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Abstract

The Science DMZ (SDMZ) is a special purpose network
architecture proposed by ESnet (Energy Sciences Network) to
facilitate distributed science experimentation on terabyte- (or
petabyte-) scale data, exchanged over ultra-high bandwidth
WAN links. Critical security challenges faced by these net-
works include: (i) network monitoring at high bandwidths,
(ii) reconciling site-specific policies with project-level
policies for conflict-free policy enforcement, (iii) dealing
with geographically-distributed datasets with varying levels
of sensitivity, and (iv) dynamically enforcing appropriate
security rules. To address these challenges, we develop a fine-
grained dataflow-based security enforcement system, called
CoordiNetZ (CNZ), that provides coordinated situational
awareness, i.e., the use of context-aware tagging for policy en-
forcement using the dynamic contextual information derived
from hosts and network elements. We also developed tag
and IP-based security microservices that incur minimal over-
heads in enforcing security to data flows exchanged across
geographically-distributed SDMZ sites. We evaluate our pro-
totype implementation across two geographically distributed
SDMZ sites with SDN-based case studies, and present perfor-
mance measurements that respectively highlight the utility
of our framework and demonstrate efficient implementation
of security policies across distributed SDMZ networks.
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Figure 1: SDMZ backbone (ESNet) with international
connectivity, Illustrating two project collaborations
across multiple SDMZ sites.
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1 Introduction

The need for computation over petabyte-scale datasets
introduces complexities with respect to: (i) cost-effective
provisioning of compute and storage resources, and (ii)
secure transport of high-throughput experimental data across
geographically-distributed datacenters. To mitigate these con-
cerns, a new network architecture has been proposed called
the Science DMZ (SDMZ) [9], in which an enterprise subnet
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is isolated from stateful deep-packet inspection (DPI) mid-
dleboxes (e.g., firewalls, intrusion prevention systems (IPSs))
for optimized performance. Geographically-distributed
SDMZ sites are inter-connected through high-performance
network backbones, such as the ESNet (Energy Sciences
Network) [11], which connects more than 40 U.S. Department
of Energy (DoE) research sites and 150+ campus networks
that collectively exchange more than 50 petabytes of data
each month [11, 12]. Today, there are more than 100 such
national research and educational networks present across
the globe connecting thousands of research institutes using
dedicated ultra high bandwidth WAN links [29].

However, implementing security policy for effectively
managing such ultra-high-volume data transfers without
sacrificing underlying transport performance and throughput
remains a formidable challenge. Our paper is motivated by the
observation that security mechanisms currently implemented
in SDMZ networks fall short along multiple dimensions.

(1) Coarse-grained Enforcement: Deployed security mecha-
nisms are too coarse-grained (IP, port-level ACLs) using
router-based access control lists (ACLs) and aggressive
filtering for handling high-performance science applica-
tions that exchange potentially sensitive, proprietary, or
personal-private information across interconnected multi-
institutional networks [9, 40].

(2) Context Awareness: Humongous volumes of data ex-
changed across SDMZs prevents the network-monitoring
plane of SDMZ (e.g., a network intrusion detection system
(NIDS)) from effectively deriving dynamic and fine-grained
filtering decisions for enforcing security policies based on
dynamic operational context (i.e., who, what, where, when
and howthe data resources are accessed or requested). Lack
of application awareness, DPI capabilities, and contextual
information leaves wide gaps in the SDMZ security archi-
tecture [39].

(3) Intuitive Policy Specification: SDMZ project users (e.g., re-
searchers, professors, and students) have no method to
directly capture their policy intents and enforce them onto
the network without conflicting with other user’s policy
intents or site-specific policies.

(4) Security as a Service: Finally, current tier-2 SDMZ networks
lack infrastructure support to effectively utilize dynamic
security and data analysis services provided by tier-0/1
SDMZ compute centers (e.g., DDoS protection and data
analysis) [6, 24].

We seek to address these limitations by introducing a
new framework, called CoordiNetZ, which provides a graph-
based dataflow policy management framework that enables
users to express anticipated experimental interactions and
automatically arbitrate conflicts with respect to project- and

site-specific policies. This high-level abstraction is important,
as science project policies must be flexibly specified by
researchers rather than by administrators. CoordiNetZ
addresses the lack of application- and context-awareness
through a novel context-aware policy-based tagging
mechanism (cTags), which allows dataflows to be associated
with tags enabling fine-grained, cross-site dataflow filtering.
Optimizations are proposed to effectively utilize the limited
tag-space (20 bits Flow Label packet header of IPv6) that
is available for using it across sites, while optimizing the
number of rules required to enforce policies. CoordiNetZ
integrates host-specific application context to network
nodes and monitoring plane, enabling them to filter traffic
by routing through light-weight security functions built as
microservices for fine-grained policy enforcement.

The notable contributions of this paper are as follows:

e Identification of several key SDMZ security requirements
(§2) that motivate the design and prototype implemen-
tation of a distributed SDN-based policy enforcement
framework (§3).

e We present novel conflict detection and resolution
mechanisms that allow policies specified by various
SDMZ users using graph-based abstractions belonging to
different sites and projects to be effectively reconciled (§4).

e We develop context-aware policy-based tagging that
allows dataflows to be associated with tags enabling
fine-grained control of project- and experiment-specific
cross-site dataflows (§5).

o Wepresentkey security use-cases that demonstrate the ben-
efits of CoordiNetZ framework (§6) and comprehensive
performance evaluation of the CoordiNetZ prototype (§7).

2 SDMZ Background

The SDMZ network architecture has proven to be a vital
platform for storing and transporting petabytes of scientific
data (per month) across geographically-distributed research
testbeds and data repositories in US and Europe (shown in
Figure 1) [11, 12]. As shown in Figure 2, noteworthy elements
of the SDMZ architecture that are optimized for performance
include the following:

1. DTNs and applications customized to support data
transfers at 10-100 Gbps [1].

2. SDMZ network perimeter architecture that bypasses
stateful firewalls and DPI devices for high-throughput data
transfers of elephant flows [39].

3. A dedicated SDMZ core network with capacity to carry
more than 100 Gbps of science dataflow rates without loss.!

IConsidering the growing bandwidth requirements of SDMZ applications,
the SDMZ core network is soon expected to get upgraded to 400 Gbps [38]
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Figure 2: Lack of isolation among projects in policy ab-
straction, specification and enforcement. Dotted lines
represent SDMZ network isolated from enterprise
network’s firewalls.

The SDMZ network differs from enterprise networks
in how it manages the data flows (i.e., elephant dataflows)
across geographically distributed locations. Specifically,
SDMZs employ specialized applications (e.g., Grid FTP) to
transmit parallel (multi-port) data streams across SDMZ sites.
These host DTNs and their applications are customized to
handle high-performance TCP, and are limited to running
a few “trusted” data-transfer applications.

The SDMZ network is also distinguished from other
cross-domain networks such as software-defined WANs
(SD-WANs) [16, 18], software-defined data centers (SDDCs)
and multi-tenant cloud networks [3, 25] in that the SDMZ
network is multi-tenant network that shares experimental
data across multiple sites that are geographically distributed,
spanning multiple administrative domains. In addition,
the day-to-day policy requirements in these network
infrastructures are specific to the experiments and associated
data outcomes and the rules for sharing of data across
collaborators are required to be specified by non-admin
SDMZ users (e.g., researchers, students). However, existing
policy frameworks including the new SDN-based frameworks
are not designed to handle dynamic dataflow-based policy
requirements of these multi-administrative cross-domain
science networks [2, 21, 36, 42, 46].

