Lexical Semantics

(Following slides are modified from Prof. Claire Cardie’s slides.)
Introduction to lexical semantics

- Lexical semantics is the study of
 - the systematic meaning-related connections among words and
 - the internal meaning-related structure of each word
- **Lexeme**
 - an individual entry in the lexicon
 - a pairing of a particular orthographic and phonological form with some form of symbolic meaning representation
- **Sense**: the lexeme’s meaning component
- **Lexicon**: a finite list of lexemes
Dictionary entries

- right \textit{adj.}
- left \textit{adj.}
- red \textit{n.}
- blood \textit{n.}
Dictionary entries

- right *adj.* located nearer the right hand esp. being on the right when facing the same direction as the observer.
- left *adj.* located nearer to this side of the body than the right.
- red *n.*
- blood *n.*
Dictionary entries

- **right** *adj.* located nearer the right hand esp. being on the right when facing the same direction as the observer.
- **left** *adj.* located nearer to this side of the body than the right.
- **red** *n.* the color of blood or a ruby.
- **blood** *n.* the red liquid that circulates in the heart, arteries and veins of animals.
Lexical semantic relations: **Homonymy**

- **Homonyms**: *words that have the same form and unrelated meanings*
 - The *bank*\(^1\) had been offering 8 billion pounds in 91-day bills.
 - As agriculture burgeons on the east *bank*\(^2\), the river will shrink even more.

- **Homophones**: distinct lexemes with a shared pronunciation
 - E.g. *would* and *wood*, *see* and *sea*.

- **Homographs**: identical orthographic forms, different pronunciations, and unrelated meanings
 - The fisherman was fly-casting for *bass* rather than trout.
 - I am looking for headphones with amazing *bass*.
Lexical semantic relations: **Polysemy**

- Polysemy: the phenomenon of multiple *related* meanings within a single lexeme
 - bank: financial institution as corporation
 - bank: a building housing such an institution
- **Homonyms** (disconnected meanings)
 - bank: financial institution
 - bank: sloping land next to a river

- Distinguishing homonymy from polysemy is not always easy. Decision is based on:
 - Etymology: history of the lexemes in question
 - Intuition of native speakers
Lexical semantic relations: **Synonymy**

- Lexemes with the same meaning
- Invoke the notion of **substitutability**
 - Two lexemes will be considered synonyms if they can be substituted for one another in a sentence without changing the meaning or acceptability of the sentence
- How *big* is that plane?
- Would I be flying on a *large* or small plane?
- Miss Nelson, for instance, became a kind of *big* sister to Mrs. Van Tassel’s son, Benjamin.
- We frustrate ‘em and frustrate ‘em, and pretty soon they make a *big* mistake.
Word sense disambiguation (WSD)

- Given a *fixed* set of senses associated with a lexical item, determine which of them applies to a particular instance of the lexical item

- Fundamental question to many NLP applications.
 - Spelling correction
 - Speech recognition
 - Text-to-speech
 - Information retrieval
WordNet

(Following slides are modified from Prof. Claire Cardie’s slides.)
WordNet

- Handcrafted database of lexical relations
- Separate databases: nouns; verbs; adjectives and adverbs
- Each database is a set of lexical entries (according to unique orthographic forms)
 - Set of senses associated with each entry

<table>
<thead>
<tr>
<th>Category</th>
<th>Unique Forms</th>
<th>Number of Senses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>94474</td>
<td>116317</td>
</tr>
<tr>
<td>Verb</td>
<td>10319</td>
<td>22066</td>
</tr>
<tr>
<td>Adjective</td>
<td>20170</td>
<td>29881</td>
</tr>
<tr>
<td>Adverb</td>
<td>4546</td>
<td>5677</td>
</tr>
</tbody>
</table>
WordNet

