
Generalizing Redundancy Elimination
in Checking Sequences

K. Tuncay Tekle1, Hasan Ural2, M. Cihan Yalcin1, and Husnu Yenigun1

1 Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956,
Istanbul, Turkey

2 School of Information Technology and Engineering, University of Ottawa, Ottawa,
Ontario, K1N 6N5, Canada

Abstract. Based on a distinguishing sequence for a Finite State Ma-
chine (FSM), an efficient checking sequence may be produced from the
elements of a set Eα′ of α′–sequences and a set ET of T–sequences,
that both recognize the states, and elements of EC which represents the
transitions in the FSM. An optimization algorithm may then be used to
produce a reduced length checking sequence by connecting the elements
of Eα′ , ET , and EC using transitions taken from an acyclic set E′′. It
is known that only a subset E′

C of EC is sufficient to form a checking
sequence. This paper improves this result by reducing the number of el-
ements in E′

C that must be included in the generated checking sequence.

1 Introduction

Finite state machine (FSM) model has been widely used to specify behaviour
of various types of systems [1]. An FSM M models the externally observable
behaviour of a system under test (SUT) N in terms of the sequences of inputs and
outputs exchanged between a “black box” representing N and its environment.
When testing N to ensure its correct functionality with respect to M , a checking
sequence (i.e., a sequence of inputs constructed from M) is applied to N to
determine whether N is a correct or faulty implementation of M [2, 3]. Often,
N is considered to have the same input and output alphabets of M and to have
no more states than M .

A checking sequence of M is constructed in such a way that the output se-
quence produced by N in response to the application of the checking sequence
provides sufficient information to verify that every state transition of M is im-
plemented correctly by N . That is, in order to verify the implementation of a
transition from state s to state s′ under input x, firstly, N must be transferred
to the state recognized as state s of M ; secondly, when the input x is applied,
the output produced by N in response to x must be as specified in M ; i.e.,
there must not be an output fault; and thirdly, the state reached by N after
the application of x must be recognized as state s′ of M ; i.e., there must not be
a transfer fault. Hence, a crucial part of testing the correct implementation of
each transition is recognizing the starting and terminating states of the transition
which can be achieved by a distinguishing sequence [3], a characterization set [3]

P. Yolum et al.(Eds.): ISCIS 2005, LNCS 3733, pp. 915–926, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

916 K.T. Tekle et al.

or a unique input-output (UIO) sequence [4]. It is known that a distinguishing
sequence may not exist for every minimal FSM [5], and that determining the
existence of a distinguishing sequence for an FSM is PSPACE-complete [6].

Nevertheless, based on distinguishing sequences, various methods have been
proposed for FSM based testing (for example, [3, 7, 8]). Some of these meth-
ods aim in generating reduced length checking sequences [8, 9, 10]. A represen-
tative example of these methods is [9] which shows that an efficient checking
sequence may be produced by combining the elements in some predefined set
Eα′ of α′–sequences that recognize subsets of states, the elements of a set ET

of T –sequences which recognize individual states, and the elements of a set EC

of subsequences that represent individual transitions, using an acyclic set E′′ of
transitions from M . An optimization algorithm is then used in order to produce
a shortest checking sequence by connecting the elements of Eα′ , ET , and EC

using transitions drawn from E′′.
Recently it is shown in [10] that the length of checking sequences can be

reduced even further by eliminating some elements of EC . Those transitions
in EC , that correspond to the last transitions traversed when a T –sequence is
applied in an α′–sequence, are taken to be the candidate transitions for which
transition tests can be eliminated. A dependency relation is derived on these
candidate transitions, and only an acyclic subset of them (which does not depend
on each other – directly or indirectly – with respect to this dependency relation)
is considered to be eliminated.

In this paper, we generalize the condition for a transition to be considered as
a candidate for transition test exemption. The candidate transitions are again
among the transitions traversed when a T –sequence is applied in an α′–sequence.
However, they do not have to be the last transitions traversed. The condition
given in this paper trivially holds for the last transitions, hence the approach
of [10] is a special case of the approach given in this paper.

Besides the theoretical novelty of providing a more general condition, our ap-
proach also has the following practical implication. Since we identify more can-
didate transitions, the dependency relation between these candidate transitions
is more relaxed. This allows us to find acyclic subsets of candidate transitions
with greater cardinality, hence we can eliminate more transition tests than the
approach of [10].