2.1 SDMZ Security Requirements

Today, SDMZ security is provided primarily through offline
protection, such as from clustered IDS (e.g., BroIDS [5]),
router/switch ACLs and selective fastpath of high-bandwidth
flows (e.g., SciPass [40]). However, SDMZs currently offer
no way to capture and reconcile the unified policy intents

of different administrators of SDMZ sites. SDMZs have no
fine-grained flow management, i.e., filtering, steering or
revoking of flows according to dynamic project requirements
or security states of the SDMZ network. In addition, SDMZs
do not offer the necessary context to enable an association
between flows, projects, and data. Below, we identify four
key requirements for an SDMZ security framework.

2.1.1  Fine-grained Dataflow Security Policies: SDMZ policy
requirements differ from that of typical enterprise networks.
Below, we summarize three broad classes of policies that are
germane to the SDMZ network infrastructure:

Policy 1. Dataflow Policies: The nature of SDMZ experiments
involve the transport and computation of project datasets
with diverse sensitivities. Ideally, they should be data centric
rather than IP flow centric. For example, a single experiment
may include both public data and data involving personal
information. Policies should have the ability to express
fine-grained controls over where data can be transmitted or
received based on the type and sensitivities of the data.
Examples: (Ex. 1) - Sensitive data derived from experiments of
project P1in site S1is to be only shared among nodes running
P1.If projects P1 and P2 are co-resident in an SDMZ node,
P2 users or applications may not exfiltrate P1 data to other
nodes. (Ex. 2) - Application binaries that are not white-listed
are not allowed to access sensitive files or send packets of size
greater than X bytes using protocols such as DNS and NTP.
(Ex. 3) - Sensitive data derived from project P1{experiment2}
in Sitel (e.g., D2) is not to be shared with Site2, Site3,
their collaborators and blacklisted countries, including the
transformed output data (i.e., derivatives D2/*). Also, not
allowed to be accessed by any application or user which/who
collaborates with Site2 and Site3 i.e., S1{D2/*} !— {S2,S3}).
Policy 2. Temporal and Spatial Policies. As the SDMZ is a
federation of shared and independently managed resources,
the operator should be capable of defining resource utilization
policies based on time, network address space, or geography.

Examples: (Ex. 1) Sensitive and confidential science data
produced by project P1 is not allowed to be accessed or
transmitted before 9 AM and after 6 PM, i.e., in the absence
of data administrators, to prevent malicious data access. (Ex.
2) Export-controlled scientific data derived from project P2
is not to be transmitted to any ITAR-restricted countries.
Policy 3. Network Security Policies. Policies should be adapt-
able to address the dynamic security state of the network.
Example: Notify admin and quarantine hosts to prevent any
sensitive data transfers outside DTN if there is evidence of
a successful brute-force attack.

2.1.2 Infrastructure Abstraction & Policy Specification: As
illustrated in Figure 2, existing policy frameworks [2, 19, 36]
do not provide the required isolation between project
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Figure 3: Lack of context in detecting missed network
and application-level attacks with clustered IDS.

users and site administrators. The infrastructure details,
abstracted for specifying the policies, need to be effectively
isolated for protecting the network infrastructure details
from getting exposed to other unintended SDMZ users. The
SDMZ network infrastructure involves users (i.e., researchers
who are non-administrative users) who should identify the
necessary network resources and security services required
for enforcing the data-specific policies of their projects.
These policy rules are manually inserted (and often statically
configured) into routers and monitoring devices.

2.1.3 Conflict-free Policy Enforcement: Furthermore, the
policies must provide necessary project-level isolation while
enforcing the policies on sites where: (i) each project spans
across multiple sites, and (ii) multiple projects share the
same host DTN and network infrastructure. Conflicting
access control policies ‘or’ QoS policies (i.e., to share the
network resources) involving multi-project traffic from
a shared DTN should be effectively de-conflicted before
insertion onto enforcement devices. While traditional
enforcement mechanisms require dedicated DTNs and
network infrastructure elements per project, this restriction
is inefficient and impedes the ability to dynamically manage
SDMZ networks. Consider for example following two policies
from two different projects Project 1 and 2 as shown below:
Project 1: HostDTN[1-10]: GridFTP — ALLOW — Internet.
Project 2: HostDTN[3-7]: GridFTP — DENY — Internet.

From above two policies specified in Sitel, the first policy
from Project 1 allows FTP application data to be sent to the
Internet from hosts 1 - 10, while the same type of traffic from
a subset of hosts are DENIED as part of Project 2.

2.1.4 Contextual Awareness: Consider the case of SDMZ
data-transfer applications [10] (e.g., GridFTP, bbftp, bbcp),
which are multi-point, and multi-stream applications where
a single dataflow can be transferred in parallel as multiple
data streams on to multiple data nodes. Consolidating or cor-
relating the distributed, paralle]l TCP streams (i.e., either clear
or opaque traffic) is difficult as the TCP port numbers used in
the data transfer is dynamically negotiated using GridFTP’s

secure control messages. As shown in Figure 3, various
attacks such as network- or application-level DDoS, data
exfiltration and brute-force attacks could go undetected with
a clustered IDS solution. To dynamically allow experimental
data from various sites to be properly filtered and steered
according to security conditions, each site which originates
the data should provide additional contextual information.
When tier0/1 DoE sites with advanced security services detect
security vulnerabilities they should share these details with
the site that originates the data for collaborative protection.

3 The CoordiNetZ System Framework

We introduce a coordinated and context-aware security frame-
work (CoordiNetZ) that is designed to address the SDMZ
requirements for enforcing security to dataflows in multi-
tenant, multi-project, and multi-administrative environments.
The key elements of the CoordiNetZ system include:

1) Tree-based Infrastructure Abstraction Engine: employs
abstraction-mappings, which automatically generate isolated
tree-based abstractions (i.e., required to specify policies) of
the infrastructure that is specific to each administrator’s or
user’s role and scope of control (§4.1).

2) Graph-based policy specification: allows specification of
graph-based policies with simple drag-and-drop syntax of
nodes from abstraction trees supplied to each administrator

(§4.2).

3) Conflict Detection & Resolution: facilitates composition
technique for conflict detection and resolution among
policies that are produced by different project and site
administrators (§4.3).

4) Inter-Site & Intra-Site Context-Aware Tagging: associates
policies with context-aware tagging?, which is required for
dynamically filtering dataflows on the basis of associated
security conditions. We develop technique to allocate tags
to policies associated with each project based on the graph
edge coloring approach while considering the limited tag size
supported in IPv6 with 20 bits Flow Label packet header (§5).

3.1 System Components

Figure 4 illustrates the major components of CoordiNetZ
and their integration points within the SDMZ. Its purpose
is to enable users among a broad range of roles (e.g., project
scientists, site administrators, project data administrators) to
express their policies using a tree-based abstraction, and then
enforce these policies on large data science projects that are
hosted across independently managed SDMZ institutions.

CoordiNetZ integrates following enhancements to SDMZ:

2Necessary context required for enforcing security to dataflows is provided by
host DTNs and other protection mechanisms (e.g., IDS) deployed in the SDMZ.
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1) CNZ Coordinator: CNZ Coordinator acts as the centralized
manager for specifying cross-site project policies from
multiple users, both through policy files and a graph-based
user interface. It implements the following key capabilities:
(a) intent-based framework, (b) tag-based policy enforcement,
(c) manages tag space allocation mechanism for assigning the
range of tags across projects, and (d) builds abstraction trees
based on stats from the CNZ Controller. It uses Openstack
Horizon UI [35] for building graph-based policy specification.
The abstraction engine of CNZ Coordinator built on Openstack
Congress engine [7], with datalog rule generator module
developed to generate infrastructure abstraction trees.

2) CNZ Controller: The CNZ Controller acts as a mediator
between the DTNs and the CNZ Coordinator. It analyzes each
host’s DTN records for malicious data flows and consolidates
data-flow records and DTN state information required for
building the abstraction trees at the CNZ Coordinator. It trans-
lates site-specific policies provided by the CNzZ Coordinator
into host- and network-specific rules. Our custom built
CNZ Controller handles the data records from host DTNs
and REST APIs are used for exchanging and triggering the
policies between the CNZ Controller and SDN controllers.

