
MMLite: A Scalable and Resource Efficient Control

Plane for Next Generation Cellular Packet Core

Vasudevan Nagendra
Stony Brook University

vnagendra@cs.stonybrook.edu

Arani Bhattacharya
Stony Brook University

arbhattachar@cs.stonybrook.edu

Anshul Gandhi
Stony Brook University

anshul@cs.stonybrook.edu

Samir R. Das
Stony Brook University

samir@cs.stonybrook.edu

Abstract

With increase in cellular-enabled IoT devices having diverse
traffic characteristics and service level objectives (SLOs),
handling the control traffic in a scalable and resource-efficient
manner in the cellular packet core network is critical. The
traditional monolithic design of the cellular core adopted
by service-providers is inflexible with respect to the diverse
requirements and bursty loads of IoT devices, specifically for
properties such as elasticity, customizability, and scalability.
To address this key challenge, we focus on the most critical
control plane component of the cellular packet core network,
theMobility Management Entity (MME). We present MMLite,
a functionally decomposed and statelessMME design wherein
individual control procedures are implemented as microser-
vices and states are decoupled from their processing, thus
enabling elasticity and fault tolerance. For SLO compliance,
we develop amulti-level load balancing approach based on
skewed consistent hashing to efficiently distribute incoming
connections. We evaluate the performance benefits of
MMLite over existing approaches with respect to scaling,
fault tolerance, SLO compliance and resource efficiency.

CCS Concepts

• Networks → Middle boxes / network appliances;
Packet scheduling;Network performance analysis;

Keywords

Cellular Networks, EPC, NFV, MME, Functional Customiza-
tion, Microservices, Load Balancing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSR ’19, April 3–4, 2019, San Jose, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00

https://doi.org/10.1145/3314148.3314345

1 INTRODUCTION

One of the grand challenges in the design of future cellular
core network is its resource-efficient scalingwith the projected
growth of signaling or control traffic. Much of this growth is
expected to come fromthe tremendous rise in IoTdevices (≈12
billionby2022 [14, 17]).Compared to traditional smartphones,
IoT devices generate at least twice the volume of control mes-
sages, growing 50% faster than data traffic [3, 15, 27, 43, 63].
This represents a significant overhead as control messages
do not directly contribute to the service provider’s revenue.
Moreover, the traffic characteristics and performance
requirements of cellular-based IoT devices havemuch greater
diversity than traditional user equipments (UEs) like smart-
phones or laptops [21, 35, 63]. Efficiently managing resources
in the presence of this diverse traffic is challenging [41, 52].
An immediate concern now is the scalability and efficient

resource utilization in the cellular core network (also called
Evolved Packet Core or EPC in connectionwith LTEnetworks).
Our focus in this work is on theMobility Management Entity
orMME,which is themost intensive control plane component
that handles five times more control messages than any other
entity inEPC[45,70].DesigninganefficientandscalableMME
requires addressing at least the following key challenges:

(1) Elasticity: IoT applications create bursty traffic [29, 63],
necessitating dynamic capacity provisioning. Insufficient
capacity at MME may lead to connection failures and
rejections, triggering retry messages and further increasing
the load on the MME [21]. Worse, UEs and all entities inside
the EPC maintain stateful contextual information (static
bindings), making it difficult tomigrate connections to other
MMEs in case of scale-out or scale-in. Not surprisingly,
the current practice is to simply over-provision the MME,
resulting in an expensive and wasteful design [54, 65].

(2) Flexibility: IoT devices can have very different control
and data traffic characteristics and performance require-
ments [21, 35, 52, 63, 68]. For example, IoT devices in smart
cars require stringent Service Level Objectives or SLOs to
react to changing trafficconditions,while smarthome IoTde-
vices may simply require IP connectivity. Unfortunately, to-
day’s cellularnetworksmakeuseofmonolithicMMEdevices
which are rigid and do not offer any functional or perfor-
mance flexibility. Even recently proposed network function

virtualization (NFV) based EPC architectures [8, 11, 41, 54,
55] lack the capabilities to handle differentiated SLO goals.

(3) Scalability: A key bottleneck for large-scale networks
is the centralized load balancing mechanism that must
immediately assign incoming connections to an MME.
Given the heterogeneity in the entire ecosystem, traditional
approaches such as round-robin or least-used servers
is no longer effective [32]. While recent approaches
based on consistent hashing (CH) distribute connections
uniformly [4], they are unable to quickly scale resources
in response to bursty IoT traffic (i.e., unaware of the actual
traffic load conditions at theMME),making themvulnerable
to “hot spots", where a few MME hosts are overloaded
(discussed in §8). Meeting user-specified SLOs while being
scalable and resource efficient thus requires a careful
reconsideration of load balancing decisions in the network.

To address the above challenges, we propose MMLite, an
agile MME architecture that exploits recent advances in NFV.
The key enabler of MMLite is its stateless and functionally
decomposed design. The statelessness is achieved by exter-
nalizing each UE-specific state in shared memory inside the
MME host, thus decoupling the MME from the UE contextual
information. This stateless design enables fault tolerance and
dynamic provisioning of MMEs responsive to traffic changes,
without incurring the overhead of state migration.

To address customizability, we decompose the MME
functionality into a set of microservices (or NFs) based on the
specific control procedure they handle, such as attach, service,
handover, migrate, etc. This control procedure-specific
decomposition, facilitated by our stateless design, allows
us to cater to specific functional and SLO requirements
of individual UEs in a resource-efficient manner. This
is in contrast to existing protocol-based decomposition
approaches [36, 61] that allow flexibility but fail to provide
fine-grained (UE-specific) SLO control.
To address elasticity and scalability, we re-architect the

MME into a multi-stage forwarding engine that divides the
MME functionality intoMME-load balancer, MME-forwarder
and stateless MME processing entity. Specifically, we
introduce a multi-level, SLO-aware MME load balancer and
MME forwarder that optimizes the resource utilizationwithin
and acrossMMEhosts. Unlike existing approaches that aim to
balance connectionsacrossMMEs [4, 12, 32],wepurposelyun-
balance load tomeet SLO requirements and facilitate dynamic
scaling. We evaluate the benefits of our SLO-aware load bal-
ancer in the context of stateless and functionally decomposed
MMEs, and contrast it with traditional stateful models.
We implement MMLite using the DPDK [24] and Open-

NetVM [48] frameworks that provide high performance
and low latency packet processing capabilities. We exploit
the zero copy capabilities of DPDK to build stateless MME
microservices (by externalizing their states from processing)
and fast path components such as MME load balancer and
MME forwarder. Our MMLite architecture is compatible with

(a) LTE architecture with key components. (b) MME statemachine.

Figure 1: Overview of LTE architecture andMME states.

3GPP protocols, making it incrementally deployable in the
existing cellular packet core network.
Our experimental results show that MMLite provides

much higher throughput compared to existing open-source
frameworks, including OAI [13, 47] and OpenEPC [69].
Further, while MMLite provides a raw throughput at par
with the stateful design (implemented on DPDK platform)
under stable traffic conditions, we outperform the stateful
design by about 18.4% under bursty traffic. Importantly,
MMLite can satisfy stringent SLO requirements, provides
near-optimal load balancing (within 1%), and results in better
resource utilization (by about 30–50%) compared to existing
approaches, all without adding significant overhead.

In summary, we make the following contributions:

• We demonstrate the performance limitations of the current
generation monolithic, stateful MME design (§2.2).

• We present the design of a stateless and functionally
customizable MME that provides service differentiation
while handling the diverse traffic of cellular IoT devices (§4).

• We develop a multi-level load balancing approach based
on skewed consistent hashing that meets SLO requirements
and facilitates dynamic scaling of MME (§5).

• We build a prototype of our MME using DPDK and Open-
NetVM (§6), and demonstrate our performance benefits
over existing and recently proposed frameworks (§7).

2 BACKGROUND&MOTIVATION

This section provides a brief primer on the current generation
LTE architecture and highlights the key challenges involved.

2.1 Overview of LTEArchitecture

Present day LTE network has twomain components: Radio
Access Network (RAN) and Evolved Packet Core (EPC); see
Figure 1a. The User Equipment1 (UE) communicates with
Internet through eNodeB (another name for the Base Station)
of RAN via EPC. The Serving Gateway (SGW) is responsible
for forwarding the packets between the eNodeB and Packet
data networkGateway (PGW). PGWprovides packet data ser-
vices to UE such as QoS (Quality of Service), packet filtering
services, and billing. TheMobilityManagement Entity (MME)
acts as the centralized controller module providing control
plane functionality, such as establish and release data sessions,
verifies the subscription details of a user and maintains the
control channel with eNodeB for exchanging the information.

1We use User Equipment and Cellular-enabled IoT device interchangeably.

(a) Diversity in cellular-enabled

IoT and UE traffic characteristics.

(b) Delays in data transfer instan-

tiation duringMME overload.

(c) Interference among LTE con-

trol procedures at line rate traffic.

(d)MME failure& snowball effect

during session restoration.

Figure 2: IoT traffic characteristics and experiments demonstrating the limitations of existing stateful MME design on

DPDK-based industrial-grade prototype.

