Lexical Semantics

(Following slides are modified from Prof. Claire Cardie's slides.)

Introduction to lexical semantics

- Lexical semantics is the study of
 - the systematic meaning-related connections among words and
 - the internal meaning-related structure of each word
- <u>Lexeme</u>
 - an individual entry in the lexicon
 - a pairing of a particular orthographic and phonological form with some form of symbolic meaning representation
- <u>Sense</u>: the lexeme's meaning component
- <u>Lexicon</u>: a finite list of lexemes

Dictionary entries

- right *adj*.
- left *adj.*
- red *n*.
- blood n.

Dictionary entries

- right *adj.* located nearer the right hand esp.
 being on the right when facing the same direction as the observer.
- left *adj.* located nearer to this side of the body than the right.
- red *n*.

• blood *n*.

Dictionary entries

- right *adj.* located nearer the right hand esp. being on the right when facing the same direction as the observer.
- left *adj.* located nearer to this side of the body than the right.
- red *n*. the color of blood or a ruby.
- blood *n*. the red liquid that circulates in the heart, arteries and veins of animals.

Lexical semantic relations: Homonymy

- **Homonyms**: words that have the same form and unrelated meanings
 - The *bank*¹ had been offering 8 billion pounds in 91-day bills.
 - As agriculture burgeons on the east bank², the river will shrink even more.
- Homophones: distinct lexemes with a shared pronunciation
 - E.g. would and wood, see and sea.
- Homographs: identical orthographic forms, different pronunciations, and unrelated meanings
 - The fisherman was fly-casting for **bass** rather than trout.
 - I am looking for headphones with amazing bass.

Lexical semantic relations: Polysemy

- Polysemy: the phenomenon of multiple *related* meanings within a single lexeme
 - bank: financial institution as corporation
 - bank: a building housing such an institution
 - Homonyms (disconnected meanings)
 - bank: financial institution
 - bank: sloping land next to a river
- Distinguishing homonymy from polysemy is not always easy. Decision is based on:
 - Etymology: history of the lexemes in question
 - Intuition of native speakers

Lexical semantic relations: Synonymy

- Lexemes with the same meaning
- Invoke the notion of substitutability
 - Two lexemes will be considered synonyms if they can be substituted for one another in a sentence without changing the meaning or acceptability of the sentence
 - How *big* is that plane?
 - Would I be flying on a *large* or small plane?
 - Miss Nelson, for instance, became a kind of *big* sister to Mrs. Van Tassel's son, Benjamin.
 - We frustrate 'em and frustrate 'em, and pretty soon they make a *big* mistake.

Word sense disambiguation (WSD)

- <u>Given a fixed set of senses</u> associated with a lexical item, determine which of them applies to a particular instance of the lexical item
- Fundamental question to many NLP applications.
 - Spelling correction
 - Speech recognition
 - Text-to-speech
 - Information retrieval

WordNet

(Following slides are modified from Prof. Claire Cardie's slides.)

WordNet

- Handcrafted database of lexical relations
- Separate databases: nouns; verbs; adjectives and adverbs
- Each database is a set of lexical entries (according to unique orthographic forms)
 - Set of senses associated with each entry

Category	Unique Forms	Number of Senses
Noun	94474	116317
Verb	10319	22066
Adjective	20170	29881
Adverb	4546	5677

WordNet

- Developed by famous cognitive psychologist George Miller and a team at Princeton University.
- Try WordNet online at
- http://wordnetweb.princeton.edu/perl/webwn
- How many different meanings for "eat"?
- How many different meanings for "dog"?

Sample entry

The noun "bass" has 8 senses in WordNet.

- 1. bass (the lowest part of the musical range)
- 2. bass, bass part (the lowest part in polyphonic music)
- 3. bass, basso (an adult male singer with the lowest voice)
- 4. sea bass, bass (flesh of lean-fleshed saltwater fish of the family Serranidae)
- 5. freshwater bass, bass (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
- 6. bass, bass voice, basso (the lowest adult male singing voice)
- 7. bass (the member with the lowest range of a family of musical instruments)
- bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

WordNet Synset

- Synset == Synonym Set
- Synset is defined by a set of words
- Each synset represents a different "sense" of a word
 Consider synset == sense
- Which would be bigger?
 # of unique words
 V.S
 # of unique synsets

Statistics

POS	Unique	Synsets	Total
	Strings		word+sense pairs
Noun	117798	82115	146312
Verb	11529	13767	25047
Adj	21479	18156	30002
Adv	4481	3621	5580
Totals	155287	11765	206941