3) SciMon: The SciMon module builds contextual information
at host-process level to tag the flows originating from host
DTNs and enforces host and process-specific data policies in
DTNs. It tracks file’s accesses with each process instantiation
and imposes file access and network data-flow restrictions
according to the rules in process policy table. It continuously
monitors the host processes, file system accesses, and
network IO events using open-source utilities, such as
psutils [37] and osquery [34]. As shown in Figure 5, the
process flow table consists of policy flow rules that dictate
the user’s, application’s, or process’ ability to access the data
and send it over the network.

4) SciFlow: The SciFlow module, runs as a daemon to contin-
uously monitor for flows generated from a specific interface
inside the host and triggers SciMon to gather user and process
attributes, file I/O, and application binary information

User: <USER Name>

Application Binary: <Application Binary Name>

Process: <Process name or PID>

Time: <Temporal details>

From location: <city/latitude/longitude/Country of Origin>

Action: <Block Operation / Notify Admin>

Network Source: <Black Listed Countries / IPs / domain-names>
Network destination: <Black Listed Countries / IPs / domain-names>

Figure 5: Sample process flow table entry.

associated with this network flow. Flow records gathered
by SciMon and SciFlow are sent to the CNZ Controller for
further processing (see Figure 6). The fields that are extracted
from the host and network flows are customized per CNZ
Controller’s policies.
# [SciFlow]: srclP, srcPort, dstlP, dstPort, start, end, duration, protocol,
state, srcZeropaks, srcDatapaks, srcAvgpak, srcBytecnt, srcPakent,
dstZeropaks, dstDatapaks, vian, dstAvgpak, dstBytecnt, dstPakent,
updateTime, updateSrcBytecnt, pdateSrcPakent, srcPrefix, dstPrefix,
updateDstBytecnt, updateDstPakcnt, icmpPakent, srcDomain,
dstDomain, srcCountry, srcCity, dstCountry, dstCity, srcLatitude,
userlD, srcLongitude, dstLatitude, dstLongitude, IPScore

#[SciMon]: username, hostname, processID, appname, execpath,
execArguments, execCredential, openFileList, integrity, pProcessID,
pAppname, pExecPath, sensorlD, sensorVer

Figure 6: DTN flow record field (Flow Record = Timestamp
+ SciFlow Record + SciMon Record).

5) Stateless Microservices: Our security-based microser-
vices are based on the DPDK platform [17]. We implement
each security functional capability as a light-weight stateless
microservice with their states externally stored to shared
memory [27]. The micro-services based functions that we
implemented include tag-based filtering, rate limiting, spoof
protection, connection tracking based on IP tuples and tags.

3.2 Threat Model

We adopt a simple threat model which assumes that: (i) a sub-
set of SDMZ users and administrators who program the SDMZ
ecosystem could be malicious resulting in embedding rogue
policies within a project, (ii) the applications inside the host
DTN such as GridFTP and other data transfer applications
could be compromised. We attempt to address issues that arise



from flaws in the implementation of traditional SDMZ policies
as well as vulnerabilities introduced by malicious users.

CoordiNetZ proposes to use a conservative approach by
which administrators can program dataflow policies from
specific users and for specific set of host DTNs such that their
capabilities are given higher precedence compared to secu-
rity and privacy policies of others. Though the precedence
is completely programmable, it solely depends on adminis-
trator’s ability to correctly specify it, which could at times
mask the conflicts. Hence, precedence operator need to be used
diligently by administrators for auto-resolving the conflicts
that are detected by CoordiNetZ, which could otherwise be
safely resolved by administrators.

Our threat model broadly considers various attacks such
as data exfiltration, spoofing attacks, and DDoS. CoordiNetZ
protects the SDMZ network from such attacks at switch (i.e.,
at the immediate first-hop network node) with the help of
tags inserted by the SciMon application and context gathered
from within the host and network. These security use cases
are described in more detail in Section 6.

4 Dataflow-based Policy Framework

CoordiNetZ, provides following key capabilities for address-
ing the security policy requirements of SDMZ networks:
(i) effectively isolates the policies specified across different
administrative-domains, across sites and projects, using a
tree-based abstractions, (ii) graph-based policy specification
mechanism that captures multi-dimensional policies (e.g.,
temporal dynamics, security states, spatial attributes), and
(iii) provides efficient policy-conflict detection and resolution
mechanisms across the shared network infrastructure.

4.1 Infrastructure Abstractions

In this section, we present an approach called abstraction
mapping that allows a global site administrator to delegate
policy responsibilities of SDMZ infrastructure to SDMZ
network administrators and project users. Abstraction
mappings allow users and administrators to visualize an
isolated view of the infrastructure (i.e., as infrastructure
abstraction trees), over which the user may specify policies.
Figure 7 illustrates examples of infrastructure abstractions
exposed to administrators/users and abstraction-mappings
specific to each abstraction tree is also shown.
Administrators provide abstraction-mappings as input
to the CNZ Coordinator for facilitating the construction of
abstraction trees (see Figure 7). Abstraction mappings enable
CoordiNetZ to stitch together different types of abstractions
within the same tree. For example, in Figure 7b the security
states and list of hosts of Sitel are combined. Here, each
level of infrastructure abstraction-type is separated using
the colon operator (*:’), while the dot operator (°’) denotes

the properties of each level of abstraction-type. Each dot-
separated abstraction narrows the list of host DTNs captured
within the abstraction tree. List of few system-defined
abstraction-type-mapping parameters includes locations{},
buildings{}, networksf{}, sites{}, security-states{}, which cap-
tures the spatio-temporal, security and network properties
and their relation with the hosts, which allows the policies to
be naturally expressed using intuitive heterogeneous types
of abstraction trees. Figure 7d shows few more infrastructure
abstractions generally used in SDMZ network infrastructures
for configuring the policies.

4.2 Policy Specification

CoordiNetZ provides a graphical drag-and-drop user inter-
face for specifying the graph-based dynamic dataflow-based
policy intents, while the existing techniques supports only
static policies that are flow-based [2, 19, 36]. Policy graphs
constitutes of nodes from various infrastructure abstraction
trees that are assigned to each administrator (see Figure 8a).
An equivalent policy specification syntax for configuring
large scale policies bypassing the graphical user interface
(shown in Figure 8b) is also provided. CoordiNetZ’s policy
specification framework supports three types of static and dy-
namic policies to accommodate the needs of SDMZ network:
(i) temporal-and-spatial policies, (ii) data-specific policies, and
(iii) network-security policies.

The policy specification syntax used for representing
graph-based policies is shown in Figure 8. In this ACL-based
policy specification syntax, the permissions to allow or
deny communication between source and target nodes are
specified using => (i.e., for ALLOW), ! => (i.e., for DENY),
and 'X=>(i.e., for QUARANTINE) operators. Sequential (>>)
or parallel (||) operators specify the sequence of network
functions through which the traffic from specific source node
should traverse. The — operator used in the parent-path
key-value pair is used to define the path of the node (i.e., used
in policy specification) from its root node, which is required to
capture the relation among the nodes of same abstraction tree.
Dataflow-based Policies: The current SDMZ infrastructure
does not provide any capabilities for enforcing cross-site
dataflow policies (discussed in § 2.1). While prior work
discussed dataflow tracking within a host and across
hosts [23, 28, 32, 48], these frameworks are heavyweight and
do not address the performance requirements of the SDMZ.
Hence, we implement a lightweight forensic tracker and use
the CNZ Coordinator to support two key data-tracking capabil-
ities: (i) ability to capture all read/write operations carried out
on the data within a host (shown in Figure 7a) and (ii) ability
to effectively capture the dataflow across hosts and associated
data transformation restrictions (shown in Figure 9).
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Spec{Site-Admin}: src-node{BLDG 1}.parent-path{Hosts_Site1}.traffic-
type{*} >> FW >> WAN-Accelerator => target-node{lnternet}.parent-
path{networks}

Spec{Site-Admin}: src-node{Net1}.parent-path{Hosts_Site 1-
>BLDG1}.traffic-type{*}.time{Time3}.state{compromised} >> DP| =>
target-node{Neté}.parent-path{Hosts_Site 1->BLDG2}

Spec{Project-Admin}: src-node{Site 1}.parent-path{Hosts_Project1}.
traffic-type{GridFTP}.data{D1/*} |=> target-node{Site2}.parent-
path{Hosts_Project1}

(b) Equivalent ACL policy specification syntax (P1 - P3).
Figure 8: Graph-based policy specification & syntax.