The rest of the paper is organized as follows. Section 2 gives an overview
of the concepts used in constructing checking sequences based on distinguishing
sequences, and Section 3 explains an existing approach for the construction of
checking sequences. Section 4 presents the proposed method for eliminating re-
dundant transition tests and shows the application of the method to an example.
Section 5 gives the concluding remarks.

2 Preliminaries

A deterministic FSM M is defined by a tuple (S, s1, X, Y, δ, λ) in which S is
a finite set of states, s1 ∈ S is the initial state, X is the finite input alphabet,

Generalizing Redundancy Elimination in Checking Sequences 917

s1s2

s3 s4 s5

b/0

b/1

b/0

b/0

a/0

a/0
b/0

a/1

a/1 a/0

Fig. 1. The FSM M0

Y is the finite output alphabet, δ : S × X → S is the next state function and
λ : S × X → Y is the output function. The functions δ and λ can be extended
to input sequences in a straightforward manner. The number of states of M is
denoted n and the states of M are enumerated, giving S = {s1, . . . , sn}. An
FSM is completely specified if the functions λ and δ are total.

An FSM, that will be denoted M0 throughout this paper, is described in
Figure 1. Here, S = {s1, s2, s3, s4, s5}, X = {a, b} and Y = {0, 1}.

Throughout the paper, we use barred symbols (e.g. x̄, P̄ , . . .) to denote se-
quences, and juxtaposition to denote concatenation. In an FSM M , si ∈ S and
sj ∈ S, si �= sj , are equivalent if, ∀x̄ ∈ X∗, λ(si, x̄) = λ(sj , x̄). If ∃x̄ ∈ X∗ such
that λ(si, x̄) �= λ(sj , x̄) then x̄ is said to distinguish si and sj . An FSM M is
said to be minimal if none of its states are equivalent. A distinguishing sequence
for an FSM M is an input sequence D̄ for which each state of M produces a dis-
tinct output. More formally, for all si, sj ∈ S if si �= sj then λ(si, D̄) �= λ(sj , D̄).
Thus, for example, M0 has distinguishing sequence abb.

The shortest prefix of a distinguishing sequence D̄ that distinguishes a state
in M can actually be used as a special distinguishing sequence for that state [11].
Based on this observation, we use prefixes of distinguishing sequences, in order
to further reduce the length of checking sequences. We will use D̄i to denote the
shortest prefix of a distinguishing sequence D̄ that is sufficient to distinguish a
state si from the other states. Formally, given a distinguishing sequence D̄ and a
state si, D̄i is the shortest prefix of D̄ such that for any state sj , if si �= sj then
λ(si, D̄i) �= λ(sj , D̄i). For example, M0 has D̄1 = ab, D̄2 = D̄3 = D̄4 = D̄5 = abb.
Below we call D̄i’s as prefix distinguishing sequences.

An FSM M can be represented by a directed graph (digraph) G = (V, E)
where a set of vertices V represents the set S of states of M , and a set of
directed edges E represents all transitions of M . Each edge e = (vj , vk, x/y) ∈ E
represents a transition t = (sj , sk, x/y) of M from state sj to state sk with input
x and output y where sj, sk ∈ S, x ∈ X , and y ∈ Y such that δ(sj , x) = sk,
λ(sj , x) = y. For a vertex v ∈ V , indegreeE′(v) denotes the number of edges
from E′ that enter v and outdegreeE′(v) denotes the number of edges from E′

that leave v, where E′ ⊆ E.
A sequence P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1) of

pairwise adjacent edges from G forms a path in which each node ni represents a
vertex from V and thus, ultimately, a state from S. Here initial(P̄) denotes n1,

918 K.T. Tekle et al.

which is the initial node of P̄ , and final(P̄) denotes nk, which is the final node
of P̄ . The sequence Q̄ = (x1/y1)(x2/y2) . . . (xk−1/yk−1) is the label of P̄ and is
denoted label(P̄). In this case, Q̄ is said to label the path P̄ . Q̄ is said to be a
transfer sequence from n1 to nk. The path P̄ can be represented by the tuple
(n1, nk, Q̄) or by the tuple (n1, nk, x̄/ȳ) in which x̄ = x1x2 . . . xk−1 is the input
portion of Q̄ and ȳ = y1y2 . . . yk−1 is the output portion of Q̄. Two paths P̄1 and
P̄2 can be concatenated as P̄1P̄2 only if final(P̄1) = initial(P̄2).