MMEControl Procedures andBindings: Figure 1b shows
the key MME states and the control procedures associated
witheachstate.TheAttach request is issuedbyUEto register it-
selfwith EPC for Internet connectivity,which is an infrequent
procedure that is invoked a few times per day per UE. The
Service request procedure is performedwhen an inactiveUE in
Idle statewishes to send or receive data. This is a frequent pro-
cedure in LTE [34]), especially for IoT devices [15, 27, 63]. The
Handover procedure handles the mobility and TAU (Tracking
Area Updates) procedure is responsible for migrating each
device’s associated states to other MMEs, andMME scaling
(in response to overload or failures). In an ideal scenario, these
procedures on an average takes few hundred milliseconds to
complete; in case of overload or failures, these procedures can
take seconds or at times even minutes to complete [5, 30, 42].
The UE and MME retain these association details (called

static bindings or associations) until the UE is completely
detached from the core network. In this association, each UE
maintains identifiers such as GUTI (Globally Unique Tem-
porary UE Identifier), which contains: (i) TMSI (Temporary
Mobile Subscriber Identification) for temporarily identifying
the current UE session until it is detached from the network,
and (ii) MME identifier (i.e., MMEID-UE-S1AP). Similarly, the
MMEmaintains the necessary contextual state information
specific to that connection (such as authentication and
security keys), TMSI, and other session details. The TMSI and
MMEID information is used byMME to subsequently identify
the UE connection. These static bindings hinder elastic
scaling. This is because only the MME host that has the state
for a specific UE can handle all control signaling for the UE.

2.2 Challenges andMotivation

Several characteristics of IoT devices pose a challenge for
MME design: (i) the diverse nature of IoT traffic, including
traffic that is sporadic, periodic, high-frequency, and
bursty [63, 68]; Figure 2a illustrates this diversity in control
traffic for specific IoT devices obtained from real data [25]
in comparison with UE traffic [38], (ii) the different SLO
requirements of IoT devices depending on their functionality,
and (iii) scale – a large number of IoT devices must be
supported by the MME at low per-unit cost. We now discuss
the key performance challenges that must be addressed by
MME, thus motivating our work.

To evaluate the limitations of cellular core, we build a
DPDK-based traditional stateful MME architecture. We
generate IoT-based cellular control traffic by replaying
real-world packet capture traces from publicly available
data sets and LTE control procedures following specific
traffic distributions [25, 38] in our local testbed using LTE
UE emulator [37] (details in §6 & §7). While prior work has
analyzed data plane performance issues using DPDK-based
EPC implementation [55, 57], our work focuses on control
plane performance issues, as discussed below.

Overload Protection: The bursty nature of IoT traffic [29,
63] can lead to frequent MME overload. Current overload
protection methods [7, 9] include: 1)Migrating connections
fromanoverloadedMME to other lightly loadedMMEs, and 2)
Rate throttling at the overloaded MME by dropping or reject-
ing control messages beyond a certain limit. Unfortunately,
both approaches incur significant overhead due to the stateful
static bindings in MME. Figure 2b highlights the significant
increase (by almost 50×) in data transfer instantiation times
when an overloaded MME operating at 80% CPU utilization
attempts to migrate some of its connections to another MME
(experimental setup detailed in §7); note the log scale on the
x-axis. This is because of the large number of control mes-
sages that areneeded to reestablish theUE’s context following
a connection migration request. We observe similar results
using the rate-throttling approach due to the reconnection at-
tempts made by the UEs following droppedmessages. Similar
issues also arise in the case of scale-in, in response to low load.

Functional Decomposition and Isolation: Control
procedures from one device can interfere with the processing
of control procedures from other devices, resulting in
unpredictable SLO violations. Figure 2c illustrates the
impact of this interference. Here, the heavierAttach Request
increases the latency of the lighter Service Request by over 50%
(compared to isolated execution). Thus, an IoT device with
frequent Service Requestmessages can affect the performance
of other IoT devices or UEs that share the same MME. The
need for performance isolation between device traffic is
particularly important for use cases such as virtual reality
(VR) or smart-transportation networks, where latency
requirements are in the 1–10 millisecond range [71].

SLO-aware Load Balancing: Common approaches for
distributing UE connections among MMEs to improve per-
formance include round robin and consistent hashing [4, 32].
Due to the diversity in IoT traffic, however, the load on
individual connections can be vastly different, resulting in
hot spots and SLO violations. We show, in §7, that the above
approaches can lead to more than 20% SLO violations in the
presence of UE and diverse IoT traffic loads.

Fault Tolerance:MME failures may cause service outages
of up to tens of minutes [42]. Current LTE networks address
fault tolerance in two ways [23, 33]: (i) Active-Passive High
Availability via N + 1 (N Active, 1 Passive) resiliency, and
(ii) session restoration procedures. The N + 1 resiliency
approach requires additional hardware and cannot scalably
handle multiple MME failures. In the second approach, a
session restoration servermaintains UE session information
of each of the MMEs [33]. In case of MME failures, the
session restoration server redistributes the UE session
information pertaining to the failed MME servers among
other active MMEs. The active MMEs trigger the affected
UEs to re-associate with newMME servers through session
restoration procedures, resulting in the flooding of the core
network with a large number of control procedures. Any
session restoration procedure that fails to complete within
5s will retry with reattach procedures, resulting in additional
attach floods (snowball effect [21]). Figure 2d illustrates this
effect, showing that UEs can take seconds, and even minutes,
to reattach to the network; note the log-scale on the y-axis.

3 SYSTEMOVERVIEW

From above description, it is apparent that there are two
core issues: (1) the stateful nature of MME and the static
binding it engenders significantly impact performance
when moving UE connections across MMEs, and (2) the
current monolithic design of MME is contrary to the need
for functional decomposition and performance isolation.
Our MMLite architecture thus fundamentally uses two core
design principles - (i) Statelessness, and (ii) use of functionally
decomposed microservices. These principles are used in
conjunction with slicing - a unit of physical resource that
procedures needing specific SLO requirements aremapped to.

The MMLite architecture introduces the following
functional components, as shown in Figure 3:

• Stateless MMEMicroservices: We decompose the MME func-
tionality into individual network functions (NFs) that handle
specific LTE control procedures; these NFs are implemented
asmicroservices. The state is maintained externally making
these microservices stateless (see §4).

• Slices: The microservices are bundled into ‘slices’, with each
slice hosting a given number of microservices for different
control procedures. Slices are units of physical resources,
such as a fraction of a logical execution unit of a processor
(lcore [58] in DPDK-speak). Multiple slices can run on a
single MME host machine, and many such hosts may exist
within the carrier’s datacenter.

Figure 3: MMLite: LTE cellular EPC system architecture.

• Load Balancing: The load balancer leverages the above com-
ponents to enforce SLO compliance in a resource-efficient
manner. It has two functional components: (i)MME Load-
Balancer: An external entity that distributes control mes-
sages from UEs across multiple MME hosts on the basis
of their resource and SLO requirements; and (ii)MME For-
warder: An NF-based forwarding entity on each MME host
that distributes control messages to NFs in a slice-aware
manner and on the basis of the SLO requirements of UE’s
control connections. The details of our inter-host and intra-
host load balancing are presented in §5.

For providing the necessary logic and infrastructure
support for the above mentioned components, MMLite
supports two different controllers: (i) NF Controller: A
controller local to eachMME host to manage the externalized
states, state migration, and NF scaling; and (ii) EPS Controller:
A centralized controller that manages the MME hosts scaling
on the basis of SLO violations and resource requirements.

Overview of Operation: All control procedures are imple-
mentedas independentmicroserviceswith states externalized
in the shared memory inside the MME hosts. The load bal-
ancer steers all control packets to the rightMMEhost. TheEPS
controller then helps the MMLite architecture to evaluate the
performance of the control messages served at different hosts
and scale accordingly. Inside each MME host, a dedicated
forwarder and a set of NFs are assigned to each slice. Control
messages for the same invocation of a control procedure are
processed in the same slice; this is tracked using sliceID by
the forwarder. The NF controller manages the NF scaling and
uses NF prioritization for SLO compliance. We discuss the
key components of MMLite in detail in the following sections.

4 STATELESSMMEMICROSERVICES

In this section, we describe the core of our MME design that
provides the key functionalities of functional decomposition
and elasticity. These are achieved by decomposing the MME
NFs into dedicated control procedure-specific microservices
and by decoupling the states from the NFs to make the MME
stateless. We also discuss our design for state migration and
fault tolerance, which makes MMLitemore robust in practice.
The description below refers to Figure 4 that describes our
architectural components.

4.1 Functional Decomposition

As discussed in Section 2.2, the bursty IoT traffic results in
NFs inducing interference among control procedures and
possibly impacting critical messages. A popular approach
to mitigate this issue is protocol-level decomposition, that

Figure 4: Internal system architecture of MMLite
components running on a singleMME host.

is, decomposing MME on the basis of the functional modules
(i.e., code blocks) and protocol layers. For example, MME
could be decomposed and pipelined as NAS security module,
authentication modules, and S1AP layers separately with
this technique. On the other hand, the devices have control
traffic characteristics distributed over time with no two types
of control procedures from a UE overlapping or arriving at
the same time at MME. Therefore, decomposing the MME
into microservices specific to control procedures (i.e., vertical
decomposition) allows us to scale MME in fine-grained and
resource efficient fashion in accordance with the control
procedure inter-arrival time.