- Developed by famous cognitive psychologist George Miller and a team at Princeton University.
- Try WordNet online at http://wordnetweb.princeton.edu/perl/webwn
- How many different meanings for “eat”?
- How many different meanings for “dog”?
The noun “bass” has 8 senses in WordNet.
1. bass - (the lowest part of the musical range)
2. bass, bass part - (the lowest part in polyphonic music)
3. bass, basso - (an adult male singer with the lowest voice)
4. sea bass, bass - (flesh of lean-fleshed saltwater fish of the family Serranidae)
5. freshwater bass, bass - (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
6. bass, bass voice, basso - (the lowest adult male singing voice)
7. bass - (the member with the lowest range of a family of musical instruments)
8. bass - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)
WordNet **Synset**

- Synset == Synonym Set
- Synset is defined by a set of words

- Each synset represents a different “sense” of a word
 - Consider synset == sense

- Which would be bigger?
 - # of unique words
 - V.S
 - # of unique synsets
Statistics

<table>
<thead>
<tr>
<th>POS</th>
<th>Unique Strings</th>
<th>Synsets</th>
<th>Total word+sense pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>117798</td>
<td>82115</td>
<td>146312</td>
</tr>
<tr>
<td>Verb</td>
<td>11529</td>
<td>13767</td>
<td>25047</td>
</tr>
<tr>
<td>Adj</td>
<td>21479</td>
<td>18156</td>
<td>30002</td>
</tr>
<tr>
<td>Adv</td>
<td>4481</td>
<td>3621</td>
<td>5580</td>
</tr>
<tr>
<td>Totals</td>
<td>155287</td>
<td>11765</td>
<td>206941</td>
</tr>
</tbody>
</table>
More WordNet Statistics

<table>
<thead>
<tr>
<th>Part-of-speech</th>
<th>Avg Polysemy</th>
<th>Avg Polysemy w/o monosemous words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>1.24</td>
<td>2.79</td>
</tr>
<tr>
<td>Verb</td>
<td>2.17</td>
<td>3.57</td>
</tr>
<tr>
<td>Adjective</td>
<td>1.40</td>
<td>2.71</td>
</tr>
<tr>
<td>Adverb</td>
<td>1.25</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Distribution of senses

- Zipf distribution of senses
WordNet relations

- Nouns

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>From concepts to superordinates</td>
<td>breakfast → meal</td>
</tr>
<tr>
<td>Hyponym</td>
<td>From concepts to subtypes</td>
<td>meal → lunch</td>
</tr>
<tr>
<td>Has-Member</td>
<td>From groups to their members</td>
<td>faculty → professor</td>
</tr>
<tr>
<td>Member-Of</td>
<td>From members to their groups</td>
<td>copilot → crew</td>
</tr>
<tr>
<td>Has-Part</td>
<td>From wholes to parts</td>
<td>table → leg</td>
</tr>
<tr>
<td>Part-Of</td>
<td>From parts to wholes</td>
<td>course → meal</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>leader → follower</td>
</tr>
</tbody>
</table>

- Verbs

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>From events to superordinate events</td>
<td>fly → travel</td>
</tr>
<tr>
<td>Troponym</td>
<td>From events to their subtypes</td>
<td>walk → stroll</td>
</tr>
<tr>
<td>Entails</td>
<td>From events to the events they entail</td>
<td>snore → sleep</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>increase ↔ decrease</td>
</tr>
</tbody>
</table>

- Adjectives

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonym</td>
<td>Opposite</td>
<td>heavy ↔ light</td>
</tr>
<tr>
<td>Adverb</td>
<td>Opposite</td>
<td>quickly ↔ slowly</td>
</tr>
</tbody>
</table>
Selectional Preference
Selectional Restrictions & Selectional Preferences

• I want to eat someplace that’s close to school.
 • => “eat” is intransitive

• I want to eat Malaysian food.
 • => “eat” is transitive

• “eat” expects its object to be edible.
• What about the subject of “eat”?
Selectional Restrictions & Selectional Preferences

- What are selectional restrictions (or selectional preferences) of...
 - “imagine”
 - “diagonalize”
 - “odorless”

- Some words have stronger selectional preferences than others. How can we quantify the strength of selectional preferences?
Selectional Preference Strength

- $P(c) :=$ the distribution of semantic class ‘c’
- $P(c|v) :=$ the distribution of semantic class ‘c’ of the object of the given verb ‘v’

- What does it mean if $P(c) = P(c|v)$?
- What does it mean if $P(c)$ is very different from $P(c|v)$?