A tour is a path whose initial and final nodes are the same. Given a tour
Γ̄ = e1e2 . . . ek, P̄ = ejej+1 . . . eke1e2 . . . ej−1 is a path formed by starting Γ̄
with edge ej, and hence by ending Γ̄ with edge ej−1. An Euler Tour is a tour
that contains each edge exactly once. A set E′ of edges from G is acyclic if no
tour can be formed using the edges in E′.

A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a path from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM consid-
ered in this paper is deterministic, minimal, completely specified, and strongly
connected.

Given an FSM M , let Φ(M) be the set of FSMs each of which has at most
n states and the same input and output alphabets as M . Let N be an FSM
of Φ(M). N is isomorphic to M if there is a one-to-one and onto function f
on the state sets of M and N such that for any state transition (si, sj , x/y)
of M , (f(si), f(sj), x/y) is a transition of N . A checking sequence of M is an
input sequence starting at the initial state s1 of M that distinguishes M from
any N of Φ(M) that is not isomorphic to M . In the context of testing, this
means that in response to this input sequence, any faulty implementation N
from Φ(M) will produce an output sequence different from the expected output,
thereby indicating the presence of a fault/faults. As stated earlier, a crucial part
of testing the correct implementation of each transition of M in N from Φ(M)
is recognizing the starting and terminating states of the transition which lead
to the notions of state recognition and transition verification used in algorithms
for constructing reduced length checking sequences (for example, [8, 9]). These
notions are defined below in terms of a given distinguishing sequence D̄ (more
precisely the prefix distinguishing sequences) for FSM M .

3 An Existing Approach

3.1 Basics

Consider the digraph G = (V, E) representing M and let Q̄ be the label of a
path P̄ in G. A vertex v of P̄ is said to be recognized (in Q̄) as a state si of M , if
the label T̄ of a subpath R̄ of P̄ starting at v has a prefix D̄i/λ(si, D̄i). This rule
says that initial(R̄) is recognized as state si if label(R̄) has a prefix D̄i/λ(si, D̄i).
Alternatively, if P̄1 = (vi, vj , T̄) and P̄2 = (vk, v, T̄) are two subpaths of P̄ such
that vi and vk are recognized as state s′ of M and vj is recognized as state s of
M , then v is said to be recognized (in Q̄) as state s of M . This rule says that if P̄1
and P̄2 are labeled by the same input/output sequence at their starting vertices

Generalizing Redundancy Elimination in Checking Sequences 919

which are recognized as the same state s′ of M , then their terminating vertices
correspond to the same state s of M . An edge (v, v′, x/y) of P̄ is said to be
verified (in Q̄) as a transition (si, sj , xi/yi) of M if v is recognized as state si, v′

is recognized as state sj , x = xi, and y = yi; i.e., v is recognized as state si of M
and there is a subpath P̄ ′ of P̄ starting at v whose label is xD̄j/λ(si, xD̄j). The
subpath P̄ ′ is called the transition test for the transition (si, sj , xi/yi); i.e., P̄ ′ is
the transition sequence labeled by (the application of) the input sequence xD̄j

at state si. Accordingly, the following result will form the basis of the checking
sequence construction method proposed in this paper.

Theorem 1. (Theorem 1, [8]) Let P̄ be a path of G representing an FSM M
that starts at s1 and Q̄ = label(P̄). If every edge of G is verified in Q̄, then the
input portion of Q̄ is a checking sequence of M .

Let Q̄ be the label of a path P̄ in G starting at v1 such that Q̄ contains n
subsequences of the form D̄i/λ(si, D̄i), (1 ≤ i ≤ n). Since D̄i’s are prefix distin-
guishing sequences for M , each of these subsequences of the form D̄i/λ(si, D̄i),
(1 ≤ i ≤ n), is unique. If Q̄ labels a path starting at the initial state of N from
Φ(M) then, since N has at most n states, D̄i’s must also be prefix distinguish-
ing sequences for N . This says that if n different expected responses to D̄i’s are
observed in N , then D̄i’s define a one-to-one correspondence between the states
of N and M . In this case, we say that the uniqueness of the response of each of
the n states of N to D̄i’s are verified and hence N has n distinct states.