We define the following properties and capabilities to track
the data across SDMZ sites: (i) unique data identifier across
sites within a project and (ii) mechanism to capture the rela-
tion between “original” and “transformed” data. The unique
data identifier is required to identify multi-site dataflows and
capture their transformation in the future. This also allows
SDMZ project users to effectively query the dataflow and data
transformation details over a temporal window. The relation
between the original and the transformed data is captured
at each of the SDMZ project hosts and shared with the CNz
Coordinator for building data flow graphs. Dataflow tracking
helps to restrict dataflow violations using a high-level policy
specification language (as shown in Figure 9).

CoordiNetZ’s abstraction trees and graph-based specifica-
tion allows the administrators to specify the policies explic-
itly using the abstraction trees exposed to each of the IoT
users or administrators. This approach of isolating and as-
signing explicit infrastructure abstractions to each admin,
allows CoordiNetZ to prevent admins from specifying poli-
cies on the infrastructure they do not own i.e., preventing

rogue policies from being specified. For detecting rogue poli-
cies, the policy composition engine extracts the source and
target nodes from the specified policies and verifies if both
the nodes belongs to the policy abstraction trees owned by that
administrator. Further, these policies are composed together
for detecting other conflicts and violations (as discussed in
§4.3.1).

4.3 Policy Composition & Deconfliction

In multi-site environments, where hosts and network entities
are shared across multiple projects, conflicts are bound to
arise when policies are being specified independently by each
SDMZ user. Conflicts might even arise among policies speci-
fied within the same project or across projects, when multiple
users are involved in policy specification. In SDMZs, the need
for project- and site-specific policies further increase the
potential for conflict. Run-time policy composition must also
address the dynamic needs of ephemeral projects, resulting
in the need to perform periodic policy recomposition. Hence,
CoordiNetZ facilitates automatic policy conflict detection
and deconfliction in three steps: (i) automated detection of
conflicts among policies (i.e., specified by various administra-
tors) within a project, (ii) automatic conflict resolution, and
(iii) decomposition of policies into logical groups for efficient
tag assignment to enable policy enforcement among multiple
projects in shared infrastructure.

4.3.1 Composition Algorithm: The composition engine
accepts a list of policies Vp; and an empty bi-partite graph
G as input. Each policy in the list L is serially composed,
producing a final consolidated graph G. For each policy p; to
be composed with G, the composition engine first checks for
existence of any source nodes S;(G) in G that has any relation
with policy’s source node s(p;) If s(p;) overlaps with any
source node in S;(G), then the composition engine evaluates
the edges of source node E(S;(G)) of G for matching policy
edge conditions by, (s,t). If any of the edges of S;(G) has an
edge match condition with p; (i.e., an overlap or subset or
exact match relation), then #(p;) is checked for a target node
match associated with S;(G).



Simplified Data Policy Syntax:
site{Site }.data{D1} -> site{Site,}
site{Site }.data{D1} -> site{Sites}
site{*}.data{D1/*} I-> site{Sites}

/* Default drop enforced on rest

of traffic automatically */

Figure 9: Project-specific graph- and syntax-based
policy specification for data-flow policies.

Depending on the overlap relation among source, edge, and
the target nodes, the policy is either declared a conflict, a dupli-
cate or non-conflicting. Duplicate policies are not added to the
graph, but increment a counter and an entry to maintain the
duplicate-policy association. If the composition engine finds
an overlap relation, it labels the policy as a conflict. It then
checks for matching precedence rules for the policy p; and
policies associated with S;(G). If precedence operation exists
for that policy, it proceeds to conflict resolution, while un-
resolved policies are declared as conflicts. If no overlaps exist,
the policy is non-conflicting, and hence new nodes and edges
are added to the composed graph. The overall complexity of
the composition Algorithm 1 involves the following factors:
(a) the number of policies (L); () number of source nodes (Sy)
in the composed policy graph; (c) the number of source nodes
that have overlap relations resulting in edge comparisons
(Le); and (d) the number of target nodes that are compared
for overlap relations (L;). The overall worst-case complexity
of the algorithm is O(L * Sy * L, * L;), which is quadratic. The
overall composition complexity T, is calculated as follows:

SJi Lej

T. =ZLl( Z O(m+n)+( Z Ke+O(q+r)

i=1\j=S;eG k=(S1.5;)eE

L,
+( Z O(u+v))))
I=(Si,5j)EE

We propose incremental policy composition mechanism
to accommodate the dynamic changes to the SDMZ network
infrastructure and perform policy composition in sub
second latency and reduce the complexity of our composition
algorithm through optimizations (discussed in §4.3.3 & §4.3.4).

1)

4.3.2  Precedence & Decomposition : Automated conflict
resolution employs precedence operators to resolve conflicts
among competing policies. CoordiNetZ uses three separate
forms of policy precedence evaluation. Administrator-level
precedence enables precedence evaluation based on the scope
of authority for policies authored by administrators. For exam-
ple, in SDMZs the site administrators are granted precedence
over project administrators. Action-level precedence allows
one action to take precedence over another. For example,
the Drop action may supersede Allow or Quarantine or

Algorithm 1: Graph-based Policy Composition

1 L « list of policies for composition;

2 s(p) < source node of policy p;

3 t(p) «target node of policy p;

4 a(p) < action of policy p;

5 bp(s,t)«edge properties for the policy p between nodes (s, t);
6 G« Composed k-partite graph;

7 S(G) « source node of the GraphG;

E(S(G)) «edges associated with the node source S on the Graph G;
T(E) < target associated with edge;

10 A(E) < action on the Edge;

11 forall Policy p € L do

©

©

12 foreach source node S(G) € G do

13 if s(pi) overlaps Sj(G) then

14 foreach edge E(G)€ 5j(G) do

15 if by, (s, t) overlaps with Ex.(S;(G)) &a(p;) #

A(Eg) then

16 if t(p;) overlaps T(Ey) then

17 if no or equal precedences then

18 Alert: Raise Policy Conflict;

19 else
20 Auto Resolution: Approach §4.3;
21 decompose (p,G);

22 else

23 Create new #(p;) node in G;

24 elseif by, (s,t) overlaps Ex.(S;(G))&a(p;) ==

A(Ey) then

25 if t(p;) CT(Ey) then

26 Discard Duplicate Policy;

27 Add track entry;

28 pi-counter —p;.{counter++};
29 else if #(p;)¢ T(G) then

30 Create new edge for the p; in G;

31 else

32 Create new edge for the p; in G;

33 else

34 Create s(p;) & ¢(p;) hash entries in G;

35 Create new edge by, (s, ) in G;

redirect. That is, Drop > Allow > Quarantine > Redirect.
Custom precedence enables policy attributes, such as user or
experiment or projects, to be associated with precedence.
For example, policies specific to Experiment X of Project1
may be granted precedence over policies from Experiment
Y of Project2, especially with shared network resources.
When two policies (P1 and P2) conflict (e.g., policies in
Figure 8a), the nodes and edges of the policies are decomposed
into set of subset nodes that requires the least number of edges
to represent conflict-free policies. Based on the precedence,
the overlapping nodes that result in conflict are removed.
For P1>P2, the edge specific to the policy with highest
precedence (P1) is retained and the overlapping portion of
edge property specific to other policy (P2) is removed and
vice versa. In this case, the total number of edges required
to represent the conflict-free composed graph is N + 1, where
N is approximately total number of different edge properties



thatresult in conflicts. From the composed graph all the nodes
and edges that are resolved for conflicts specific to a policy
are assigned the same tag. Here, the number of tags required
is approximately equal to the number of conflict-free policies.