Our functional decomposition targets two issues. First, the
control procedures that need to be invoked are temporally
distributed in an unpredictable fashion. Some procedures
such as Attach are infrequent, while Service procedures
could be more frequent. The latter may even exhibit periodic,
synchronous or semi-synchronous behavior (e.g., IoT
sensors) [2]. Second, some IoT devices have limited functional
needs and do not require certain types of control functions
such as Handover, TAU-based state migration, and QoS
procedures (e.g., stationary IoT sensors). Other IoT devices
may be very dependent on certain types of control functions
(e.g., IoT devices on smart transport platforms may invoke
significant mobility related control functions). Mapping of
individual control procedures tomicroservices (procedure-level
decomposition) allows for specific microservices to be
instantiated and independently provisioned depending on
the load conditions and SLO requirements.
Thus, MMLite decomposes the traditional monolithic

MME into following set of microservices targeted to handle
specific control procedures: a) Attach request, b) Service
request, c) Detach request, d) Handover request, and e) State
management microservice-based NFs; we plan to support
other control procedures as part of future work. This
functional decomposition also enables seamless scaling and
load balancing features by making it easy to place/move
specific microservices, as discussed in §5.

4.2 Statelessness

MMLite externalizes the states of allMMENFs inside ahost, i.e,
the states aremaintained outside theNF, in the sharedmemory
of the MME host. We choose to store the states within each

MMEhost, as opposed toa centralizeddata-store [59], because
of frequent state updates triggered by control procedures.
The state replication and migration procedure facilitates the
necessary fault tolerance and scaling capabilities required for
our architecture (see §4.3). We illustrate the benefits of this
design choice in §7.1. We use NF Controller to allocate two
shared memory pools – one for storing packets for zero-copy
architectural support, and another for storing the UEs’ states.
These memory pools are later used by the MMENFs to store
the packets and to get the UE context information.
When a control packet arrives at the NIC of the MME

host: (i) The NF Packet Handler interfaces with the DPDK
platform’s poll mode driver to bypass the operating system
to DMA, which can be readily accessed by all the NFs. (ii)
The other NF Packet Handler threads access the packets
stored in the shared memory to create a packet descriptor
for each packet, which includes the handler to the packet
in the shared memory and details on how the packet needs
to be handled inside the host by different services. The
packet descriptors are then placed onto the RX queues of the
MME-forwarders for distributing the packets further across
MMENFs depending on the slice the packet belongs to. This
is facilitated by a set of hash tables maintained in the host
that maps sliceIDs to forwarders, control message types
to SLOs, and UEs (identified by TMSI) to their state.

4.3 StateMigration

We invoke statemigration across hosts, facilitated by the state
migration utility, in the event of host failures or host scaling.
The migration utility helps maintain up-to-date copies of
the states on other hosts (replica hosts). Replication of states
and number of replicas may be limited to those with tighter
SLO requirements or other priorities in order to conserve
resources. We leverage existing work [28, 48, 56] to develop
a partitioning of the state space, and enhance this state
partitioning specifically for our functionally decomposed
and stateless NFs. In particular, we partition the state specific
to each UE on the basis of the type of the control procedure
and the lifetime of the state into: (i) perpetual (i.e., does
not change during the lifetime of each control procedure),
and (ii) ephemeral (i.e., state information that changes with
each message exchanged within a control procedure). Upon
completion of a control procedure, we discard obsolete state
information (e.g., tunnel information, timers) and only retain
necessary state that might be required for the next set of con-
trol procedures. This allows us to optimize and consolidate
the state space, in contrast to existing approaches [4, 55].
The perpetual state is only migrated (across hosts) when

the UE attaches or detaches to the network; this includes
failures and scaling events. The ephemeral state is migrated
more frequently via one of the following approaches:

(i) Cold Migration: The UE contextual information from
within a MME host is migrated to other replica hosts
only upon completion of the entire control procedure.
Upon completing the procedure, the MME marks each UE

Figure 5: MMLite slice and SLO-awareMME LB architecture.

contextual information for migration. The state migration
utility consolidates the states belonging to the same slice
together and sends it to the other replica hosts.

(ii) Hot Migration: In case of hot migration, each time a
message is handled byMME, the specific context (this is just
a part of the state) is marked for migration because it could
be updated. The state migration utility continuously polls
and migrates only those parts of the state that are marked
for migration. This approach provides better fault tolerance
compared to cold migration while increasing the volume of
migration traffic inside the core network.

4.4 Fault Tolerance and Scaling

Asmentioned in §2.2, in case of conventional stateful MME
failure, the UEs that are already attached to the failed MME
host are redistributed to new MME hosts. This triggers an
avalanche of restoration and reattach procedures to change
UEs’ MME associations, significantly affecting performance.
MMLite avoids this with the following FT mechanisms.

(i) Host Failure: EPS Controller continuously monitors the
MMEhosts (i.e., with heartbeatmessages) for failures and per-
forms following tasks: (1)updates the loadbalancerabout such
MME host failures, and (2) provisions each slice of the failed
MMEhost by adding the same amount of resources from exist-
ingMMEhosts to the consistent hash ring of that slice. If exist-
ing set of hosts does not have sufficient resources, newMME
hosts are brought up from an idle pool. If state replicas are
available corresponding to the slices of the failed hosts, then
these replicas are migrated to the appropriate (slice-aware)
newly added hosts. Otherwise, the UEs must invoke reattach.

(ii) NF Failure: The NF controller helps to instantiate new
MMENFs from an idle pool of NFs. The NF controller invokes
theNF Packet Handler thread that is dedicated to handle the
failure scenario. This handler registers anMMENF in the idle
MME pool with the NF controller and reassigns the packets
already in the RX queue of the failed NF to that of the new
NF (note that the packets themselves are in shared memory).

5 LOADBALANCING

To improve resource efficiency, we design an inter-host load
balancer that determines the slice- and resource-aware MME
host for the incoming packets.We then present our intra-host
forwarder that selects the SLO-aware MME NF within the
host for serving the packets.

ALGORITHM 1: Inter-Host Load Balancing.

1 pkt→ sliceID, mmeID, GUTI.TMSI, msgID;

2 msgType← getProcedureType(msgID);

3 track_entry←Hash database of (LTMSI, hostID) ;

4 if track_entry[LTMSI] exists then

5 mmeHostID← track_entry[LTMSI] ;

6 else if TMSI � 0 then
7 if msgType � “attach” then
8 key← pkt.GUTI.TMSI;

9 sliceCHRef← getSliceCH(sliceID);

10 hostReplicas← lookupHosts(key, sliceCHRef);

11 hostMMEID← getViableHost(hostReplicas, sliceID);

12 track_entry[LTMSI] = mmeHostID ;

13 else

/* First message of Attach Procedure. */;

14 LTMSI← rand();

15 mmeHostID← CHGetHost(LTMSI);

16 track_entry[LTMSI] = mmeHostID ;

17 mmeHost← getHost(mmeHostID);

18 send packet to mmeHost;

5.1 Inter-Host MME Load Balancer

Our inter-host load balancer uses a skewed consistent hashing
(SK-CH) mechanism to distribute incoming connections to
hosts. For fine-grained (slice-level) resource management,
we maintain a separate consistent hashing ring for each slice
based on its sliceID (see Figure 5). Thus, each slice can be
served by a subset of all hosts; however, multiple slices can be
served by a single host. Within the slice, we assign a subset
of hosts (depending on number of replicas needed) to each
UE, based on their TMSI. To serve the connection, a specific
host is chosen from this subset based on its load conditions
and the required SLO.

Our Algorithm: Algorithm 1 details our slice-aware
inter-host load balancing. The first procedure for any UE is
the attach procedure. For the first packet of attach (for which
the TMSI, mmeID, and sliceID values are not assigned), the
load balancer assigns a TMSI, i.e., LTMSI. The LTMSI is used
to calculate the MME host, sayhost0, to which this message
will be sent for service using the hashing ring reserved for
sliceID=0. After service, host0 assigns the mmeID to this
connection as part of the reply. The load balancer uses this
mmeID to directly send subsequent packets of attach tohost0.
After successful completion of the attach procedure, the

sliceID of the UE is resolved. This sliceID is then used to
select the specific slice-aware hash ring.Within the hash ring,
the hash of the TMSI value (same as LTMSI) is used to select
the primary host and replica hosts, as shown in Figure 5. The
number of replicas can be decided based on the expected
load for each UE; in our experiments, we initially assign 2
replicas for each UE. host0 then migrates the UE context to
the primary and replica hosts so they can serve subsequent
procedures from the UE based on the TMSI.

For subsequent procedures (after attach), from among the
primary and replica hosts, we derive the set of viable hosts,
i.e, hosts that satisfy the procedure’s SLO requirements.