Let DS(si) denote the transition sequence labeled by D̄i/λ(si, D̄i) at state si

and let T̄i, called henceforth T –sequence, be label(R̄i) where R̄i = DS(si)B̄i and
B̄i is a (possibly empty) sequence of transitions of G starting at final(DS(si)),
(1 ≤ i ≤ n). Since a T –sequence T̄i is a sequence of input/output pairs with
a prefix label(DS(si)) = D̄i/λ(si, D̄i), it may be used to recognize the ending
state of any transition terminating at state si [8]. R̄i’s can be connected to each
other in a succinct manner to form the elements of an α′–set = {ᾱ′

1, ᾱ
′
2, . . . ᾱ

′
q}

where each ᾱ′
k (1 ≤ k ≤ q) is called an α′–sequence [9]. An α′–sequence ᾱ′

k is the
label of an α′–path ρ̄k = R̄k1R̄k2 . . . R̄krk

, 1 ≤ k1, k2, . . . , krk
≤ n, such that (a)

∃ an α′–path ρ̄j = R̄j1R̄j2 . . . R̄jrj
, 1 ≤ j ≤ q and 1 ≤ j1, j2, . . . , jrj ≤ n, such

that for some i, 1 ≤ i < rj , krk
= ji; and (b) No other R̄ki , 1 ≤ i < rk, in ρ̄k

satisfies (b). In other words for every α′–path ρ̄k, the last component and only
the last component R̄krk

in ρ̄k appears in the same or in some other α′–path ρ̄j

before the last component in ρ̄j . Since ᾱ′
k = label(ρ̄k), ᾱ′

k will be concatenation
of T –sequences. A set of α′–sequences is called an α′–set only if ∀T̄i, 1 ≤ i ≤ n,
∃ ᾱ′

k, 1 ≤ k ≤ q, such that T̄i is a subsequence of ᾱ′
k.

Let A = {ᾱ′
1, ᾱ

′
2, . . . , ᾱ

′
q} be an α′–set with the corresponding set of α′–

paths {ρ̄1, ρ̄2, . . . , ρ̄q}, and Q̄ be the label of a path P̄ such that each ᾱ′
k ∈ A is

a subsequence of Q̄. Then we have the following properties:

1) Since ᾱ′
k starts with a T̄i that has a prefix D̄i/λ(si, D̄i), initial(ρ̄k) is rec-

ognized in Q̄
2) Since every α′–sequence ᾱ′

k is a subsequence of Q̄, final(ρ̄k) is recognized
in Q̄

920 K.T. Tekle et al.

3) Since every T̄i is in some ᾱ′
k, initial(R̄i) is recognized in Q̄

4) Since every T̄i is followed by a T̄j in some ᾱ′
k, final(R̄i) is recognized in Q̄

5) Since ᾱ′
k starts with a T̄i that has a prefix D̄i/λ(si, D̄i), ᾱ′

k may be used to
recognize the ending state of any transition terminating at state si [9].

3.2 Checking Sequence Construction

The checking sequence construction method given in [9] first builds a digraph
G′ = (V ′, E′) by augmenting the digraph G = (V, E) representing an FSM where
V ′ = V ∪ U ′ , E′ = EC ∪ Eα′ ∪ ET ∪ E′′ by:

- replicating each vertex v in V as a vertex v′ in U ′ to represent the“recognized”
version of v

- replacing each edge (vi, vj , x/y) of E by an edge (v′i, vj , x/y) in EC so that
the transition to be verified starts at the recognized vertex v′i

- inserting an edge (vi, v
′
j , ᾱ

′
k) in Eα′ for each ρ̄k = (vi, vj , ᾱ

′
k), (1 ≤ k ≤ q) so

that ρ̄k ends at the recognized vertex v′j
- inserting an edge (vi, v

′
j , T̄m) in ET for each R̄m = (vi, vj , T̄m), (1 ≤ m ≤ n)

so that R̄m ends at the recognized vertex v′j
- inserting an edge (v′i, v

′
j , x/y) in E′′ for each edge (vi, vj , x/y) in a subset of

edges of E such that G′′ = (U ′, E′′) does not have a tour and G′ is strongly
connected.

Note that in G′ each edge in EC is followed by an edge from Eα′ ∪ ET to
form a transition test for the transition corresponding to that edge of EC . Then,
the approach in [9] forms a minimal symmetric augmentation G∗ of the digraph
induced by Eα′ ∪ EC by adding replications of edges from E′ . If G∗, with its
isolated vertices removed, is connected, then G∗ has an Euler tour. Otherwise,
a heuristic such as the one given in [8] is applied to make G∗ connected and
an Euler tour of this new digraph is formed. On the basis of Theorem 1, it is
argued in [9] that the input portion of the label of the Euler tour of G∗ starting
at vertex v1 which is followed by D̄1 is a checking sequence of M .

4 An Enhancement on the Existing Approach

This section explains how, given an α′–set A, we can produce a checking sequence
without considering some of the edges in EC . In the following, we first define
a set of edges L ⊂ E, then show that transition tests for the edges in L are
redundant, and finally explain how we can modify the algorithm to generate the
checking sequence in order not to include these redundant transition tests.