4.3.3 Incremental Policy Composition. Policy updates are
necessary whenever network conditions and security states
change, site topologies are modified, or when projects
are added, migrated, or completed (removed). When such
changes occur, the policy composition and conflict resolution
must be recomputed. In general, policy updates could result
in tens to hundreds of rule modifications. Incremental com-
position helps reduce the overall run-time of composition, by
avoiding the recomposition of the whole policy state, which
may consume several seconds to minutes (see §7(2)). Rather,
incremental composition recomposes only the updated set
of policies with the whole set of composed policies.

Updating a policy from the composition graph involves
first deleting the policy from the graph, and then inserting
amodified version. Deleting a policy requires one to remove
the edges that belong to the policy from graph. However,
the composition procedure might have removed portions of
other policies that had a higher precedence during conflict
resolution. Hence, these lost portions must be returned.

Two items are recorded during composition that accelerate
incremental composition time. First, for each original policy,
areference pointer to each edge is maintained in the graph
that belongs to the policy. If a policy is split into multiple
sub-policies during conflict resolution, the edges associated
with these child policies are stored. Second, during a conflict,
if a policy that has a higher precedence causes the policy to
be split into multiple sub-policies, then the policy number
of the lower-precedence policy is recorded in a data structure
associated with the higher-precedence policy. During
deletion, this data structure enables CoordiNetZ to restore
edges from the deleted policy when it finds that other policies
also depend on these edges. This internal bookkeeping
enables edge deletion in constant time, resulting in orders
of magnitude faster overall composition.

From the aforementioned equation (1) in §4.3, the major
time complexity of the algorithm lies with the iteration
of policies O(L) over the list of all source nodes Sy in the
composed bi-partite graph G and comparing the policy’s
source node s(p) having m host entities with the graph’s
source node S(G) having n entities. The overall complexity
calculation for finding overlaps among the source nodes stage
is therefore O(L S * (m * n)). Consider the policy’s source
node s(p) has m host entities (i.e., hy, ... hy,), and the graph’s
source node S(G) has n host entities (i.e., hy, ... hy,). The naive
comparison of two subsets of size m and n will result in
O(m = n) complexity. Similarly, for each property defined
on the edge, the composition engine incurs a computation

complexity of O(q + r), where q and r are the number of
entities associated with edge properties of composed policy
graph G and the edge property of the policy p;. For the list
L; overlapping edges, the composition engine checks for the
overlap in the target node of policy p; that has u host entities
with the edge of the composed policy graph G with v host
entities, incurring computation complexity O(u+v).

4.3.4  Policy Composition Optimization. To reduce the com-
plexity from O(msn) to O(m+n), we employ a hashing algo-
rithm: the m host entries of s(p) are hashed as key-value pairs.
Then the host entities of S(G) are looked up in the hash for the
existence of the host n. As the hash lookup complexity is O(1),
the total subset calculation complexity results in O(m+n) com-
plexity. Now, the baseline complexity will be reduced to: O(Lx*
Sj*(m+n)). To further reduce this complexity, we Caching the
comparison calculation outcome askey-value pairs in the hash
further reduces complexity: the s(p):S(G) as key and the value
as the first comparison result. Hence, the next node compari-
son can be extracted from the hash entry with an O(1) lookup
cost. This reduces the overall baseline complexity to O(L*Sj).

Similarly, the edge properties and target nodes of p; and
Sj(G) are added on top of the baseline composition cost. Any
complexity beyond the baseline comparison will be present
only when there exists an overlap in the edges properties
or target nodes. Therefore, the source-node overlaps trigger
checks for edge-property overlaps and these occurrences
then necessitate target node comparisons resulting in a worst
case complexity of O(L#Sj * L * L;). Similarly, by hashing
the comparison results of edge nodes and the target nodes,
we can eventually reduce the complexity to O(L#Sj). A proof
of this complexity bound is outside the scope of this paper
but will be provided in an expanded technical report.

5 Context-Aware Tagging

The SDMZ network lacks efficient techniques to differentiate
traffic based on: (i) static project-specific attributes (e.g., project
id, project user, experiment id) that identify the source of the
science data traffic, (ii) dynamic network security attributes,
(e.g., malicious, compromised, DDoS, or exfiltration host)
that describe dynamic security state of the network, and (iii)
site-specific attributes that enable isolation and conflict-free
policy enforcement for projects spanning multiple sites with
each site hosting multiple projects. We present a tag-based
policy enforcement mechanism for fine-grained traffic
filtering and inter-site sharing of security services.

1) Intra-Site Tag Assignment: Fine-grained traffic filtering
is provided to SDMZ network using tag-based policy enforce-
ment mechanism supported using IPv6 flow label (20 bits).
IPv6 is a natural choice for flow tagging as it affords greater
tag space and its use is strongly urged by the SDMZ commu-
nity [43]. The tag assignment to policies happens within each



Algorithm 2: Tag allocation across sites (Edge Coloring).

-

Cr « List of T colors with their respective tag space sizes;

M)

SN « Total number of sites involved in policy management;

w

Ps; {} « List of projects in each site;

4 Tp,{} < Tag size requirement of each project;

5 Cs; {} « List of unique colors assigned to each site;

Csa; {} « List of colors associated with S;’s adjacent site Ps; ;

foreach site S; e Sy do

6
7 Cremp{} < List of colors with tag size > T, + Tslack;
8
9 foreach adjacent sites S4; €S; do

10 foreach project P; € Ps; do

1 if P;.{color) == NULL then

12 CTemp{}<—CT{}>Tpi + Tslack;

13 Pi.{color}Hmin(CTemp&&CTempeECsAi);
14 Si < Sa; Adjacent site of S; with project tag space unassigned.;

project at the site-level by the CNZ Controller. The host DTN
assigns tags to each flow associated with policies for logically
grouping the flows or forwarding them in accordance with
dynamic network security conditions (§5.1).

2) Inter-Site Tag Space Allocation: While the tag assignment
decision happens locally within each site, we use the central-
ized CNZ Coordinator for allocating the tag space (i.e., range
of tags) for each project. Our inter-site tag space allocation
mechanism, assigns the tag space to each project registered
with the CNZ Coordinator(§5.2).

5.1 Intra-Site Tag Assignment

To extend fine-grained traffic filtering capabilities, beyond
contemporary IP-based mechanisms, we develop an efficient
context-aware policy-based tagging mechanism, called cTags,
that enables:

e Logically group traffic that spans across subnets, hosts or
geographic locations for policy enforcement.

e Dynamically steer, revoke, or forwardtraffic across different
Network Function Chains (NFC) according to dynamic
network and security conditions.

Although the tag assignment is carried out by the CNZ
Controller of any site, the actual tag is embedded into
the flow by host DTNs for traffic generated from the host
applications depending on the configured policies. The
conflict-free policies supplied by the CNZ Coordinator are
reconciled to site-specific policies and further translated
to device-specific rules by the CNZ Controller and SDN
controller before being placed across host DTNs and SDN
switches. The set of rules supplied to each host, which we
call as policy-to-tag mappings captures following details:

e tagID{T1} => policyID{P1}:appID{A1}:
userID{U1}:expID{E1}

e policyID{P1} => policySpec{...}

The mappings carry necessary details specific to each
policy and the associated entities for enforcement. The
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Total Projects: 8

K Total Projects: 12
Maximum Colors Used: 6

Maximum Colors Used: 7

Figure 10: Tag-space allocation with edge color assign-
ment. Project IDs and colors are used to annotate each
edge.