Calculation of viableMME hosts: At a high-level, we say
that a host is viable if it contains at least oneNF thatmeets the
SLO requirements of the procedure, sayTSLO . To obtain the
set of viable MME hosts, we compute the total estimated time
required by a (primary or replica) host to handle the incoming
control procedure. This, in turn, requires the current load
statistics at each host. Each MME host propagates the
CPU utilization and queue sizes of their NFs to the load
balancer. To minimize the overhead of communication, hosts
periodically send themoving average of CPU utilization and
NF queue sizes. In our implementation, this period is set to
a few hundred milliseconds, resulting in only a few hundred
kilobytes of data overhead on the network.
Let t be the type (e.g., service) of the incoming control

procedure. Let Tt be the total completion time required
for a type t procedure when handled in isolation on a core
(obtained via profiling). Letm be the total number of NFs
that handle type t procedures across all primary and replica
hosts of TMSI. For each NF i , the load balancer is aware of the
moving average of queue sizes, qi , and CPU assigned, ci . The
waiting time for the procedure at NF i is then estimated as:

Wi = (qi ·Tt)/ci ∀i=1,...,m (1)

Assuming that the moving average is stable, every message
of the procedure assigned to NF i will see a backlog of qi . If
there are pt messages in a type t procedure, the total backlog
experienced by the procedure is pt ×qi . SinceTt is the time
for a procedure when run in isolation (on a full core), we can
approximate the time per message asTt/(ci ·pt), and thus the
wait time is pt ×qi ×Tt/(ci ·pt)=qi ×Tt/ci . The completion
time is then computed asTi =Wi+Tt = (

qi
ci
+1)×Tt .

We now find the viable hosts as those that contain at least
one NF i for whichTi ≤TSLO . If no viable hosts exist, then the
messages are sent to the host that has the NF with the least
qi/ci ratio. Such violations are reported to the EPS Controller,
which can then add hosts to the slice (see §5.3).

Selectionoffinalhost fromviablehosts: Fromamong the
set of viable hosts, we select the host that ismost loaded, i.e,
the host that has the highest CPU usage.While this may seem
counter-intuitive, recall that we are only picking from among
viable hosts, each of which has at least one NF that can satisfy
the SLO.We prefer the most loaded host to maintain lighter
loadonotherhosts,which can thenbe scaleddownduring low
cluster usage. Instead, if we select the least loaded host, over
timewewill havebalancedhosts,making it difficult to identify
less loaded hosts to drain connections from in case of a scale
down. Prior works have shown this load unbalancing tech-
nique to facilitate server scaling in web clusters [6, 16], while
we explore this in the context of stateless MME architectures
with states distributed across multiple MME hosts (see §7.2).

Once the final host is selected for a control procedure, we
maintain the connection tracking information for this TMSI
to forward subsequent messages of this procedure to the
same host without having to recalculate the viable hosts. This

ALGORITHM 2: Intra-Host Load Balancing.

1 sliceID, mmeID, GUTI.TMSI, msgType← pkt;

2 sID← getServiceID(msgType);

3 nfIDs← getNFInstances(sID, sliceID) ;

4 track_entry←Hash database of (TMSI, mmeNFID) ;

5 if track_entry[TMSI] exists then

6 mmeNFID← track_entry[TMSI] ;

7 else

8 if sliceID = 0 then

9 mmeNFResources← getNFQueue(nfIDs) ;

10 mmeNFID←min{mmeNFResources} ;

11 else

12 mmeNFID← getOptimalNF(mmeNFLoads) ;

13 track_entry[TMSI] = mmeNFID ;

14 send packet to NF [mmeNFID] ;

information is refreshed each time a new control procedure
(not message) is seen by the MME load balancer.

5.2 Intra-Host Load Balancing (Forwarder)

Each slice inside anMME host is assigned a dedicated MME
forwarder and a number of MME NFs of different service
types (e.g., attach, detach, handover). For each service type,
there can be multiple NFs depending on the load conditions
of that specific control procedure. Once a host is chosen for
handling an incoming message (inter-host load balancing),
the next task is to decide the specific NF within that host that
will serve the request.MME Forwarders provide an effective
means to load balance the control traffic across multiple
MMENFs inside each MME host.
Our intra-host load balancing algorithm is presented in

Algorithm 2. Control messages that do not have any sliceID
details (i.e, attach procedure’s messages), will be put on
the receive ring buffer of the forwarder that is dedicated to
sliceID=0. This forwarder distributes the messages to the
attach MME NF that has the least queue size. Consecutive
messages from control procedures that have a sliceID (i.e.,
procedures from UEs whose attach is successful), will be sent
to the optimalMMENF, as discussed next.

Determining the optimalMMENF: A common approach
of intra-host load balancing is round robin or consistent
hashing [4]. However, these approaches do not provide any
performance guarantees, and may create hot spots, resulting
in SLO violations (see §2.2).

Our approach, by contrast, selects the NF that provides the
lowest latency for the incoming procedure. Specifically, we
use the same latencymodel as in Eq. (1), except: (i) we use cur-
rent queue size at the NF, sayQi , instead of moving average,
and (ii) we use the current lcore allocation (based on updated
priorities, see §5.3), say Ci , as opposed to moving average.
We use the current values (i.e., obtained fromwithin the host
without any network overhead) to enforce SLO requirements
as they providemore accurate and timely estimates of current
load conditions at the NF. The estimated latency is then:

Ti = (Qi/Ci+1)×Tt , ∀i=1,...,r (2)

where r is the number of NFs in the host. Based on Eq. (2),
finding the optimal NF for a given procedure type, t , and a
given slice that minimizes the estimated latency is equivalent
to finding the NF opt such that:

opt = arg
1≤i≤r

minQi/Ci (3)

If the estimated latency violates the SLO, i.e., Ti > TSLO ,
then, in addition to sending the packet to the computed opt
NF, the predicted violation is reported to the NF Controller
within the MME host. The Controller then instantiates
additional MMENFs as needed (see §5.3).
In general, the number of NFs within a host for a given

procedure and for a given slice is not too large (on the order of
10’s). Thus, the optimal NF can be determined without much
overhead. However, the overhead of centrally computing the
queue and cpu statistics for NFs in the kernel is infeasible
due to the high packet arrival rate and the required polling
of NFs to obtain the necessary statistics. We reduce this
overhead by maintaining (computing) the required statistics
within each NF itself. To amortize the overhead, we maintain
the flow tracking entry for each procedure with TMSI and
MME instanceID (TMSI::instanceID) once its optimal NF
has been determined. Subsequent packets of this procedure
bypass the forwarder and go to the opt NF.

5.3 NF Prioritization &Resource Scaling

The MME must handle heterogeneous traffic from diverse
IoT devices with a wide range of SLO requirements. We thus
employ prioritization and resource management to avoid
performance interfere and achieve SLO compliance.

Prioritization: Multiple NFs on a host may be assigned to
the same core, creating contention. To provide performance
isolation, our MMLite architecture leverages CPU-based pri-
oritization and processor scheduling.When a core is assigned
to nMMENFs with different priority levels, Pi , we compute,
for each NF i , the CPU core allocation fraction,Ci , as:

Ci =
Pi

∑n
j=1Pj

∀i=1,...,n (4)

Pi ranges from 0 to 1, with higher values representing
higher priority. If only one active NF exists on a core, it will
be allocated the entire core. Idle NFs are not considered in
theCi calculation. To enforce theCi allocation, we schedule
the core’s time slices across resident NFs in proportion to
their Ci values in a round robin manner. The priorities are
recalculated every time an NF becomes idle or when an NF
is added to the core for packet processing.

To assign priorities, we first note the minimum SLO value
across users, say SLOmin . We then set the priorities for each
NF inversely proportional to their respective SLO values,
normalized by SLOmin . Thus, for an NF with SLO value SLOi ,
we set Pi = SLOmin/SLOi . For example, consider two NFs a
and b that share a core with SLOa = 5ms and SLOb = 10ms.
If SLOmin = 1ms, we set Pa = 1/5 and Pb = 1/10. This gives
us, from Eq. (4),Ca =2/3 andCb =1/3. Prior work on shared
storage workloads has shown that priorities that are set

inversely proportional to performance requirements work
well in practice [75]. We evaluate the impact of our priority
assignment on performance in §7.2.
Lower and upper limits on Ci may be predefined for

specific slices. If SLO violations occur for an NF, we reactively
increment its priority by a small fraction (e.g., 0.01). If viola-
tions continue to persist, we inform the NF Controller, which
may then instantiate additional NFs, as discussed below.

Scaling: Hosts or NFs can be dynamically added for each
slice (or user) reactively in response to overload or failures.
On the other hand, resources (NFs or hosts) can be removed
in response to low utilization. NF-level scaling is carried out
by the NF controller within a host (see Figure 4), whereas
host-level scaling is carried out at the EPS controller.
We add NFs at a host (or at other hosts if the CPU is sat-

urated) in response to persistent SLO violations that are re-
ported to theNF controller. Tominimize the impact of waking
up MME NFs, we maintain a pool of idle NFs that can be
quickly instantiated, as needed; the overhead of idle NFs is
negligible in our experiments. Likewise, we add a newMME
host in response to persistent SLO violations that cannot be
addressed by NF scaling alone. Further, we also add hosts if
the load on all existing hosts is high. For scaling down,wefirst
transition NFs to the idle state and return them to the pool
of idle NFs if there are no outstanding messages in the queue.
If the pool of idle NFs contains more than a threshold (say, 1,
as in our experiments) number of NFs of a given type, then
additional idle NFs of that type are turned off. We scale down
hosts (or move to sleep or idle state) if the total available CPU
across MME hosts is high, say significantly greater than 100%.
When the number of hosts changes, the EPS controller

triggers the hosts to recalculate the slice-specific consistent
hashing to determine the new set of hosts to migrate the
states. When the number of NFs change in a host due to
scaling, our viable and optimal NF selection strategies will
gradually redistribute the packets among existing NFs as
they prefer smaller queues. However, we can redistribute
the packets in the receive queues more aggressively, e.g., in
response to an NF failure.