4.1 Transition Test Exemption

In this section, we consistently use P̄ to denote a path in G, and Q̄ to denote
label(P̄). Similar to showing an edge being verified as given in Section 3.1, in
order to show a sequence of edges being verified we first introduce the notion of
a sequence of edges being traced.

Generalizing Redundancy Elimination in Checking Sequences 921

Definition 1. Let P̄ ′ = e1e2 . . . eh be a sequence of edges in G, where em =
(vim , vim+1 , xm/ym) for 1 ≤ m ≤ h. P̄ ′ is traced in Q̄ if there exists a subpath
(n1, nh+1, x

′
1x

′
2 . . . x′

h/y′
1y

′
2 . . . y′

h) in P̄ such that n1 is recognized as vi1 , nh+1 is
recognized as vih+1 , and xm/ym = x′

m/y′
m for 1 ≤ m ≤ h.

Lemma 1. Let P̄ ′ = e1e2 . . . eh (h ≥ 1) be a sequence of edges in G traced in Q̄,
where em = (vim , vim+1 , xm/ym) for 1 ≤ m ≤ h. Assume that e1, e2, . . . , el for
some 1 ≤ l < h are all verified in Q̄. Then, P̄ ′′ = el+1el+2 . . . eh is also traced
in Q̄.

Proof. The proof is by induction on l. Let’s assume l = 1. If e1 is verified in
Q̄ , then P̄ includes a subpath P̄1 = (nj , nk, x′

1/y′
1) where nj is recognized

as vi1 , nk is recognized as vi2 and x1/y1 = x′
1/y′

1. Since P̄ ′ is traced in Q̄,
there must exist a subpath P̄2 = (nq, ns, x

′′
1x′′

2 . . . x′′
h/y′′

1y′′
2 . . . y′′

h) in P̄ where
nq is recognized as vi1 , ns is recognized as vih+1 , and x′′

m/y′′
m = xm/ym for

1 ≤ m ≤ h. Let us divide the path P̄2 into two as P̄21 = (nq, ni, x
′′
1/y′′

1) and
P̄22 = (ni, ns, x

′′
2x′′

3 . . . x′′
h/y′′

2y′′
3 . . . y′′

h). According to the definition of a recog-
nized vertex given in Section 3.1, the paths P̄1 and P̄21 recognize ni as vi2 .
Then, the existence of P̄22 in P̄ implies that P̄ ′′ = e2e3 . . . eh is traced in Q̄.

For the inductive step, we can again use the arguments given above to con-
clude that P̄ ′′ = e2e3 . . . eh is traced in Q̄. However, we have l − 1 verified
transitions at the beginning of P̄ ′′, hence the proof is completed by using the
induction hypothesis. ��

Definition 2. An edge (v, v′, xv/yv) in G is said to be a nonconverging edge [12]
if ∀(u, u′, xu/yu), u �= v and xu = xv implies u′ �= v′ or yu �= yv.

Lemma 2. Let (v, v′, xv/yv) be a nonconverging edge in G, and (np, nq, x/y) be
a subpath of P̄ such that nq is recognized as v′ and x/y = xv/yv. If all the edges
(u, u′, xu/yu) in G, where xu = xv are verified in Q̄, then np is recognized as v.

Proof. Since all the edges in G corresponding to the xv transitions of the states
in M are verified, and since the state corresponding to the node v is the only
state that produces yv and moves into the state corresponding to the node v′

when xv is applied, we can conclude that whenever xv/yv is seen in Q̄ and the
ending node is recognized as v′, then the previous node must be the node v. ��

Lemma 3. Let P̄ ′ = e1e2 . . . eh (h ≥ 1) be a sequence of edges in G traced in
Q̄, where em = (vim , vim+1 , xm/ym) for 1 ≤ m ≤ h. Assume that el, el+1, . . . , eh

for some 1 < l ≤ h are all verified in Q̄. If for all l ≤ r ≤ h
(i) er = (vir , vir+1 , xr/yr) is a nonconverging edge, and
(ii) For each vertex v in G, all the edges of the form (v, v′, x/y) (where x = xr)
are verified in Q̄ then P̄ ′′ = e1e2 . . . el−1 is also traced in Q̄.