More WordNet Statistics

Avg Polysemy w/o monosemous words

Part-of-speechAvg PolysemyNoun1.242.79Verb2.173.57Adjective1.402.71Adverb1.252.50

Distribution of senses

WordNet relations

• Nouns

• Verbs

Relation	Definition	Example
Hypernym	From concepts to superordinates	$break fast \rightarrow meal$
Hyponym	From concepts to subtypes	$meal \rightarrow hunch$
Has-Member	From groups to their members	faculty \rightarrow professor
Member-Of	From members to their groups	$copilot \rightarrow crew$
Has-Part	From wholes to parts	$table \rightarrow leg$
Part-Of	From parts to wholes	$course \rightarrow meal$
Antonym	Opposites	leader \rightarrow follower

	Relation	Definition	Example
	Hypernym	From events to superordinate events	$fly \rightarrow travel$
	Troponym	From events to their subtypes	$walk \rightarrow stroll$
 Adjectiv 	Entails	From events to the events they entail	snore \rightarrow sleep
· · · · · · · · · ·	Antonym	Opposites	increase \iff decrease

Relation	Definition	Example
Antonym	Opposite	heavy \iff light
Adverb	Opposite	quickly \iff slowly

Selectional Preference

Selectional Restrictions & Selectional Preferences

- I want to eat someplace that's close to school.
 - => "eat" is intransitive
- I want to eat Malaysian food.
 - => "eat" is transitive
- "eat" expects its object to be edible.
- What about the subject of "eat"?

Selectional Restrictions & Selectional Preferences

- What are selectional restrictions (or selectional preferences) of...
 - "imagine"
 - "diagonalize"
 - "odorless"
- Some words have stronger selectional preferences than others. How can we quantify the strength of selectional preferences?

Selectional Preference Strength

- P(c) := the distribution of semantic class 'c'
- P(c|v) := the distribution of semantic class 'c' of the object of the given verb 'v'
- What does it mean if P(c) = P(c|v) ?
- What does it mean if P(c) is very different from P(c|v) ?
- The difference between distributions can be measured by Kullback-Leibler divergence (KL divergence)

$$D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Selectional Preference Strength

• <u>Selectional preference</u> of 'v' $S_R(v) := D(P(c|v)||P(c))$ $= \sum_{c} P(c|v) log \frac{P(c|v)}{P(c)}$

<u>Selectional association</u> of 'v' and 'c'

$$A_R(v,c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)}$$

 The difference between distributions can be measured by Kullback-Leibler divergence (KL divergence)

$$D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Selectional Association

• <u>Selectional association</u> of 'v' and 'c'

$$A_R(v,c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)}$$

	Direct Object		Direct Object	
Verb	Semantic Class	Assoc	Semantic Class	Assoc
read	WRITING	6.80	ACTIVITY	20
write	WRITING	7.26	COMMERCE	0
see	ENTITY	5.79	METHOD	-0.01

Remember Pseudowords for WSD?

- Artificial words created by concatenation of two randomly chosen words
- E.g. "banana" + "door" => "banana-door"
- Pseudowords can generate training and test data for WSD automatically. How?
- Issues with pseudowords?

Pseudowords for Selectional Preference?

Word Similarity

Distributional Methods

Word Similarity: Thesaurus Methods

- Path-length based similarity
 - pathlen(nickel, coin) = 1
 - pathlen(nickel, money) = 5

Word Similarity: Thesaurus Methods

- pathlen(x₁, x₂) is the shortest path between x₁ and X₂
- Similarity between two senses --- s₁ and s₂ :

$$sim_{path}(s_1, s_2) = -log pathlen(s_1, s_2)$$

Similarity between two words --- w₁ and w₂ ?

wordsim $(w_1, w_2) = \max_{\substack{s_1 \in senses(w_1) \\ s_2 \in senses(w_2)}} sim(s_1, s_2)$

Word Similarity: Thesaurus Methods

- Path-length based similarit Problems?
 - pathlen(nickel, coin) = 1
 - pathlen(nickel, money) = 5

Information-content based word-similarity

 P(c) := the probability that a randomly selected word is an instance of concept 'c'

$$P(c) = \frac{\sum_{w \in words(c)} count(w)}{N}$$

IC(c) := Information Content

$$IC(c) := -\log P(c)$$

• LCS(c₁, c₂) = the lowest common subsumer $sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$