6 IMPLEMENTATION

We use the OpenNetVM [48] integrated with DPDK plat-
form [24] to build our stateless MME microservices and
other components of MMLite. OpenNetVM provides the
ability to process packets directly from the NICs allowing
them to be DMA’d (Direct Memory Accessed) into a shared
memory region. NFs can thus directly access packets with no
additional copies (i.e, zero copy I/O). To overcome the 100%
CPU utilization with DPDK poll mode driver (PMD), we use a
hybrid polling-interrupt driven technique to achieve both per-
formance and resource efficiency [73]. We next describe the
functional components that developed in C for our prototype.

UE Emulator: The UE emulator is built as a multi-threaded
program, with each individual thread generating control
trafficof aUE.Webypass the radio to generate traffic for direct

handling by the MME. Our UEs generate control procedures
such as attach, service, handover, detach, restoration, and
TAU-based procedures. It allows the user to configure threads
to generate traffic with specific characteristics.

MME Load Balancer & Forwarder: We implement our
skewed consistent hashing along with round robin (RR),
consistent hashing (CH) andMaglev-based LBmechanisms
on DPDK.We use Jenkins hash function [26] as the baseline
hashing mechanism for CH and our skewed CHmethods.

MME as Microservice: To further improve scalability, we
remove the existing network dependencies from Linux
networking stack and build it as an application-level
networkingmodule using DPDK.We implement each control
procedures as microservices with their states externalized
to shared memory. This reduces the NF instantiation time to
the order of a fewmilliseconds compared to tens of seconds
using OAISIM [13] and OpenEPC NFs [69].

StateMigration Utility: We implement state migration as
a standalone module interfaced with the EPS controller to
trigger bulk and device-specific state transfers. The states
marked for migration are transfered to other MME replica
hosts (§4) using separate threads assigned with dedicated
cores. These threads continuously monitor the state updates
to perform state transfers to other MME hosts. This utility
is designed to perform both hot and cold migrations.

Controller infrastructure: The EPS controller and NF con-
troller modules interface with the MME NFs, load balancer,
and forwarder modules. The controller infrastructure is built
with following key capabilities: (i) initiates state migration
across hosts, (ii) performs scaling of resources (MME NFs
and hosts) based on observed SLO violations and cpu usage,
(iii) updates load balancer with theMME failure and recovery
states, and (iv) assigns the globally unique LTMSI values to
UEs when attached to the network for the first time.

7 EVALUATION

In this section, we evaluate the performance of MMLite and
compare it with conventional MME architectures and also
with recent approaches. We use the following platforms: (i)
DPDK Compatible Intel Ethernet 10G 2P X520 NIC cards,
(ii) Dell R710 servers with 48GB RAM, 12 cores (2.6GHz)
with Ubuntu 4.4.0-97-generic kernel used as MME hosts, and
(iii) Dell R710 servers with 48BG RAM, 12 cores and 10G
Mellanox InfiniBand adapter integrated with RAMCloud
infrastructure for centralized data store. The testbed has
UE emulator hosts interfaced with multiple 10Gbps NICs
to MME load balancer. The load balancer interfaces with
multiple MME hosts and EPS Controller using 10Gbps NICs.

7.1 Throughput Comparison

We compare the throughput of MMLite with the following
prototypes: (1)OpenAirInterface (OAI): OAI is themostwidely
used open source EPC implementation [60]. We benchmark
the performance and scalability of OAI in the OAISIM
mode [13], where the UE and eNodeB are integrated together

Figure 6: Throughput of differentMME prototypes.

into a single node, bypassing the radio interface. (2)OpenEPC:
We benchmark OpenEPC using the PhantomNet testbed [69].
(3)MMEwith Centralized data-store (MME-RC):We customize
our DPDK-based MME code to use the RAMCloud-based
centralized data store model. RAMCloud [59] stores all the
data in DRAM allowing the remote servers to access the
RAMCloud data objects with low latency (as little as≈ 5μsec).
(4) StatefulDPDK-basedMME: This prototype implementation
uses the same code base as MMLite, but is stateful.
Figure 6 summarizes the throughput for the above ap-

proaches relative to our stateless DPDK-based approach in
MMLite as a function of load. For each load level, we generate
realistic IoT traffic, similar to Figure 2a. As shown in Figure 6,
we find that the OAI and OpenEPC/PhantomNet platforms
have limited throughput scalability, and saturate at around 1
Gbpsdue toMMEapplication’sbindingwith thekernel,unlike
infrastructures suchasDPDKwhichbypass it.MME-RCscales
well initially, but saturates at around 5.6Gbps, and gradually
drops to5.1Gbpsdue to theoverheadof state storage, retrieval
andtransfer to the targethost.ThestatefulDPDK-basedmodel
performs better than MME-RC, but still saturates around
7.2Gbps; this is because of the combined effects of queue pro-
cessing delays induced byMME and other EPC nodes. By con-
trast, our functionally decomposed and stateless model that
is free of static bindings allows MME to scale almost linearly
with load by effectively sharing the load across stateless NFs,
thus saturating only close to the line rate. It requires further
investigation to understand the intricate component-level
benefits, which we defer to our future work. Compared to the
stateful model, our stateless design provides ≈16% better per-
formance at peak load. In summary, MMLite effectively priori-
tizes and distributes control traffic load across stateless NFs to
providehigher throughput than stateful andMME-RCmodels.

7.2 Performance of MMLite’s Components

We first highlight the benefits of MMLite with its fault
tolerance, dynamic scaling capabilities and its ability to
effectively control the interference across control procedures.
We then end with an evaluation of SLO compliance and
resource efficiency.

We use the following traffic characteristics generated using
our UE emulator: T1, a constant rate of control procedures;
T2, a steadily increasing rate of control procedures; T3, traffic
rate from each UE using a Markov modulated (time-varying)

(a) Latency of control proce-

dures after failure.

(b) % Connection drops while

handling failure.

Figure 7: Demonstrating fault tolerance.

Poisson process; and T4, a sporadic traffic pattern (Pareto
distributed [49]), representative of traffic surges.

Fault Tolerance: Figure 7a demonstrates our MME failure
handling with three MME hosts using T1 traffic. We suspend
one of the MME host’s NFs at about the 2 second mark to
emulate MME failure. The traditional stateful MME uses the
same state restoration procedure for NF or host failures. We
thus observe the same performance in case of NF and host
failure for stateful MME.We see that the control procedure
latency shoots up to 5 s (which is the maximum UE retry
time) in response to failures for the stateful MME. This is
because during failures, the UE retries for the connection
every second. If the UE fails to get a response to its retries
within 5s, it generates reattach procedure and drops existing
data connections associated with it.

Unlike stateful MME, MMLite handles host and NF failures
differently as discussed in §4. MMLite needs statemigration in
case of host failures, but this does not involve UEs. Figure 7a
shows that MMLite is farmore responsive after failures and re-
covers quickly. Theaverage latencyof the control procedure is
<0.5 swithNF failure andup to 2.5 swith host failure. Clearly,
the performance recovery is significantly better for MMLite.
To further analyze performance, Figure 7b shows the

number of connection failures after the fault; we perform
multiple experiments at different loads to generate data
for this figure. With stateful MME, we see numerous
connection drops. At 50K connections/s load, we observe ≈
40% connection drops; this is due to congestion that occurs
at MME, eNodeB and UE during MME failure. By contrast,
MMLite significantly reduces the number of failures in all
cases, for both cold and hot migration approaches (§5).

Scaling: To evaluate scaling, we use T2 traffic to steadily
increase trafficuntil amaximumpoint (from2.5 Gbps to about
line rate) and then reduce it gradually. We note that our state-
less MMLite seamlessly scales the number of NFs and hosts, as
needed, in response to the changing traffic (Figure 8). Further,
the resulting latency is much lower for stateless compared
to stateful; note that the latency is shown on a log scale. The
latency specifically spikes for statefulMMEwhen the number
of hosts is scaled up (around the 90 s mark) or scaled down
(around the 260 smark). This is due to the (resource intensive)
TAU-based load rebalancing and state migration across hosts

Figure 8: Demonstrating scaling: Average latency of control

procedures with scaling of NFs and hosts.

that is required for stateful MME. During these periods,
the latency for stateful MME is about 50-100× higher than
stateless MME. Empirically, we found that while handling
failures at line rates, MME-RC resulted in higher connection
drops and higher latency to complete the control procedures
compared to MMLite. Similar observations are made in scal-
ing MME hosts and NFs due to the saturation effect observed
with MME-RC at higher throughputs, as discussed in §7.1.