Proof. The proof is by induction on h−l+1. Let’s assume h−l+1 = 1, i.e l = h.
Since P̄ ′ is traced in Q̄, P̄ ′ must be a subpath (nq, ns, x

′
1x

′
2 . . . x′

h/y′
1y

′
2 . . . y′

h) of P̄
where nq is recognized as vi1 , ns is recognized as vih+1 , and x′

m/y′
m = xm/ym for

1 ≤ m ≤ h. Let us divide P̄ ′ into two as P̄1 = (nq, ni, x
′
1x

′
2 . . . x′

h−1/y′
1y

′
2 . . . y′

h−1)

922 K.T. Tekle et al.

and P̄2 = (ni, ns, x
′
h/y′

h). Note that P̄2 corresponds to eh which is a nonconverg-
ing edge. Since all the edges of the form (v, v′, xh/y) are verified in Q̄, ni is
recognized as vih

by using Lemma 2. Then P̄1 = e1e2 . . . eh−1 is traced in Q̄.
For the inductive step, we can again use the arguments given above to con-

clude that P̄ ′′ = e1e2 . . . eh−1 is traced in Q̄. However, we have h − l verified
transitions at the end of P̄ ′′, hence the proof is completed by using the induction
hypothesis. ��

Lemma 4. Let P̄ ′ = e1e2 . . . eh (h ≥ 1) be a sequence of edges in G traced in
Q̄, where em = (vim , vim+1 , xm/ym) for 1 ≤ m ≤ h. Let el be an edge in P̄ ′,
where 1 ≤ l ≤ h. If
(i) ∀r, 1 ≤ r ≤ h, r �= l implies er is verified in Q̄, and
(ii) ∀r, l < r ≤ h

(ii.a) er = (vir , vir+1 , xr/yr) is a nonconverging edge; and
(ii.b) For each vertex v in G, all the edges of the form (v, v′, x/y) (where

x = xr) are verified in Q̄ then el is also verified in Q̄.

Proof. Since P̄ ′ is traced in Q̄, P̄ ′ is a subpath (nq, ns, x
′
1x

′
2 . . . x′

h/y′
1y

′
2 . . . y′

h)
of P̄ where nq is recognized as vi1 , ns is recognized as vih+1 , and x′

m/y′
m =

xm/ym for 1 ≤ m ≤ h. Let us divide the path P̄ ′ into three as follows: P̄1 =
(nq, ni, x

′
1x

′
2 . . . x′

l−1/y′
1y

′
2 . . . y′

l−1), and P̄2 = (ni, ns, x
′
l/y′

l), and finally P̄3 =
(ns, nt, x

′
l+1x

′
l+2 . . . x′

h/y′
l+1y

′
l+2 . . . y′

h). By using Lemma 1, P̄2P̄3 is traced in Q̄
and ni is therefore recognized as vil

. By using Lemma 3, P̄1P̄2 is traced in Q̄
and ns is therefore recognized as vil+1 . Since both ni and ns are recognized in
P̄2 = el, el is verified. ��

Lemma 4 suggests that if there is a sequence of edges which is traced in the
label Q̄ of a path, then Q̄ already includes what it takes to verify an edge el

in the sequence, provided that the conditions (i), (ii.a) and (ii.b) given in the
premises of Lemma 4 hold. Therefore, we can pick a transition el in a sequence of
edges which is known to be traced, and do not include the transition test for el,
provided that the conditions are satisfied for el. Note that, one can always pick
eh as el (the last transition in the sequence of edges) according to the conditions
of Lemma 4. This is what has been proposed in [10], and therefore the approach
given in [10] is a special case of our approach.

In fact, inclusion of α′–sequences in the checking sequences guarantee that
there are some sequences of edges which are traced, as shown by the following
lemma.

Lemma 5. Let A be an α′–set, and Q̄ include all the α′–sequences in A. Then
∀i, 1 ≤ i ≤ n, R̄i = DS(si)B̄i is traced in Q̄.

Proof. Note that ∃ᾱ′
k, 1 ≤ k ≤ q, with the subsequence label(R̄i)label(R̄j) for

some j, 1 ≤ j ≤ n. Since label(R̄i) starts with D̄i/λ(si, D̄i), initial(R̄i) is rec-
ognized. Since label(R̄j) starts with D̄j/λ(sj , D̄j), initial(R̄j), hence final(R̄i)
is also recognized. ��

Generalizing Redundancy Elimination in Checking Sequences 923

Lemma 6. Let A be an α′–set, and Q̄ include all the α′–sequences in A, and
R̄i = ej1ej2 . . . ejh

be the sequence of edges corresponding to the application of
the T–sequence T̄i at a state si. Let ejl

= (vjl
, vjl+1 , xjl

/yjl
) be an edge in R̄i. If

(i) ∀r, 1 ≤ r ≤ h, r �= l implies ejr is verified in Q̄, and
(ii) ∀r, l < r ≤ h

(ii.a) ejr is a nonconverging edge; and
(ii.b) For each vertex v in G, all the edges of the form (v, v′, x/y) (where

x = xjl
) are verified in Q̄ then ejl

is also verified in Q̄.