Thesaurus-based similarity measures

$$\begin{aligned} \sin_{\text{path}}(c_1, c_2) &= -\log \text{pathlen}(c_1, c_2) \\ \sin_{\text{Resnik}}(c_1, c_2) &= -\log P(\text{LCS}(c_1, c_2)) \\ \sin_{\text{Lin}}(c_1, c_2) &= \frac{2 \times \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \\ \sin_{\text{jc}}(c_1, c_2) &= \frac{1}{2 \times \log P(\text{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2))} \\ \sin_{\text{eLesk}}(c_1, c_2) &= \sum_{r,q \in \text{RELS}} \text{overlap}(\text{gloss}(r(c_1)), \text{gloss}(q(c_2))) \end{aligned}$$

Word Similarity

Thesaurus Methods

- A bottle of tezguino is on the table.
- Tezguino makes you drunk.
- We make tezguino out of corn.
- Tezguino, beer, liquor, tequila, etc share contextual features such as
 - Occurs before 'drunk'
 - Occurs after 'bottle'
 - Is the direct object of 'likes'

Co-occurrence vectors

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	1	0	1	0
information	0	0	1	1	1	0	1	0

- Co-occurrence vectors with grammatical relations
- I discovered dried tangerines
 - discover (subject I)
 - I (subj-of discover)
 - tangerine (obj-of discover)
 - tangerine (adj-mod dried)
 - dried (adj-mod-of tangerine)

	subj-of, absorb	subj-of, adapt	subj-of, behave	 pobj-of, inside	pobj-of, into	 nmod-of, abnormality	nmod-of, anemia	nmod-of, architecture	 obj-of, attack	obj-of, call	obj-of, come from	obj-of, decorate	 nmod, bacteria	nmod, body	nmod, bone marrow
cell	1	1	1	16	30	3	8	1	6	11	3	2	3	2	2

Examples of PMI scores

Object	Count	PMI Assoc	Object	Count	PMI Assoc
bunch beer	2	12.34	wine	2	9.34
tea	2	11.75	water	7	7.65
Pepsi	2	11.75	anything	3	5.15
champagne	4	11.75	much	3	5.15
liquid	2	10.53	it	3	1.25
beer	5	10.20	<some amount=""></some>	2	1.22

$$assoc_{\text{prob}}(w, f) = P(f|w)$$

$$assoc_{\text{PMI}}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(f)}$$

$$assoc_{\text{Lin}}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(r|w)P(w'|w)}$$

$$assoc_{\text{t-test}}(w, f) = \frac{P(w, f) - P(w)P(f)}{\sqrt{P(f)P(w)}}$$

$$\begin{aligned} \sin_{\text{cosine}}(\vec{v}, \vec{w}) &= \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \\ \sin_{\text{Jaccard}}(\vec{v}, \vec{w}) &= \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \\ \sin_{\text{Dice}}(\vec{v}, \vec{w}) &= \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \min(v_i, w_i)} \\ \sin_{\text{JS}}(\vec{v} || \vec{w}) &= D(\vec{v} | \frac{\vec{v} + \vec{w}}{2}) + D(\vec{w} | \frac{\vec{v} + \vec{w}}{2}) \end{aligned}$$

- Problems with Thesaurus-based methods?
 - Some languages lack such resources
 - Thesauruses often lack new words and domain-specific words
- Distributional methods can be used for
 - Automatic thesaurus generation
 - Augmenting existing thesauruses, e.g., WordNet

Vector Space Models for word meaning

(Following slides are modified from Prof. Katrin Erk's slides.)

Geometric interpretation of lists of feature/value pairs

- In cognitive science: representation of a concept through a list of feature/value pairs
- Geometric interpretation:
 - Consider each feature as a dimension
 - Consider each value as the coordinate on that dimension
 - Then a list of feature-value pairs can be viewed as a point in "space"
- Example color represented through dimensions
 (1) brightness, (2) hue, (3) saturation

Where do the features come from?

- How to construct geometric meaning representations for a large amount of words?
 - Have a lexicographer come up with features (a lot of work)
 - Do an experiment and have subjects list features (a lot of work)
- Is there any way of coming up with features, and feature values, <u>automatically</u>?

Vector spaces: Representing word meaning without a lexicon

- Context words are a good indicator of a word's meaning
- Take a corpus, for example Austen's "Pride and Prejudice"

Take a word, for example "letter"

 Count how often each other word co-occurs with "letter" in a context window of 10 words on either side

Some co-occurrences: "letter" in "Pride and Prejudice"

- jane : 12
- when : 14
- by : 15
- which : 16
- him : 16
- with : 16
- elizabeth : 17
- but : 17
- he : 17
- be : 18
- s : 20
- on : 20

- not : 21
- for : 21
- mr : 22
- this : 23
- as : 23
 - you : 25
 - from : 28
- i : 28
- had : 32
- that : 33

• in : 34

- was : 34
- it : 35
- his : 36
- she : 41
- her : 50
- a : 52
- and : 56
- of : 72
- to : 75
- the : 102

Using context words as features, co-occurrence counts as values

Count occurrences for multiple words, arrange in a table

a	admirer	all	allow	almost	am	and	angry)
letter	1	8	1	2	2	56	1	•••
surprise	0	7	0	0	4	22	0	•••

- For each target word: vector of counts
 - Use context words as dimensions

S

- Use co-occurrence counts as co-ordinates
- For each target word, co-occurrence counts define point in vector space

Vector space representations

 Viewing "letter" and "surprise" as vectors/points in vector space: Similarity between them as distance in space

What have we gained?