- The difference between distributions can be measured by Kullback-Leibler divergence (KL divergence)

$$D(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$
Selectional Preference Strength

- **Selectional preference of 'v'**

\[
S_R(v) := D(P(c|v)||P(c)) = \sum_c P(c|v) \log \frac{P(c|v)}{P(c)}
\]

- **Selectional association of 'v' and 'c'**

\[
A_R(v, c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)}
\]

- The difference between distributions can be measured by **Kullback-Leibler divergence (KL divergence)**

\[
D(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)}
\]
Selectional Association

- Selectional association of ‘v’ and ‘c’

$$A_R(v, c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)}$$

<table>
<thead>
<tr>
<th>Verb</th>
<th>Direct Object Semantic Class</th>
<th>Assoc</th>
<th>Direct Object Semantic Class</th>
<th>Assoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>WRITING</td>
<td>6.80</td>
<td>ACTIVITY</td>
<td>-.20</td>
</tr>
<tr>
<td>write</td>
<td>WRITING</td>
<td>7.26</td>
<td>COMMERCE</td>
<td>0</td>
</tr>
<tr>
<td>see</td>
<td>ENTITY</td>
<td>5.79</td>
<td>METHOD</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Remember Pseudowords for WSD?

- Artificial words created by concatenation of two randomly chosen words
- E.g. “banana” + “door” => “banana-door”

- Pseudowords can generate training and test data for WSD automatically. How?

- Issues with pseudowords?
Pseudowords for Selectional Preference?
Word Similarity
Word Similarity

- Thesaurus Methods
- Distributional Methods
Word Similarity: Thesaurus Methods

- Path-length based similarity
 - pathlen(nickel, coin) = 1
 - pathlen(nickel, money) = 5
Word Similarity: Thesaurus Methods

- pathlen\((x_1, x_2)\) is the shortest path between \(x_1\) and \(X_2\)

- Similarity between two senses --- \(s_1\) and \(s_2\):
 \[
 \text{sim}_{\text{path}}(s_1, s_2) = -\log \text{pathlen}(s_1, s_2)
 \]

- Similarity between two words --- \(w_1\) and \(w_2\):
 \[
 \text{wordsim}(w_1, w_2) = \max_{s_1 \in \text{senses}(w_1)} \max_{s_2 \in \text{senses}(w_2)} \text{sim}(s_1, s_2)
 \]
Word Similarity: Thesaurus Methods

- Path-length based similarity
 - pathlen(nickel, coin) = 1
 - pathlen(nickel, money) = 5

▶ Problems?
Information-content based word-similarity

- \(P(c) := \) the probability that a randomly selected word is an instance of concept ‘c’

\[
P(c) = \frac{\sum_{w \in \text{words}(c)} \text{count}(w)}{N}
\]

- \(IC(c) := \) Information Content

\[
IC(c) := -\log P(c)
\]

- \(LCS(c_1, c_2) = \) the lowest common subsumer

\[
\text{sim}_{\text{resnik}}(c_1, c_2) = -\log P(\text{LCS}(c_1, c_2))
\]
Examples of $p(c)$