SciMon module can dynamically change the flow tagID,
even in the middle of flows depending on dynamic network
conditions, by updating the policy-to-tag mapping entry.
Each SDMZ site needs to optimize the number of rules
required to enforce the policies by considering the availability
of high-bandwidth switches and their switch TCAM space.
Tagging facilitates rule space optimization by: (i) allowing
large number of hosts to be grouped into a common logical
entity (i.e., beyond IP-tuple-based filtering) and (i) efficiently
assigning contiguous tags such that policies having same
action attributes may be grouped together using bit masking.
Each policy is simply associated with a unique tag after
resolving the conflicts among the policies. From the composed
graph all the nodes and edges that are associated with a policy
is assigned the same tag. Here, the number of tags required
is approximately equals the number of conflict-free policies.
Further the optimization proposed to tag space utilization in
collaborative SDMZ network is discussed in next Section 5.2.

5.2 Inter-Site Tag Allocation

In the SDMZ infrastructure, security and data analysis
services provided by higher-tier sites (i.e., tier-0 or tier-1 DoE
sites) are availed by lower-tier sites [6, 24]). For effectively
sharing such services across sites, tags assigned by one site
must be honored by other sites handling the same project.

To avoid conflicts in tag space utilization we propose a uni-
fied tag space allocation mechanism that allocates necessary
tag space to each project (with additional slack tag space for
future policies). Though, the tag space allocation is carried
out globally at the CNZ Coordinator, the tag assignment to
each policy is carried out locally within the site with the
help of CNz Controller. As a design choice, we use IPv6 flow
label bits as tagID. Since 20 bits of flow label header in IPv6
cannot effectively accommodate the tagging requirement of
thousands of projects handled across hundreds of SDMZ sites
we need a centralized tag-allocation mechanism to effectively
reuse tag bits across projects spanning multiple sites.

We assign a specific color to each project within a site
and reuse the same color among other projects across other
sites registered with CNZ Coordinator with following two



design considerations: (i) the tag space should never overlap
with the tag space assigned to its immediate adjacent sites
with which the current site has project association, and (i)
tag size assigned to each project depends on the number of
policies enforced by the project. The key objective of the
tag-space allocation mechanism described in Algorithm 2
is to maximize the efficient reuse of tag space (i.e., colors)
among cross-site projects, while avoiding overlaps.

Algorithm 2 details the tag-space allocation mechanism
used by the CNZ Coordinator to allocate a range of tags to
each of its registered projects. The CNZ Coordinator traverses
through the list of all Sy sites associated with it in a breadth-
first-search manner. For any chosen site S;, its adjacent sites
are compared before allocating colors. We observe that for
each site S; and its adjacent sites the complete list of available
colors can be used in the assignment procedure.

The colors are assigned between S; and S4,. Each of the
adjacent sites S4, of S; (depending on the the list of projects
belonging to 5S4, that are associated with S;), are assigned one
color per project (depending on their policy size). Colors are
assigned to each projectin S4,, that is associated with S;, such
that: (i) it satisfies the project’s tag space requirement, Sy,
(ii) the color with the least size is considered for assignment
and (iii) no other projects in S4, have the same color already
assigned to it. Similar approach is taken for all projects that
are associated with site S; having adjacent node S4,. This
procedure is carried out for all the adjacent sites of S;. When
the list of adjacent sites of S; is exhausted, the CNZ Coordinator
picks the next site from Sy, as the new §;, carrying out the
aforementioned procedure until all sites in Sy are iterated
atleast once. An example illustration of our algorithmic
outcome is shown in Figure 10. The algorithm is quadratic
in the number of sites in the worse-case for a fully connected
graph (i.e., all sites share all projects). As the number of sites
does not change frequently, the overall complexity grows
linearly with the number of projects. To further optimize the
tag space utilization and efficiently reuse the tag space we
propose technique, which is discussed in Section 5.3.

5.3 Optimization of Tag-space Reuse

Depending on the tag-space allocation mechanism discussed
above in Section 5.2, each project is assigned tag space, while
taking into consideration the tag space requirement of the
project plus the slack space (i.e., range of tags that are left
for future use). This allows each project to expand its policies
either due to the dynamic network conditions or from new
policy additions by administrators. If the slack space is
completely consumed by project P;, then the new range of
tag space is assigned using one of the following methods:
(i) considering the non-overlapping tag space assigned to
other projects inside site S; and its adjacent sites S4,, a new
color is added to the project P;, and (ii) if there are no flows
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Figure 11: Security use cases with context-awareness.

(b) Collaborative protection.

for the project for which the active rules exist, then project
P; is assigned a new color, recalculating tag space allocation
between S; and S4,. The approach described above in (ii) is
used only when there exists spare colors unassigned between
the S; and its adjacent sites Sa, .

However, during tag space allocation, when a project P;
from site S; requires less tag space than what is available, to
optimize the tag space utilization we temporarily decompose
a color into its sub-colors. That is, a color is decomposed into
two pieces: the size equal to the tag space requirement of the
P; + its slack size. The decomposed sub-color is allowed to be
reused only among its adjacent sites. The opposite scenario
(i.e., the tag space requirement of a project is more than what
is available with color pool) does not arise in our mechanism
because our heuristic of pre-computing the possible tag
space sizes with color. That is, we choose the color size by
considering the top S highest policy sizes for which colors
are associated. Hence, there exists no scenario in which a
project requires a tag space or color for which a suitable color
or tag space does not exist.

6 Security Use Cases

To illustrate the ability of CoordiNetZ to support a range of
security policies involving data with varying sensitivities,
we present the following use cases: (i) preventing DTN hosts
from tag spoofing flows in order to bypass SDN-enforced flow
controls, (ii) preventing malicious exfiltration of sensitive
data, (iii) demonstrating improved detection fidelity through
enhanced contextual-awareness provided by CoordiNetZ,
and (iv) the use of lightweight security-based microservices.

1) Spoof Protection. While science projects inside an SDMZ
network share host DTNs, each DTN may require different
access controls and resource allocation rules, per project. To
prevent a host DTN from employing tag spoofing to bypass
these rules, CoordiNetZ integrates spoofing protection
module within the SDN switch (using OVS [31]). It provides
a mapping between tags and hosts managed by the CNz
Controller. Spoof protection module will filter any flow
that does not match the known mapping of tags for that
host. Figure 12 illustrates an edge switch maintaining the
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Figure 12: Spoof protection with Port-ID & Tag
mappings.

list of portID to tagID mappings necessary for spoofed flow
filtering. SciMon also prevents spoofing that may arise from
one project spoofing traffic from another. It does this by
monitoring process and file system accesses, and analyzing
network IO events for flows and their associated tags.

2) Data Exfiltration. To illustrate CoordiNetZ data exfil-
tration prevention, let us consider the following scenario.
An attacker gains access to a DTN, for example, through an
exploit targeting GridFTP (e.g., using CVE-2012-3292 [8]).
Once inside, the attacker then seeks to exfiltrate DTN-hosted
data, which could not be effectively prevented with sim-
ple application-centric access control and authentication
mechanisms. However, SciMon monitors and enforces a DTN-
internal data export policy defined by both project and site
administrators. SciMon policies enforce access restrictions
based (a) usernames, (b) application binaries, (c) ability to ac-
cess sensitive files, (d) ability to send data out of host (protocol
level restrictions such as packet size, protocol etc.), and (e)
situational attributes (such as time, location, geolocation etc.).
Attempts to initiate outbound flows of project data to unautho-
rized sites trigger violations that occurs during the process,
network, and file I/O interactions (see Figure 11a), which
are forwarded to the CNZ Controller for coordinated security
enforcement. The CNZ Controller would configure network-
level devices with a block rule to thwart the data exfiltration.