- Representation of a target word in context space can be computed completely automatically from a large amount of text
- As it turns out, similarity of vectors in context space is a good predictor for semantic similarity
 - Words that occur in similar contexts tend to be similar in meaning
- The dimensions are not meaningful by themselves, in contrast to dimensions like "hue", "brightness", "saturation" for color
- Cognitive plausibility of such a representation?

Euclidean distance:

What do we mean by "similarity" of vectors?

Cosine similarity:

Parameters of vector space models

- W. Lowe (2001): "Towards a theory of semantic space"
- A semantic space defined as a tuple (A, B, S, M)
- B: base elements. We have seen: context words
- A: mapping from raw co-occurrence counts to something else, for example to correct for frequency effects (We shouldn't base all our similarity judgments on the fact that every word co-occurs frequently with 'the')
- S: similarity measure. We have seen: cosine similarity, Euclidean distance
- M: transformation of the whole space to different dimensions (typically, dimensionality reduction)

A variant on B, the base elements

- Term x document matrix:
 - Represent document as vector of weighted terms
 - Represent term as vector of weighted documents

Another variant on B,
the base elements

• Dimensions:

not words in a context window, but dependency paths starting from the target word (Pado & Lapata 07)

	of+pcomp-n	of+mod	in+pcomp-n	in+mod	to+aux	i+subj	he+subj	•••
make	124	2426	15810	39	8978	34932	565	
his	5082	0	0	3682	0	0	83	•••

A possibility for A,

the transformation of raw counts

- Problem with vectors of raw counts: Distortion through frequency of target word
- Weigh counts:
 - The count on dimension "and" will not be as informative as that on the dimension "angry"
- For example, using Pointwise Mutual Information between target and context word

$$PMI(a, b) = \log \frac{P(a, b)}{P(a) \cdot P(b)}$$

A possibility for M, the transformation of the whole space

- Singular Value Decomposition (SVD): dimensionality reduction
- Latent Semantic Analysis, LSA

 (also called Latent Semantic Indexing, LSI):
 Do SVD on term x document representation
 to induce "latent" dimensions that correspond to
 topics that a document can be about

Landauer & Dumais 1997

Using similarity in vector spaces

- Search/information retrieval: Given query and document collection,
 - Use term x document representation: Each document is a vector of weighted terms
 - Also represent query as vector of weighted terms
 - Retrieve the documents that are most similar to the query

Using similarity in vector spaces

- To find synonyms:
 - Synonyms tend to have more similar vectors than nonsynonyms:
 - Synonyms occur in the same contexts
 - But the same holds for antonyms: In vector spaces, "good" and "evil" are the same (more or less)
- So: vector spaces can be used to build a thesaurus automatically

Using similarity in vector spaces

- In cognitive science, to predict
 - human judgments on how similar pairs of words are (on a scale of 1-10)
 - "priming"

An automatically extracted thesaurus

- Dekang Lin 1998:
 - For each word, automatically extract similar words
 - vector space representation based on syntactic context of target (dependency parses)
 - similarity measure: based on mutual information ("Lin's measure")
- Large thesaurus, used often in NLP applications

Automatically inducing word senses

- All the models that we have discussed up to now: one vector per word (word type)
- Schütze 1998: one vector per word occurrence (token)
 - She wrote an angry <u>letter to her niece</u>.
 - He sprayed the word in big <u>letters</u>.
 - The newspaper gets 100 letters from readers every day.
- Make token vector by adding up the vectors of all other (content) words in the sentence:

 $\vec{she} + w\vec{rote} + a\vec{gry} + n\vec{ece}$

- Cluster token vectors
- Clusters = induced word senses

Summary: vector space models

- Count words/parse tree snippets/documents where the target word occurs
- View context items as dimensions, target word as vector/point in semantic space
- Distance in semantic space ~ similarity between words
- Uses:
 - Search
 - Inducing ontologies
 - Modeling human judgments of word similarity