Proof. The result follows from Lemma 4 and Lemma 5. ��

Lemma 6 suggests that one can identify an edge per state to be excluded from
the transition tests. However, if we identify some edge e for a state s, exclusion
of e depends on some other transitions being verified, as given in the premises
of Lemma 6. We may identify another edge e′ for another state s′. Nevertheless,
exclusion of e may depend on e′ being verified, and exclusion of e′ may depend on
e being verified (either directly or indirectly). The following procedure shows a
possible way to calculate a set of edges that can be excluded from the transition
tests without having such a cyclic dependency.

For an R̄i = DS(si)B̄i = e1e2 . . . eh, 1 ≤ i ≤ n, an edge el (1 ≤ l ≤ h) is
a candidate edge of R̄i if ∀r, l < r ≤ h, er is a nonconverging edge. Note that
eh is always a candidate edge of R̄i according to this definition. Let L0 = {e |
e is a candidate edge of R̄i, 1 ≤ i ≤ n}.

Note that, the generated checking sequence must start from s1, the initial
state of M . Therefore at least one incoming transition of s1 must be tested, so
that the generated tour passes over v1. Therefore let L1 be a maximal subset of
L0 such that, indegreeL1(v1) < indegreeE(v1).

Further note that according to Lemma 6, the test for a transition can be
exempted only if some other transitions are tested. In order to avoid cyclic
dependencies, the following algorithm can be used:

Construct a digraph GS = (VS , ES) where VS contains one vertex for each
e ∈ L1. (v1, v2) ∈ ES if and only if v1 �= v2, and for some R̄i, the edges e1 and
e2 corresponding the vertices v1 and v2 appear in R̄i. Find a maximal subgraph
G′

S = (V ′
S , E′

S) of GS by removing vertices from GS (and the edges connected
to the removed vertices) such that E′

S is acyclic. Let L be the set of edges that
correspond to the vertices in V ′

S .
Finding G′

S is an instance of Feedback Vertex Set problem [13], which is
NP–complete. However certain heuristic approaches exist for this problem [14,
15]. Note that for an R̄i, there will always be a cyclic dependency between the
candidate edges of R̄i. Therefore only one of the edges in R̄i will survive in G′

S .
Hence, at most n transition tests can be removed from the checking sequence.

4.2 Improved Checking Sequence Construction

Now using L, we can improve on the algorithm in [9] for the checking sequence
generation, by reducing the set of edges that must be included in the checking

924 K.T. Tekle et al.

sequence. First the digraph G′ = (V ′, E′) is obtained as explained in Section 3.2.
E′′ can be constructed similarly as discussed in [8].

Theorem 2. Let E′
C be defined as E′

C = {(v′i, vj , x/y) : (vi, vj , x/y) ∈ E − L}.
Let Γ̄ be a tour of G′ that contains all edges in Eα′ ∪ E′

C which is found in the
same manner as in [9]. Let e = (v′i, v1, x/y) ∈ E′

C be an edge in Γ̄ ending at
v1 that corresponds to the initial state s1 of M . Let P̄ be a path of G′ that is
formed by ending Γ̄ with edge e, and Q̄ = label(P̄)D̄1/λ(s1, D̄1). Then the input
portion of Q̄ is a checking sequence of M .

Proof. All edges in E − L are verified in Q̄ = label(P̄)D̄1/λ(s1, D̄1). According
to Lemma 6 and the way L is constructed, if all edges in E − L are verified in
Q̄, then all edges in L are verified in Q̄. Thus, all edges of G are verified in Q̄,
and by Theorem 1, the input portion of Q̄ is a checking sequence of M . ��

4.3 Application

Let us consider FSM M0 given in Figure 1. A distinguishing sequence for M0 is
D̄ = abb. The shortest prefixes of D̄ that are sufficient to distinguish each state
are: D̄1 = ab, D̄2 = D̄3 = D̄4 = D̄5 = abb. In this example, we will use B̄i’s
in R̄i = DS(si)B̄i, as empty sequences. Hence T̄i = D̄i/λ(si, D̄i), 1 ≤ i ≤ n.
Using these T̄i’s, an α′–set for M0 is {ᾱ′

1 = T̄1T̄2T̄4T̄4, ᾱ
′
2 = T̄3T̄2, ᾱ

′
3 = T̄5T̄4},

with the following corresponding α′–paths: ρ̄1 = (v1, v4, ᾱ
′
1), ρ̄2 = (v3, v4, ᾱ

′
2),

ρ̄3 = (v5, v4, ᾱ
′
3).