- entity 0.395
 - inanimate-object 0.167
 - natural-object 0.0163
 - geological-formation 0.00176
 - natural-elevation 0.000113
 - hill 0.0000189
 - shore 0.0000836
 - coast 0.0000216
Thesaurus-based similarity measures

\[
\begin{align*}
\text{sim}_{\text{path}}(c_1, c_2) &= -\log \text{pathlen}(c_1, c_2) \\
\text{sim}_{\text{Resnik}}(c_1, c_2) &= -\log P(\text{LCS}(c_1, c_2)) \\
\text{sim}_{\text{Lin}}(c_1, c_2) &= \frac{2 \times \log P(\text{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \\
\text{sim}_{\text{jc}}(c_1, c_2) &= \frac{1}{2 \times \log P(\text{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2))} \\
\text{sim}_{\text{eLesk}}(c_1, c_2) &= \sum_{r,q \in \text{RELS}} \text{overlap}(\text{gloss}(r(c_1)), \text{gloss}(q(c_2)))
\end{align*}
\]
Word Similarity

- Thesaurus Methods

Distributional Methods
Distributional Word Similarity

- A bottle of tezguino is on the table.
- Tezguino makes you drunk.
- We make tezguino out of corn.

- *Tezguino, beer, liquor, tequila*, etc share contextual features such as
 - Occurs before ‘drunk’
 - Occurs after ‘bottle’
 - Is the direct object of ‘likes’
Distributional Word Similarity

- Co-occurrence vectors

<table>
<thead>
<tr>
<th></th>
<th>arts</th>
<th>boil</th>
<th>data</th>
<th>function</th>
<th>large</th>
<th>sugar</th>
<th>summarized</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>apricot</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pineapple</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>digital</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>information</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Distributional Word Similarity

- Co-occurrence vectors with grammatical relations

- I discovered dried tangerines
 - discover (subject I)
 - I (subj-of discover)
 - tangerine (obj-of discover)
 - tangerine (adj-mod dried)
 - dried (adj-mod-of tangerine)
Distributional Word Similarity

<table>
<thead>
<tr>
<th></th>
<th>subj-of, absorb</th>
<th>subj-of, adapt</th>
<th>subj-of, behave</th>
<th>pobj-of, inside</th>
<th>pobj-of, into</th>
<th>nnmod-of, abnormality</th>
<th>nnmod-of, anemia</th>
<th>nnmod-of, architecture</th>
<th>obj-of, attack</th>
<th>obj-of, call</th>
<th>obj-of, come from</th>
<th>obj-of, decorate</th>
<th>...</th>
<th>nnmod, bacteria</th>
<th>nnmod, body</th>
<th>nnmod, bone marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>30</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Examples of PMI scores

<table>
<thead>
<tr>
<th>Object</th>
<th>Count</th>
<th>PMI Assoc</th>
<th>Object</th>
<th>Count</th>
<th>PMI Assoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>bunch beer</td>
<td>2</td>
<td>12.34</td>
<td>wine</td>
<td>2</td>
<td>9.34</td>
</tr>
<tr>
<td>tea</td>
<td>2</td>
<td>11.75</td>
<td>water</td>
<td>7</td>
<td>7.65</td>
</tr>
<tr>
<td>Pepsi</td>
<td>2</td>
<td>11.75</td>
<td>anything</td>
<td>3</td>
<td>5.15</td>
</tr>
<tr>
<td>champagne</td>
<td>4</td>
<td>11.75</td>
<td>much</td>
<td>3</td>
<td>5.15</td>
</tr>
<tr>
<td>liquid</td>
<td>2</td>
<td>10.53</td>
<td>it</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>beer</td>
<td>5</td>
<td>10.20</td>
<td><SOME AMOUNT></td>
<td>2</td>
<td>1.22</td>
</tr>
</tbody>
</table>
\[
\text{assoc}_\text{prob}(w, f) = P(f|w) \\
\text{assoc}_\text{PMI}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(f)} \\
\text{assoc}_\text{Lin}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(r|w)P(w'|w)} \\
\text{assoc}_\text{ct-test}(w, f) = \frac{P(w, f) - P(w)P(f)}{\sqrt{P(f)P(w)}}
\]

\[
\text{sim}_\text{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_{i=1}^{N} v_i \times w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}} \\
\text{sim}_\text{Jaccard}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)} \\
\text{sim}_\text{Dice}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i + w_i)} \\
\text{sim}_\text{JS}(\vec{v}|\vec{w}) = D(\vec{v}|\frac{\vec{v} + \vec{w}}{2}) + D(\vec{w}|\frac{\vec{v} + \vec{w}}{2})
\]
Distributional Word Similarity