3) Collaborative Protection. Clustered monitoring (see Sec-
tion 2), prevents the IDS instances from detecting attacks (such
as DDoS and reconnaissance scans) using threshold-based
filters. The use of high-performance data transfer applications
(e.g., GridFTP, ddftp), which rely on encryption and parallel
data streaming, further complicates network-based intrusion
detection. CoordiNetZ addresses this problem by providing
contextual information from the host DTN to BrolIDS, allow-
ing the traffic to be aggregated and categorized for filtering.
In Figure 11b, the host DTN node adds flow-based tags to the
traffic that need to be processed by the same IDS instance, and
adds the necessary rules in the SDN switch to steer the traffic
in accordance to flow-based tags to the respective IDS entity.

4) Protection with Lightweight Microservices. Two
factors that degrade SDMZ elephant flow performance across

sites are: (i) stateful inspection devices such as firewalls and
DPIs [14], and (ii) dynamic flow steering to middleboxes
and associated security-state migration. To address these
challenges, CoordiNetZ employs stateless microservices
that decompose full-fledged firewall capabilities built on
top of existing stateless NF platform [27, 49]. We built a few
light-weight functionally customized security microservices
(e.g., tag-based filtering, spoofing protection, connection
tracking, exfiltration protection, rate limiting) that can be
introduced along the data path via network function chains
to provide on-demand security capabilities.

7 System Evaluation

The CoordiNetZ evaluation platform was composed of
Dell R720 servers with 72GB RAM, 24 cores (2.67GHz) and
Ubuntu 4.4.0-97-generic kernel used as DTNs, IDS hosts
and CoordiNetZ controller (i.e., hosting the CNZ Controller
and CNZ Coordinator). A quad-core Intel NUC server as the
SDN controller. Dell R710 servers with 48GB RAM, 16 cores
(2.6GHz) Ubuntu 4.4.0-97-generic kernel integrated with
DPDK-based OVS [30] that acts as switch and node that hosts
security microservices. Host DTNs were interfaced inline
with SDN switches via multiple Mellanox ConnectX-4 Lx
40GbE MT27500 Family 40 Gbps NICs. The server-based
DPDK-enabled OVS switches [30] implemented tag-based
forwarding and lightweight security services (e.g., rate
limiting, spoofing protection, and connection tracking). The
SDN controller and CNZ Controller were interfaced with host
DTNs, OVS, and IDS service, via the management network
interface. The CNZ Coordinator and controller communicated
via a separate management network.

Policy and Infrastructure Datasets: We evaluate our
prototype using following three different datasets:

1) PS-1: Policy sets from two different SDMZ network
infrastructures [33, 45] with ~150 and ~400 SDMZ policies
(i.e., 5325 and 7987 enforceable rules respectively) to
benchmark the framework. Infrastructure abstraction trees
required for these two SDMZ networks were constructed to
drive the PS-1 policy configuration.

2) PS-2: Derived from PS-1, this is a large synthetic policy
set of 20k policies for coordinator-scale experimentation,
emulating 40 different SDMZ networks. Infrastructure
abstraction trees were constructed using a scaled up PS-1
configuration. Source and destination nodes for policies were
chosen randomly by sampling technique, and dynamic states
and conditions were added as edge properties.

3) DS-1: This dataset emulates collaborative SDMZ net-
work based on the “High Energy Physics - Theory collaboration
network” dataset [15], which employs ~9.8k nodes, with ~25k
edges.
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Policy Composition: We evaluated the performance of the
policy composition engine using the policy set PS-2. Figure
13aillustrates the latency incurred by the composition engine
during pre-deployment. From the list of 20k policies, 1k,...20k
policy sets were randomly selected. Their average composi-
tion times were computed over 10 rounds, which took ~49
sec to compose 20K policies. To enhance composition per-
formance, we employed a simple hashing technique to cache
policies and policy attributes (see §4.3). Experiments were run
to assess the impact of caching when an increasing number
of abstraction trees are produced. We tested the composition
latency for 20k policies built using 10, 30, 50, 70 and 100 ab-
straction trees (shown in Figure 13b). We find that increasing
the number of abstraction trees count produces more pol-
icy source and target nodes, thereby increasing the cost to
create the composition graph. Caching the relations among
the nodes, reduces the composition latency by upto ~2.25x
compared to composition with out caching. Figure 13b illus-
trates that increasing number of abstraction trees gradually
diminishes the benefits of caching due to reduced likelihood
of overlap in source-node, edge, and target-node pairings.

Tagging Efficiency: To evaluate the tag-based policy en-
forcement mechanism from §5.1, we use policy set PS-1 and
PS-2. We examined a policy set PS-1 from 2 SDMZ campus
networks and the tag bit count required to represent these
policies. We compare our approach with traditional tagging
mechanisms (i.e., bit segmentation and Alpaca [20]). Both the
traditional approaches allocate a bit per network attribute.
Consider SDMZ Campus Netl with following policy
attributes: 6 projects (3 bits), 3000 users (12 bits), 890 hosts
(10 bits), 24 application (5 bits), 4 security states (2 bits), 28
services (5 bits), and 19 experiments (5 bits). With naive
attribute-based tagging, the total number of bits required is
42 bits. As we plan to use IPv6 flow-label bits (20 bits), and
considering other dynamic parameters such as data outcomes
and attributes, such approaches can not be directly used.
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Figure 14: Intra-site tagging performance with SDMZ
campus datasets.

Tag Optimization: Alpaca effectively prefixes or masks bits,
reducing the number of tags that are required by each net-
work. Its tags are not dependent on the number of policies, but
rather depend on the number of attributes present in the net-
work [20]. In contrast, our approach relies on the composed
policy graph (i.e., number of policies) and hence requires
fewer bits. Figure 14a shows that for SDMZ Campus Net 1 and
SDMZ Campus Net 2 (i.e., PS-1), our approach requires ~4-
5x fewer bits than bit segmentation and ~3- 4x fewer than
Alpaca and FlowTags. Our approach required around 7-11
bits, while the other approaches needed ~24-42 bits. With syn-
thetic policy set (PS-2), which is built from policy attributes of
PS-1, the tag bits required linearly increased with the number
of attributes that are used in policy specification, while
our approach required only =15 bits. Similarly, FlowTags
requires ~2.2 — 3X more number of tags when compared
to our approach. With the addition of more dynamic policy
attributes the number of tag bits required with Alpaca and
FlowTags will gradually increase. Our approach allows us to
reuse the tag bits: (i) in case of temporal and dynamic security
policies, and (ii) tags used across different sites (see §5.2).

Rule Optimization: Figure 14b compares the efficiency
of our tag-based rule optimization to Alpaca [20] and to
bit segmentation (BS), using policy sets PS-1 and PS-2.
Compared to actual high-level policies (i.e., as specified
for device groups), the set of rules enforced are orders of
magnitudes larger. The policy set PS-1 from two SDMZ
campus networks having ~150 and =400 policies required
approximately =5.3K and ~7.9K rules respectively, and the
20k synthetic policies required ~130k rules. We evaluate the
number of rules required after translating the policies into
enforceable rules per approach.

Alpaca, FlowTags and bit segmentation exhibit rule set
reductions, as these approaches group rules using tag-bit
masking or wild-card matching. They achieve an improve-
ment of ~40 - 47% in the rule space over the original rule set
(for both PS-1 and PS-2). Our policy specification mechanism
allows each policy tag to capture attributes along multiple
dimensions, resulting in higher rule-space optimization. Com-
pared to Alpaca, FlowTags and BS our approach achieved a
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Figure 15: Inter-site tag allocation performance.

