecting the null hypothesis when it is in fact false.
- If D indeed satisfies the normality assumption, then T-test is very powerful in detecting statistical differences that other approaches may not be able to detect.
- If D violates the normality assumption, or D is not independently distributed, or D has outliers or noises, then T-test is **not powerful** in detecting statistical differences. For those cases, consider non-parametric approaches instead.
- Non-parametric approaches: sign-test, Wilcoxon test, McNemar test, permutation test, bootstrap test
Parametric test

- Student t-test
- Paired Student t-test
- Wald test

➡ Assume the data follows certain probabilistic distribution that are parameterized (e.g., normal distribution)
Non-parametric test

- Sign test
- Wilcoxon signed-rank test
- McNemar test
- permutation test
- bootstrap test

→ All of these assumes the data is \textit{independently} distributed, but do not make assumptions based on well-known parametric distributions.

→ More \textit{powerful} if the data do not follow certain parametric distributions (e.g., normal distribution)
Sign Test & Wilcoxon test

- Let $V = v_1, \ldots, v_N$ and $U = u_1, \ldots, u_N$ be the set of statistics of method A and method B respectively.
 - E.g., they are prediction accuracy from N-fold cross validation.
- Let $D = d_1, \ldots, d_N$ be the difference between these paired statistics so that $d_i = v_i - u_i$.
 - Student t-test & Wald test: whether the mean of d_i is 0.
 - Sign test: whether the number of cases where $d_i > 0$ is different from the number of cases where $d_i < 0$.
 - Wilcoxon test: whether the median of the difference d_i is 0.

This means, Sign test and Wilcoxon test depend only on the sign of the differences, not the magnitude!
Sign Test

- Let $D=d_1, \ldots, d_N$ be the difference between these paired statistics so that $d_i = v_i - u_i$
- The null hypothesis H_0 of Sign Test := the sign of each d_i is drawn from a bernoulli distribution so that
 - $p(d_i > 0) = 0.5$
 - $p(d_i < 0) = 0.5$
 - Cases such that $d_i = 0$ are ignored in this test
- Then pdf of $k = \text{the number of cases where } d_i > 0$ is

$$P(K = k) = \binom{M}{k} p^k (1 - p)^{M-k}$$

- where M is the number of non-zero cases in D, and $p = 0.5$
- can compute p-value using cdf of binomial distribution
McNemar Test

- Let $V=v_1, \ldots, v_N$ and $U=u_1, \ldots u_N$ be the set of statistics of method A and method B respectively.
- McNemar test is applicable when v_i and u_i are binary values: 0 or 1
- need to compute the “contingency table”:

<table>
<thead>
<tr>
<th></th>
<th>$v_i = 0$</th>
<th>$v_i = 1$</th>
<th>marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i = 0$</td>
<td>freq(0, 0)</td>
<td>freq(1, 0)</td>
<td>freq(*, 0)</td>
</tr>
<tr>
<td>$u_i = 1$</td>
<td>freq(0, 1)</td>
<td>freq(1, 1)</td>
<td>freq(*, 1)</td>
</tr>
<tr>
<td>marginal</td>
<td>freq(0, *)</td>
<td>freq(1, *)</td>
<td>N</td>
</tr>
</tbody>
</table>
McNemar Test

<table>
<thead>
<tr>
<th></th>
<th>$v_i = 0$</th>
<th>$v_i = 1$</th>
<th>marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i = 0$</td>
<td>$\text{freq}(0, 0)$</td>
<td>$\text{freq}(1, 0)$</td>
<td>$\text{freq}(*, 0)$</td>
</tr>
<tr>
<td>$u_i = 1$</td>
<td>$\text{freq}(0, 1)$</td>
<td>$\text{freq}(1, 1)$</td>
<td>$\text{freq}(*, 1)$</td>
</tr>
<tr>
<td>marginal</td>
<td>$\text{freq}(0, *)$</td>
<td>$\text{freq}(1, *)$</td>
<td>N</td>
</tr>
</tbody>
</table>

- The null hypothesis of McNemar test := marginal probabilities of each outcome (0 or 1) is the same over V and U. That is,
 - $p(\ast, 0) = p(0, \ast)$
 - $p(1, \ast) = p(\ast, 1)$

 ➤Intuitively, null hypothesis means $\text{freq}(0, 1)$ and $\text{freq}(1, 0)$ are close

 ➤Can map to binomial distribution with $n = \text{freq}(0, 1) + \text{freq}(1, 0)$ and $p=0.5$

 ➤can also use chi-squared distribution, but not as exact as binomial if either $\text{freq}(0, 1)$ or $\text{freq}(1, 0)$ is small
Bootstrap test

- Generate “bootstrap samples”
- Compute the confidence interval from the sorted list of statistics
- Reject the null hypothesis if the measured statistic is outside this confidence interval
Bootstrap samples

Original Dataset
\(x_1, x_2, x_3, x_4, x_5 \)

- Generate N bootstrap samples, where each bootstrap sample is the same size as the original dataset.
- Each bootstrap sample contains data points that are **randomly sampled with replacement** from the original dataset.
Bootstrap samples

Original Dataset
\(x_1, x_2, x_3, x_4, x_5\)

- Compute \(N\) different statistics \(V = v_1, \ldots, v_N\) using these \(N\) samples
- Compute the confidence interval (e.g., 95\%) from the sorted list of \(V\)
- If the (assumed) statistic of null hypothesis is outside this confidence interval, reject the null hypothesis
 permutation test

• Generate a number of new samples (similarly as bootstrapping)

• By randomly permuting the predicted labels between the two approaches (baseline V.S. the proposed approach) == permutation on prediction

• How many different permutations?
 • 2^N

 ➔ too many to enumerate all. Therefore, sample a subset using binomial distribution with $p=0.5$ and $n=N$

 ➔ confidence interval is computed from the sorted list of statistics
permutation test V.S. bootstrapping test:

- permutation test:
 - sampling without replacement
 - sampling operates on the statistics (e.g. prediction) directly

- bootstrapping test:
 - sampling with replacement
 - sampling operates on the dataset
 - statistics are computed later on the generated bootstrap samples
Parametric test (Recap)

- Student t-test
- Paired Student t-test
- Wald test

→ Assumes the data follows certain probabilistic distribution that are parameterized (e.g., normal distribution)
Non-parametric test (Recab)

- Sign test
- Wilcoxon signed-rank test
- McNemar test
- permutation test
- bootstrap test

→ All of these assumes the data is *independently* distributed, but do not make assumptions based on well-known parametric distributions.

→ More *powerful* if the data do not follow certain parametric distributions (e.g., normal distribution)