- Problems with Thesaurus-based methods?
 - Some languages lack such resources
 - Thesauruses often lack new words and domain-specific words

- Distributional methods can be used for
 - Automatic thesaurus generation
 - Augmenting existing thesauruses, e.g., WordNet
Vector Space Models for word meaning

(Following slides are modified from Prof. Katrin Erk’s slides.)
Geometric interpretation of lists of feature/value pairs

- In cognitive science: representation of a concept through a list of feature/value pairs
- Geometric interpretation:
 - Consider each feature as a dimension
 - Consider each value as the coordinate on that dimension
 - Then a list of feature-value pairs can be viewed as a point in “space”
- Example color ■ represented through dimensions (1) brightness, (2) hue, (3) saturation
Where do the features come from?

- How to construct geometric meaning representations for a large amount of words?
 - Have a lexicographer come up with features (a lot of work)
 - Do an experiment and have subjects list features (a lot of work)

- Is there any way of coming up with features, and feature values, **automatically**?
Vector spaces: Representing word meaning without a lexicon

- Context words are a good indicator of a word’s meaning
- Take a corpus, for example *Austen’s “Pride and Prejudice”*
 Take a word, for example “letter”
- Count how often each other word co-occurs with “letter” in a context window of 10 words on either side
Some co-occurrences:
“letter” in “Pride and Prejudice”

- jane: 12
- when: 14
- by: 15
- which: 16
- him: 16
- with: 16
- elizabeth: 17
- but: 17
- he: 17
- be: 18
- s: 20
- on: 20
- not: 21
- for: 21
- mr: 22
- this: 23
- as: 23
- you: 25
- from: 28
- i: 28
- had: 32
- that: 33
- in: 34
- was: 34
- it: 35
- his: 36
- she: 41
- her: 50
- a: 52
- and: 56
- of: 72
- to: 75
- the: 102
Using context words as features, co-occurrence counts as values

- Count occurrences for multiple words, arrange in a table
- For each target word: vector of counts
- Use context words as dimensions
- Use co-occurrence counts as co-ordinates
- For each target word, co-occurrence counts define point in vector space

<table>
<thead>
<tr>
<th></th>
<th>admirer</th>
<th>all</th>
<th>allow</th>
<th>almost</th>
<th>am</th>
<th>and</th>
<th>angry</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>letter</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>56</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>surprise</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>22</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>
Viewing “letter” and “surprise” as vectors/points in vector space: Similarity between them as distance in space
What have we gained?

- Representation of a target word in context space can be computed completely automatically from a large amount of text.
- As it turns out, similarity of vectors in context space is a good predictor for semantic similarity.
 - Words that occur in similar contexts tend to be similar in meaning.
- The dimensions are not meaningful by themselves, in contrast to dimensions like “hue”, “brightness”, “saturation” for color.
- Cognitive plausibility of such a representation?
What do we mean by “similarity” of vectors?

Euclidean distance:

\[dist(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} \]

\[\vec{p} = \langle p_1, \ldots, p_n \rangle \]
What do we mean by “similarity” of vectors?