~46% — 55% rule-space improvement for SODMZ Campus Net
1 policy set, and =40% - 52% rule-space improvement for
the SDMZ Campus Net 2 policy set. Similarly, for policy set
PS-2 (i.e., 20k policies) our approach achieved ~49% rule-size
improvements over Alpaca.

Tag-Space Allocation: We examined the inter-site tag space
allocation mechanism using DS-1. Using the DS-1 graph, we
randomly choose one node and select all adjacent nodes in a
breadth-first search approximately until a total of 100 nodes
are reached. We then assign an average of up to five projects
per site, then execute our edge-graph-coloring algorithm
and plot the latency incurred with tag-space allocation for
these 100 sites. We repeat the same procedure 10 times, by
randomly choosing a first site each time. We repeat this
procedure by assigning different number of average projects
per site and by increasing the number of sites from 200 to
1000. At times, we randomly add edges between nodes (i.e.,
sites) to control the average number of projects per site to
(5, 10, 15 and 20) in each experimental iteration.

Figure 15a illustrates the average tag-space allocation
latency with increasing number of sites (n). Each time the
number of adjacent sites for each site is maintained propor-
tional to n. For experiments adjacency size is maintained as
n/c, where ¢ = 20. Assigning colors to projects with 1000 sites,
with an average number of projects per site being 5, 10, 15
and 20, requires ~1.9, 8.2, 41.9 and 76.8 seconds, respectively.
We observed that the dominant computation cost was
attributable to optimum color selection for each project
within a site (steps 11-13 of Algorithm 2). Next, we maintain
the number of adjacent sites constantly at five for conducting
the same above experiments (Figure 15b). For 1000 sites with
an average of 20 projects per site, the total tag space allocation
mechanism took less than ~14 seconds to complete the edge-
color assignment. We assert that this edge-color assignment
cost is reasonable given the infrequency of this procedure
and slack tag space assigned to each project (see §5.2).

Flow-Processing Performance: Figure 16 captures the
percentage drop in throughput for various security-based
microservices implemented for SDMZ security use cases.
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Figure 16: Flow processing performance for various
SDMZ-specific security modules built as microservices
(i.e., represented as % drop in their throughput). Note
“0” on y-axis indicates actual line rate.

We compare the performance of our security modules with
maximum possible throughput that is achieved by simply
routing the IPv6 elephant flows generated at line rate (40
Gbps) across two different SDMZ sites. Evaluations are
carried with SDMZ sites that are configured with policy set
PS-1 with security modules deployed at the edge of each
SDMZ site. We evaluate following filtering schemes: (i)
tag-based filtering, (ii) host-based data exfiltration protection,
(iii) rate limiting, (iv) connection tracking (i.e., both IP and
tag-based), and (v) spoof protection.

Simple tag-based filtering outperforms traditional stateless
IPv6 ACL-based (e.g., source and destination IPs, port,
protocol, traffic class) filtering with ~8 — 12% difference in
throughput: a difference of ~4.2 million packets per second
(mpps) at 128-bytes packet size and ~0.04 mpps throughput
difference at the 9000-bytes packet size. Tag-based filtering
achieved 92% of the actual line rate with 128-byte packets and
~99% throughput for packets of size 9000-bytes. The overhead
of performing data-exfiltration protection from host DTN,
using the SciMon module, is minimal as this does not require
complete on-data-path analysis. Hence, the performance of
exfiltration protection is comparable to tag-based filtering.

Asshown in Figure 12 (Section 6), the spoof protection mod-
ule built in OVS involves two tag-based lookups: 1) tagID to
input port mapping for spoof protection, and 2) tagIDto output
port mapping for tag-based forwarding. These two lookups
results in #12% drop in throughput compared to line rates, and
~6.6% drop in throughput with 9000-byte packet sizes. Next,
the flow-based connection tracking, where we store a 6-tuple
(i.e., source and destination IPs and port, transport protocol,
and flags) for tracking and filtering the traffic is compared
with tag-based connection tracking. We find that tag-based
connection tracking exhibits a throughput improvement of 2
- 10% over flow-based connection tracking. Finally, when com-
pared to stateless ACL-based filtering, tag-based connection
tracking shows ~1.5 — 4.0% improvement in throughput.



8 Related Work

Our work is informed by prior research on rule-based and
graph-based policy frameworks. One weakness of existing
SDN-based policy frameworks [2, 19, 21, 26, 36, 42] is that they
lack the ability to directly capture the fine-grained & sensitive
dataflow-based policy intents of network administrators
and enforce these policies in multi-tenant, multi-project
and multi-administrative environments, such as the SDMZ
network. This paper focuses on the development of a unified
policy framework that captures and enforces the conflict-free
dataflow policy intents in multi-site and multi-administrative
domains.

AsSDMZ networks primarily emphasize performance, they
rely on simple router and switch ACLs, coarse-grained filter-
ing and limited offline-DPI using clustered NIDS (e.g., BroIDS)
for threat detection [5, 9, 44]. Recent efforts from the commu-
nity to design firewall and monitoring solutions that could
handle the traffic at line rate [27, 47] or selectively bypass the
SDMZ flows, offer first-steps towards realizing the objectives
of the SDMZ [40]. Our architecture extends these efforts along
two key dimensions: (i) providing improved context for of-
fline security enforcement and (ii) inline microservice-based
security network functions that form specific SDMZ security
services for elephant flows. A preliminary vision of our
proposed framework was presented in a workshop paper [4].

Tagging is a widely used technique to steer network traffic
(e.g., MPLS, VLANS). In the SDN context, tagging has been
applied in prior work such as FlowTags [41], to control flow
traversal using tags generated by middleboxes. FlowTags
are not transferable to the SDMZ network, as it caters to
single-site administrative environments. Secondly, the
temporal optimizations suggested in FlowTags are ill-suited
for long-lived elephant flows, which may last for hours.

Similarly, the recent efforts on tag-based policies allow
networks to optimize the number of flow rules [20, 46]
and exploit commonality between different forwarding
equivalence classes (FEC) [22]. Although such techniques
could be implemented at the SDMZ core, they provide
rule-space optimization at the cost of tag size [22]. Further-
more, such solutions based on group-policy attributes, are
unidimensional, target single-enterprise scenarios, and do
not support joint optimization of tag sizes with rule-space
requirements. CoordiNetZ addresses the multi-dimensional
policy problem (e.g., temporal dynamics, security states,
spatial attributes) by assigning tags to policies, and allowing
them to be aggregated and implemented as multi-site rules.

9 Conclusion

The CoordiNetZ framework facilitates advancements in
cross-domain security enforcement by providing a dataflow-
based policy framework with necessary tools for policy

specification, deconfliction, and tag-based enforcement.
CoordiNetZ helps bridge a critical gap between applied
security research and science experiments on real near-
production infrastructure at scale, maximizing the benefits of
SDN. This is effectively achieved in CoordiNetZ by extracting
the necessary contextual information from the host systems
at the granularity of process specific details pertaining to its
file and network IO and distributing it to the network through
SDN and CNZ Controller entities for enforcing it as tag-based
policies. Our initial step towards building security-based
microservices specific to SDMZ networks, such as spoof-
protection, tag-based filtering, and connection tracking
modules performed within 92-99% of line-rate throughputs.

This initial foray into SDMZ security has simply scratched
the surface of a deep problem domain, with practical and
unexplored subproblems. While this paper has focused on the
SDMZ network, the tools and lessons learned are applicable to
other cross-domain infrastructures [13, 16, 18]. We intend to
open source the CoordiNetZ prototype and dataflow policy
specification framework to stimulate additional research
specifically in enhancing the security of the SDMZ network
and more broadly in cross-domain policy enforcement.
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