Functional Decomposition & NF Prioritization: In
this experiment, we illustrate the benefits of functional
decompositionwith two different types of control procedures
i.e., handover request and service request. The average latency
for handling the service request, in isolation, is a lot smaller
(< 10ms) compared to handover (≈ 20ms). We use the T1
traffic pattern with a rate of 1000requests/s.

Figure 9: Functional decomposition and prioritization of

control procedures at line rate.

Figure 9 shows the latency of the two control procedures
in different scenarios. First, without any decomposition
(default, unified stateful MME), we get a similar latency for
handling each procedure (≈ 35ms). This is because, under
the unified architecture, the handling of the two procedures
creates contention and significantly increases the latency of
the smaller service request. With our naive decomposition,
the interference induced by handover over the service request
procedure is alleviated. The service request procedure latency
is brought back to the ideal case of < 10ms. However, the
handover latency increases since the service requestNF stays
idle after finishing the control procedures assigned to it,
wasting resources.

The latency can be further optimized by effectively setting
the NF priorities when sharing CPU resources. Figure 9
(H over S) shows that the handover procedure latency can

(a) Standard deviation of load

distribution amongMME hosts.

(b) SLO violations under all LB

schemes for different skews.

(c) SLO violations for different

number of hosts.

(d) Performance of MME with

different inter- and intra-host LB.

Figure 10: Evaluation results showing load distribution and SLO violations for different load balancing schemes.

be brought down to ≈ 20ms while sacrificing the service
latency by ≈10ms. Alternatively, we can prioritize the service
procedure NF to get much lower latency, though at the
expense of increased handover latency (S over H). These
results showcase how tighter SLOs can be obtained by ap-
propriately allocating resources (differentiated service) in the
decomposed implementation in MMLite. Such prioritization
is not possible for the default, unified MME design.

Load Distribution and SLOs: To evaluate our load balanc-
ing schemes from §5, we use all traffic patterns (T1 – T4),
and skew the load among UE connections. We compare the
performance of traditional cellular control plane architecture
that uses (i) RR (round robin), (ii) CH (consistent hashing),
and (iii) Maglev [12], with our skewed-CH inter-host load
balancer. Maglev aims to better balance the keys in CH to
achieve balanced number of connections across hosts (as
verified in our experiments), but it does not take into account
the load on each connection or session. We also compare
our approach with the PEPC cellular core architecture that
we built, which employs the Maglev-based LB scheme, as
discussed in [55]. Note that PEPC uses consolidated data and
control plane cellular core elements.
We also compare with an unrealistic yet optimal Integer

LinearProgramming (ILP) solution that solves the loadbalanc-
ing problem, though at a significant computational overhead.
The ILP finds the placement of NFs on hosts that satisfies the
SLO constraints for incoming procedures (expressed similar
to Eq. (2)), with the objective of minimizing the number of
hosts. We omit the ILP formulation due to lack of space.
Figures10a and 10b show the standard deviation of CPU

utilization across hosts and the resulting SLO violations for
different balancers when using 3 MME hosts. For uniform
load across UEs (no skew), all schemes performwell, though
CH, Maglev and PEPC (enabled with Magle-based LB) do
have slightly higher deviation. However, for skewed load
(wherein the load for 50% of the connections was increased
significantly), RR, PEPC, CH, andMaglev have high deviation
(above 15%) in CPU load across hosts. This is because these
schemes only try to balance the number of connections
per host (i.e., UEs in our case), which is insufficient as the
connections themselves have different load. This also results
in significant SLO violations (≈18-28%) for these schemes.
By contrast, MMLite results in about <4% standard deviation

and only about 3-4% SLO violations. These numbers are
almost a factor 3-7× lower compared to other schemes.
Compared to the optimal ILP, skewed-CH is within 1% of the
SLO violations and within 5% of the CPU deviation.
Figure 10c further analyzes the SLO violations when the

number of hosts is increased (under skewed load). While
the violations decrease with number of hosts for all schemes,
we see that Maglev, CH, RR, and PEPC, continue to have
significantly higher SLO violations, when compared to
MMLite . PEPC has the highest SLO violations because of the
interference between control and data place traffic, which
are consolidated under the design of PEPC. As the number
of hosts increase, MMLite starts to approach ILP; we believe
this is because MMLite has more opportunities to find viable
hosts with larger cluster sizes.
While the ILP outperforms MMLite in the above experi-

ments, it must be noted that the ILP’s optimal decisions were
calculated offline based on collected workload traces. This is
because the ILP takes on the order of seconds to converge to
the solution for our testbed parameters, making it infeasible
in practice (as the ILP is run for each arriving procedure).

Inter and Intra-host LB Schemes: Finally, Figure 10d evaluates
the performance under different combinations of inter- and
intra-host load balancing using 3 MME hosts and the skewed
load to illustrate the importance of each component. We
focus on RR as the alternative scheme to limit the state space.
We see that our load balancing scheme (Skewed-CH for
inter LB + OptimalNF for intra LB) provides the least SLO
violations and deviation in CPU utilization. When we replace
our inter-host balancer with RR, the violations increase
from 4.25% to 9.92%, but when we replace our intra-host
balancer with RR, the violations increase to 16.35%. However,
the deviation of CPU usage shows the opposite trend. This
is because the inter-host balancer is primarily responsible
for resource efficiency, whereas the intra-host balancer is
primarily responsible for SLO compliance. Replacing both
components with RR provides even worse performance.

Resource Utilization: In practice, a more relevant question
is to determine the number of hosts needed to meet the SLO
requirements. Figure 11 illustrates these results (showing
time-averaged number of hosts) for the requirement of ≤ 5%
SLO violations under the Pareto traffic distribution with dif-
ferent skews (α = 1, 2 and 3). We see, from Figure 11a, MMLite

Figure 11: Hosts required for SLO compliance under differ-

ent schemes using Pareto trafficwith varying skews (α).

provides about 34 – 47% reduction in resource requirements
for all traffic traces. CH performs the worst, while RR and
Maglev do marginally better than CH. This is because, unlike
other approaches, MMLite is designed for resource efficiency
and SLO compliance (see §5). We omit results for PEPC as
it fails to meet the SLO requirements even with all the hosts
in our testbed; this is because of the additional interference
introduced by PEPCwith consolidated control and data path
elements on the same host.

To evaluate the results for larger cluster sizes, we simulate
the various schemes. Figure 11b shows one such scenario
(α =1) with 100 hosts. We find that, even with larger clusters,
MMLite continues to provide significant resource savings.

8 RELATEDWORK

Functional Customization: There is a significant body
of work on decoupling control and data planes [39, 41, 42].
Recent works have demonstrated the resiliency of such
decoupled services implemented as microservices [22, 73].
CoMB [62] demonstrated the composition of NF services into
a consolidated middlebox. In the context of cellular networks,
techniques are proposed to optimize the control procedure
latency by customizing the LTE control messaging archi-
tecture [31, 41]. ECHO [42] deals with reliability of EPC in
public cloud infrastructures. PEPC [55] proposed functional
composition in the context of cellular networks for efficient
scaling and state space optimization. Similarly, Softbox [40]
proposed scalable LTE core architecture by slicing and com-
posing the core functionality as containerized per-UE EPC.
In addition, Softbox supports mobility-aware mechanism to
optimize the resource utilization of UE containers, thereby
effectively steering traffic through per-UE containers using
SDN-based rules. While inspired by the above, our work
focuses solely on the control plane and uses statelessness and
procedure-level decomposition (as opposed to protocol-level
decomposition in the above works) to minimize interference
among control procedures for fine-grained SLO compliance.

Statelessness: Recent studies have suggested the decoupling
of the static bindings of MME with other entities to allow
the MME to scale [53, 66, 67]. However, the states held by
the MME specific to each UE prevent the MME from scaling
and can create hot spots. Our approach to statelessness is
motivated by Kablan et al. [28] which proposes completely
decoupling the state and processing.We build on this concept

to develop a multi-level load balancer that seamlessly moves
load across MME hosts owing to statelessness.

SLO-aware Load Balancing: SCALE [4] proposed consis-
tent hashing (CH) based load balancing and dynamic scaling
for MME, but the scaling employs analytical approaches that
require predictable traffic patterns. However, UE and IoT
traffic can be skewed, bursty, and unpredictable [29, 63]. As
shown in our evaluation, MMLite is able to effectively handle
skewed and bursty traffic. Further, SCALE operates at the
granularity of VMs, whereas MMLite operates at the finer
granularity of microservices, allowing control procedures to
be effectively prioritized according to their SLO requirements.
The Maglev-based load balancing [12] aims to eliminate
the skew in key distribution of CH. However, as shown
in §7, these techniques are oblivious of the load on each
connection and thus result in hot spots and unreliable SLOs.
There are also other load balancing and migration tech-
niques [1, 19, 20, 44, 46, 50, 64, 72], but they do not take SLO
requirements into consideration when handling connections.
Prioritizing connections has been explored before (e.g.,

QJump [18], PriorityMeister [76], and SNC-Meister [74]).
Building on these works, we integrate priorities into our
multi-level load balancer. Another popular approach to SLO-
aware resource provisioning is predictive modeling [10, 51].
Given the bursty and at times unpredictable IoT traffic [29, 63],
the effectiveness of these models in the IoT space is unclear.