Cosine similarity:

\[
\cos(\vec{p}, \vec{q}) = \frac{\sum_{i=1}^{n} p_i \cdot q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \cdot \sqrt{\sum_{i=1}^{n} q_i^2}}
\]

\[
\vec{p} = \langle p_1, \ldots, p_n \rangle
\]

letter

surprise
Parameters of vector space models

- A semantic space defined as a tuple \((A, B, S, M)\)
- \(B\): base elements. We have seen: context words
- \(A\): mapping from raw co-occurrence counts to something else, for example to correct for frequency effects (We shouldn’t base all our similarity judgments on the fact that every word co-occurs frequently with ‘the’)
- \(S\): similarity measure. We have seen: cosine similarity, Euclidean distance
- \(M\): transformation of the whole space to different dimensions (typically, dimensionality reduction)
A variant on B, the base elements

- Term x document matrix:
 - Represent document as vector of weighted terms
 - Represent term as vector of weighted documents
Another variant on B, the base elements

- Dimensions:
 not words in a context window, but dependency paths starting from the target word (Pado & Lapata 07)

<table>
<thead>
<tr>
<th></th>
<th>of+pcomp-n</th>
<th>of+mod</th>
<th>in+pcomp-n</th>
<th>in+mod</th>
<th>to+aux</th>
<th>i+subj</th>
<th>he+subj</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>make</td>
<td>124</td>
<td>2426</td>
<td>15810</td>
<td>39</td>
<td>8978</td>
<td>34932</td>
<td>565</td>
<td>...</td>
</tr>
<tr>
<td>his</td>
<td>5082</td>
<td>0</td>
<td>0</td>
<td>3682</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>...</td>
</tr>
</tbody>
</table>
A possibility for A, the transformation of raw counts

- Problem with vectors of raw counts: Distortion through frequency of target word
- Weigh counts:
 - The count on dimension “and” will not be as informative as that on the dimension “angry”
- For example, using Pointwise Mutual Information between target and context word

\[PMI(a, b) = \log \frac{P(a, b)}{P(a) \cdot P(b)} \]
A possibility for M, the transformation of the whole space

- Singular Value Decomposition (SVD): dimensionality reduction
- Latent Semantic Analysis, LSA (also called Latent Semantic Indexing, LSI): Do SVD on term x document representation to induce “latent” dimensions that correspond to topics that a document can be about

Landauer & Dumais 1997
Using similarity in vector spaces

- Search/information retrieval: Given query and document collection,
 - Use term x document representation: Each document is a vector of weighted terms
 - Also represent query as vector of weighted terms
 - Retrieve the documents that are most similar to the query
Using similarity in vector spaces

- To find synonyms:
 - Synonyms tend to have more similar vectors than non-synonyms:
 Synonyms occur in the same contexts
 - But the same holds for antonyms:
 In vector spaces, “good” and “evil” are the same (more or less)
- So: vector spaces can be used to build a thesaurus automatically
Using similarity in vector spaces

- In cognitive science, to predict
 - human judgments on how similar pairs of words are (on a scale of 1-10)
 - “priming”
An automatically extracted thesaurus

• Dekang Lin 1998:
 • For each word, automatically extract similar words
 • vector space representation based on syntactic context of target (dependency parses)
 • similarity measure: based on mutual information (“Lin’s measure”)
• Large thesaurus, used often in NLP applications
Automatically inducing word senses

- All the models that we have discussed up to now: one vector per word (word type)
- Schütze 1998: one vector per word occurrence (token)
 - She wrote an angry letter to her niece.
 - He sprayed the word in big letters.
 - The newspaper gets 100 letters from readers every day.
- Make token vector by adding up the vectors of all other (content) words in the sentence:
 \[\vec{s}he + \vec{w}rote + \vec{a}ngry + \vec{n}iece \]
- Cluster token vectors
- Clusters = induced word senses
Summary: vector space models

- Count words/parse tree snippets/documents where the target word occurs
- View context items as dimensions, target word as vector/point in semantic space
- Distance in semantic space ~ similarity between words
- Uses:
 - Search
 - Inducing ontologies
 - Modeling human judgments of word similarity