9 CONCLUSION

With the increase of IoT devices in the cellular network,
it is now critical for the cellular core to handle diverse
devices with varying traffic characteristics and SLOs at
a low cost. Given this backdrop, we specifically focus on
handling the control traffic effectively at a critical core
network entity - the MME. The proposed design, MMLite, is
a departure from traditional inflexible approaches that use
static binding between the state and the processing. MMLite
uses stateless microservices to decouple this binding and to
enable functional customization that is more responsive to
SLO requirements and resource availability. We develop a
multi-level load balancing approach using skewed consistent
hashing to achieve SLO compliance and resource efficiency.
Our evaluations using DPDK and OpenNetVM-based
prototypes demonstrate the superior performance of MMLite
over existing approaches with respect to fault tolerance,
scalability, resource utilization, and SLO satisfaction. We will
open source the MMLite framework to enable further work.

Acknowledgments

We greatly appreciate Z. Morley Mao (our shepherd) and
the anonymous reviewers for their insightful feedback. Our
special thanks to Vijay Gopalakrishnan from AT&T Labs for
his continuous support all along the way during our research.
This work is partially supported by NSF grants CNS-1642965,
CNS-1617046, CNS-1750109 and a grant from MSIT, Korea
under the ICTCCP Program.

References

[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,

Navindra Yadav, George Varghese, et al. 2014. CONGA: Distributed

congestion-aware load balancing for datacenters. InACM SIGCOMM

Computer Communication Review, Vol. 44. ACM, 503–514.

[2] Pilar Andres-Maldonado, Pablo Ameigeiras, Jonathan Prados-Garzon,

Juan J Ramos-Munoz, and Juan M Lopez-Soler. 2017. Optimized

LTE Data Transmission Procedures for IoT: Device Side Energy

Consumption Analysis. arXiv preprint arXiv:1704.04929 (2017).

[3] R. Archibald, D. Gupta, R. Jana, V. Gopalakrishnan, A. S. Rajan, K. B.

Ramia, D. Dahle, J. Cooper, G. Kennedy, N. Rao, S. Sonnads, and M. Mc

Donald. 2016. An IoT control plane model and its impact analysis

on a virtualized MME for connected cars. In 2016 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN). 1–6.

https://doi.org/10.1109/LANMAN.2016.7548864

[4] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera,

Kobus Van der Merwe, and Sampath Rangarajan. 2015. Scaling

the LTE Control-plane for Future Mobile Access. In Proceedings of

the 11th ACM Conference on Emerging Networking Experiments and

Technologies (CoNEXT ’15). ACM, New York, NY, USA, Article 19,

13 pages. https://doi.org/10.1145/2716281.2836104

[5] Call Failures in MME. 2017. https://en.wikipedia.org/wiki/QoS_Class_

Identifier.

[6] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,

and Feng Zhao. 2008. Energy-aware Server Provisioning and Load

Dispatching for Connection-intensive Internet Services. In Proceedings

of the 5th USENIX Symposium on Networked Systems Design and

Implementation (NSDI’08). USENIX Association, Berkeley, CA, USA,

337–350. http://dl.acm.org/citation.cfm?id=1387589.1387613

[7] Cisco: ASR5x00 MME Overload Protection Features. 2015.

https://goo.gl/LV97b5.

[8] Cisco leads the way to 5G networks, Microservices and Advanced

Automation. 2017. https://goo.gl/Sx2xoL.

[9] Cisco: MME Overview (Overload Protection). 2017. https:

//goo.gl/dyF3x9.

[10] S. Correa and R. Cerqueira. 2010. Statistical Approaches to Predicting

and Diagnosing Performance Problems in Component-Based Dis-

tributed Systems: An Experimental Evaluation. In 2010 Fourth IEEE

International Conference on Self-Adaptive and Self-Organizing Systems.

21–30. https://doi.org/10.1109/SASO.2010.32

[11] Designing and managing VNFs the right way for network functions

virtualization. 2017. https://goo.gl/Fnc7Ci.

[12] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman

Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,

Wentao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and

Reliable Software Network Load Balancer. In 13th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 16). Santa

Clara, CA, 523–535. https://www.usenix.org/conference/nsdi16/

technical-sessions/presentation/eisenbud

[13] End-to-end LTE/EPC network with OpenAirInterface (OAI) simulated

eNB/UE and OAI’s EPC . 2017. https://goo.gl/kXSvBi.

[14] Ericsson Mobility Report. 2016. http://www.ericsson.com/res/docs/

2016/ericsson-mobility-report-2016.pdf.

[15] Lilatul Ferdouse, Alagan Anpalagan, and Sudip Misra. 2017. Congestion

and overload control techniques in massive M2M systems: A survey.

https://doi.org/10.1002/ett.2936 e2936 ett.2936.

[16] Anshul Gandhi, Mor Harchol-Balter, RamRaghunathan, andMichael A.

Kozuch. 2012. AutoScale: Dynamic, Robust Capacity Management for

Multi-Tier Data Centers. ACM Trans. Comput. Syst. 30, 4, Article 14

(Nov. 2012), 26 pages. https://doi.org/10.1145/2382553.2382556

[17] Gartner Reveals Top Predictions for IT Organizations and Users in 2017

and Beyond. 2017. http://www.gartner.com/newsroom/id/3482117.

[18] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.

Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015.

Queues Don’T Matter when You Can JUMP Them!. In Proceedings

of the 12th USENIX Conference on Networked Systems Design and

Implementation (NSDI’15). USENIX Association, Berkeley, CA, USA,

1–14. http://dl.acm.org/citation.cfm?id=2789770.2789771

[19] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. 2010.

BASIL: Automated IO Load Balancing Across Storage Devices.

In Proceedings of the 8th USENIX Conference on File and Storage

Technologies (FAST’10). USENIX Association, Berkeley, CA, USA, 13–13.

http://dl.acm.org/citation.cfm?id=1855511.1855524

[20] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Wald-

spurger, and Mustafa Uysal. 2011. Pesto: Online Storage Performance

Management in Virtualized Datacenters. In Proceedings of the 2Nd ACM

Symposium on Cloud Computing (SOCC ’11). ACM, New York, NY, USA,

Article 19, 14 pages. https://doi.org/10.1145/2038916.2038935

[21] Handling of signaling storms in mobile networks. 2017.

https://goo.gl/fzkSGH.

[22] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar.

2016. Gremlin: Systematic Resilience Testing of Microservices. In 2016

IEEE 36th International Conference on Distributed Computing Systems

(ICDCS). 57–66. https://doi.org/10.1109/ICDCS.2016.11

[23] High Availability is more than five nines. 2017. https://goo.gl/o4dV3E.

[24] Intel Data Plane Development Kit. 2017. http://dpdk.org/.

[25] Internet of Things: Network Data Traffic Collection. 2018.

http://iotanalytics.unsw.edu.au/.

[26] Jenkins hash function. 2017. https://en.wikipedia.org/wiki/Jenkins_

hash_function.

[27] Roger Piqueras Jover. 2015. Security and impact of the IoT on LTEmobile

networks.

[28] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017.

Stateless Network Functions: Breaking the Tight Coupling of State and

Processing. In 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17). USENIX Association, Boston, MA, 97–

112. https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/kablan

[29] M. Laner, P. Svoboda, N. Nikaein, andM. Rupp. 2013. TrafficModels for

Machine Type Communications. In ISWCS 2013; The Tenth International

Symposium onWireless Communication Systems. 1–5.

[30] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane

Perspective on Reducing Data Access Latency in LTE Networks. In

Proceedings of the 23rd Annual International Conference on Mobile

Computing and Networking (MobiCom ’17). ACM, New York, NY, USA,

56–69. https://doi.org/10.1145/3117811.3117838

[31] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane

Perspective on Reducing Data Access Latency in LTE Networks. In

Proceedings of the 23rd Annual International Conference on Mobile

Computing and Networking (MobiCom ’17). ACM, New York, NY, USA,

56–69. https://doi.org/10.1145/3117811.3117838

[32] Load Balance MME in Pool. 2017. https://goo.gl/61CqWz.

[33] LTE SUBSCRIBER SERVICE RESTORATION. 2017. https:

//goo.gl/nfmLv6.

[34] Managing LTE Core Network Signaling Traffic. 2017. https:

//insight.nokia.com/managing-lte-core-network-signaling-traffic.

[35] Matteo Pozza et al., Solving Signaling Storms in LTE Net-

works: a Software-Defined Cellular Architecture. 2017.

http://tesi.cab.unipd.it/53297/1/tesi_Pozza.pdf.

[36] Diomidis S Michalopoulos, Mark Doll, Vincenzo Sciancalepore, Dario

Bega, Peter Schneider, and Peter Rost. 2017. Network Slicing via

Function Decomposition and Flexible Network Design. (2017).

[37] MMLite: LTE UE Emulator to generate LTE control messages. 2018.

https://github.com/vasu018/LTE-UE.

[38] MobileInsight: Data Sharing. 2018. . http://www.mobileinsight.net/

data.html.

[39] Ali Mohammadkhan, K.K. Ramakrishnan, Ashok Sunder Rajan,

and Christian Maciocco. 2016. CleanG: A Clean-Slate EPC Archi-

tecture and ControlPlane Protocol for Next Generation Cellular

Networks. In Proceedings of the 2016 ACM Workshop on Cloud-

Assisted Networking (CAN 16). ACM, New York, NY, USA, 31–36.

https://doi.org/10.1145/3010079.3010084

[40] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck. 2018. SoftBox:

A Customizable, Low-Latency, and Scalable 5G Core Network

Architecture. IEEE Journal on Selected Areas in Communications 36,

3 (March 2018), 438–456. https://doi.org/10.1109/JSAC.2018.2815429

[41] Vasudevan Nagendra, Himanshu Sharma, Ayon Chakraborty, and

Samir R. Das. 2016. LTE-Xtend: Scalable Support of M2M De-

vices in Cellular Packet Core. In Proceedings of the 5th Workshop

on All Things Cellular: Operations, Applications and Challenges

(MobiCom Workshop, ATC ’16). ACM, New York, NY, USA, 43–48.

https://doi.org/10.1145/2980055.2980062

[42] BinhNguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas

Karagiannis, Jakub Kocur, and Jacobus Van der Merwe. 2018. ECHO:

A Reliable Distributed Cellular Core Network for Hyper-scale Public

Clouds. In Proceedings of the 24th Annual International Conference on

Mobile Computing and Networking (MobiCom ’18). ACM, New York,

NY, USA, 163–178. https://doi.org/10.1145/3241539.3241564

[43] Nokia Siemens Networks: Signaling is growing 50% faster than data

traffic. 2017. https://goo.gl/oTbTmM.

[44] Mohammad Noormohammadpour and Cauligi S Raghavendra. 2017.

Datacenter Traffic Control: Understanding Techniques and Tradeoffs.

IEEE Communications Surveys & Tutorials 20, 2 (2017), 1492–1525.

[45] Sangchul Oh, Byunghan Ryu, and Yeonseung Shin. 2013. EPC signaling

load impact over S1 and X2 handover on LTE-Advanced system. In 2013

ThirdWorld Congress on Information and Communication Technologies

(WICT 2013). 183–188. https://doi.org/10.1109/WICT.2013.7113132

[46] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin

Raiciu. [n. d.]. Stateless datacenter load-balancing with beamer.

[47] openair-cn: Evolved Core Network Implementation of OpenAirInter-

face. 2017. https://gitlab.eurecom.fr/oai/openair-cn.

[48] OpenNetVM. 2017. http://sdnfv.github.io/onvm/.

[49] Pareto Distribution. 2017. https://en.wikipedia.org/wiki/Pareto_

distribution.

[50] Nohhyun Park, Irfan Ahmad, and David J. Lilja. 2012. Romano:

Autonomous Storage Management Using Performance Prediction in

Multi-tenant Datacenters. In Proceedings of the Third ACM Symposium

on Cloud Computing (SoCC ’12). ACM, New York, NY, USA, Article 21,

14 pages. https://doi.org/10.1145/2391229.2391250

[51] Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. 2014. A

PerformanceModel to Estimate ExecutionTime of ScientificWorkflows

on the Cloud. In Proceedings of the 9th Workshop on Workflows in

Support of Large-Scale Science (WORKS ’14). IEEE Press, Piscataway,

NJ, USA, 11–19. https://doi.org/10.1109/WORKS.2014.12

[52] T. Potsch, S. N. K. KhanMarwat, Y. Zaki, and C. Gorg. 2013. Influence

of future M2M communication on the LTE system. In 6th Joint

IFIP Wireless and Mobile Networking Conference (WMNC). 1–4.

https://doi.org/10.1109/WMNC.2013.6549000

[53] G. Premsankar, K. Ahokas, and S. Luukkainen. 2015. Design

and Implementation of a Distributed Mobility Management En-

tity on OpenStack. In 2015 IEEE 7th International Conference on

Cloud Computing Technology and Science (CloudCom). 487–490.

https://doi.org/10.1109/CloudCom.2015.54

[54] Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas Sekar, Vijay

Gopalakrishnan, Kaustubh Joshi, and Samir R Das. 2016. KLEIN: A

minimally disruptive design for an elastic cellular core. In Proceedings

of the Symposium on SDN Research. ACM, 2.

[55] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia

Ratnasamy, and Scott Shenker. 2017. A High Performance Packet

Core for Next Generation Cellular Networks. In Proceedings of

the Conference of the ACM Special Interest Group on Data Com-

munication (SIGCOMM ’17). ACM, New York, NY, USA, 348–361.

https://doi.org/10.1145/3098822.3098848

[56] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew

Warfield. [n. d.]. Split/Merge: System Support for Elastic Execution

in Virtual Middleboxes.

[57] Ashok Sunder Rajan, SamehGobriel, ChristianMaciocco, Kannan Babu

Ramia, Sachin Kapur, Ajaypal Singh, Jeffrey Erman, Vijay Gopalakr-

ishnan, and Rittwik Jana. 2015. Understanding the bottlenecks in

virtualizing cellular core network functions. The 21st IEEE International

Workshop on Local and Metropolitan Area Networks (2015), 1–6.

[58] RAMCloud. 2017. http://dpdk.org/doc/guides-16.04/linux_gsg/nic_

perf_intel_platform.html.

[59] RAMCloud. 2017. https://ramcloud.stanford.edu/docs/doxygen/md_

README.html.

[60] The OpenAirInterface repository. 2017. https://gitlab.eurecom.fr/oai/

openairinterface5g.

[61] M. R. Sama, X. An, Q. Wei, and S. Beker. 2016. Reshaping the mobile

core network via function decomposition and network slicing for

the 5G Era. In 2016 IEEE Wireless Communications and Networking

Conference. 1–7. https://doi.org/10.1109/WCNC.2016.7564652

[62] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter,

and Guangyu Shi. 2012. Design and Implementation of a

Consolidated Middlebox Architecture. In Proceedings of the 9th

USENIX Conference on Networked Systems Design and Implemen-

tation (NSDI’12). USENIX Association, Berkeley, CA, USA, 24–24.

http://dl.acm.org/citation.cfm?id=2228298.2228331

[63] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia

Wang. 2012. A First Look at CellularMachine-to-machine Traffic: Large

ScaleMeasurementandCharacterization. InProceedings of the 12thACM

SIGMETRICS/PERFORMANCE Joint International Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS ’12). ACM,

New York, NY, USA, 65–76. https://doi.org/10.1145/2254756.2254767

[64] A. Singh, M. Korupolu, and D. Mohapatra. 2008. Server-storage

virtualization: Integration and load balancing in data centers. In 2008 SC

- International Conference for High Performance Computing, Networking,

Storage and Analysis. 1–12. https://doi.org/10.1109/SC.2008.5222625

[65] Study on provision of low-cost Machine-Type Communications

(MTC) User Equipments (UEs) based on LTE, 3GPP spec: 36.888.

2017. https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=2578.

[66] T. Taleb, A. Ksentini, and B. Sericola. 2016. On Service Re-

silience in Cloud-Native 5G Mobile Systems. IEEE Journal on

Selected Areas in Communications 34, 3 (March 2016), 483–496.

https://doi.org/10.1109/JSAC.2016.2525342

[67] T. Taleb and K. Samdanis. 2011. Ensuring Service Resilience

in the EPS: MME Failure Restoration Case. In 2011 IEEE

Global Telecommunications Conference - GLOBECOM 2011. 1–5.

https://doi.org/10.1109/GLOCOM.2011.6133654

[68] Traffic models for machine-to-machine (M2M) communications: types

and applications. 2014. http://www.eurecom.fr/publication/4265.

[69] OpenEPC Tutorial using the classic PhantomNet portal. 2017. . https://

wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial.

[70] I. Widjaja, P. Bosch, and H. La Roche. 2009. Comparison of

MME Signaling Loads for Long-Term-Evolution Architectures.

In 2009 IEEE 70th Vehicular Technology Conference Fall. 1–5.

https://doi.org/10.1109/VETECF.2009.5378833

[71] Heejung Yu, Howon Lee, and Hongbeom Jeon. 2017. What is

5G? Emerging 5G Mobile Services and Network Requirements.

Sustainability 9, 10 (2017), 1848.

[72] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf

Chowdhury. 2017. Resilient datacenter load balancing in the wild. In

Proceedings of the Conference of the ACM Special Interest Group on Data

Communication. ACM, 253–266.

[73] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan,

and Timothy Wood. 2016. Flurries: Countless Fine-Grained NFs

for Flexible Per-Flow Customization. In Proceedings of the 12th

International on Conference on Emerging Networking EXperiments

and Technologies (CoNEXT ’16). ACM, New York, NY, USA, 3–17.

https://doi.org/10.1145/2999572.2999602

[74] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. 2016.

SNC-Meister: Admitting More Tenants with Tail Latency SLOs. In

Proceedings of the Seventh ACM Symposium on Cloud Computing (SoCC

’16). New York, NY, USA, 374–387.

[75] Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. 2017.

WorkloadCompactor: reducing datacenter cost while providing tail

latency SLO guarantees. In SoCC.

[76] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-

Balter, and Gregory R. Ganger. 2014. PriorityMeister: Tail Latency QoS

for Shared Networked Storage. In Proceedings of the ACM Symposium

on Cloud Computing (SOCC ’14). New York, NY, USA, Article 29,

29:1–29:14 pages.