Note that in FSM M0, all the edges except (v2, v1, b/0) and (v5, v1, b/0) are
nonconverging edges. According to the definition of candidate edges given in
Section 4.1, the set L0 can be found as {(v1, v3, a/0), (v1, v4, b/0), (v2, v1, b/0),
(v3, v4, a/1), (v3, v2, b/1), (v4, v3, b/0), (v5, v4, a/0), (v5, v1, b/0)}. Note that ∀e ∈
L0, ∃R̄i, 1 ≤ i ≤ n, such that e occurs in R̄i, and all the edges that come after
e in R̄i are nonconverging edges.

Since all the incoming edges of v1 are in L0, we need to exclude one of the
incoming edges of v1 from L0 to get L1. Let L1 = L0 \ {(v2, v1, b/0)}.

A maximal acyclic subgraph G′
S of GS for L1 includes the vertices cor-

responding to the following edges: L = {(v1, v3, a/0), (v1, v4, b/0), (v2, v1, b/0),
(v3, v4, a/1), (v5, v4, a/0)}.

The graph G′ = (V ′, E′) is given in Figure 2.
A tour Γ̄ over G′ that contains all the edges in Eα′ ∪ E′

C is

(v1, v
′
4, ᾱ

′
1), (v

′
4, v5, a/0), (v5, v

′
4, ᾱ

′
3), (v

′
4, v3, b/0), (v3, v

′
4, ᾱ

′
2), (v

′
4, v

′
3, b/0),

(v′3, v2, b/1), (v2, v
′
4, T̄2), (v′4, v

′
3, b/0), (v′3, v

′
2, b/1), (v′2, v2, a/1), (v2, v

′
4, T̄2),

(v′4, v′5, a/0), (v′5, v1, b/0)

Note that Γ̄ already starts at v1. Hence when we consider the path P̄ cor-
responding to Γ̄ given above, the input portion of Q̄ = label(P̄)D̄1/λ(s1, D̄1)
forms a checking sequence of length 40. Using the approach of [10], only the
transition tests for the edges (v1, v4, b/0) and (v3, v2, b/1) are found to be redun-
dant, since these are the only edges that occur as the last edges in R̄i’s. The

Generalizing Redundancy Elimination in Checking Sequences 925

v1 v2 v3 v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

T̄1

T̄2T̄3

T̄4 T̄5

a/0
b/0

a/1

b/0 a/1b/1 a/0b/0 a/0 b/0

ᾱ′
1

ᾱ′
2

ᾱ′
3

b/0 a/0 b/0b/1

Fig. 2. G′ = (V ′, E′) for M0. The nodes in V and U ′ are at the bottom, and at the
top respectively. The dashed lines are the edges in ET , and the dotted lines are the
edges in E′′. The edges in Eα′ ∪ EC are given in solid lines. The bold solid lines are
the edges in Eα′ ∪ E′

C , and the remaining solid lines are the edges in L.

checking sequence in this case is found to be of length 52, which is still shorter
than the checking sequence of length 63 that would be found by applying the
general method proposed in [9].

5 Conclusion

We have shown that, when α′–sequences are used in constructing a checking se-
quence, some transitions tests can be identified as redundant. Such tests are then
eliminated by the optimization algorithm used to construct a shorter checking
sequence, and hence a further reduction is obtained in the length of a resulting
checking sequence. We have also shown that our approach can identify more
redundant transition tests than the approach of a similar work given in [10].

The approach proposed in this paper starts with a given set of α′–sequences.
We believe that selecting α′–sequences judiciously will result in further reduc-
tions in the length of a checking sequence. A recent study by Hierons and
Ural [16] show how α′–sequences can be chosen so that their use minimizes
the sum of the lengths of the subsequences to be combined in checking sequence
generation. The related checking sequence generation algorithm then produces
the set of connecting transitions during the optimization phase. Our proposed
approach can also be incorporated to the method given in [16].

Acknowledgment

This work was supported in part by “Natural Sciences and Engineering Research
Council of Canada under grant RGPIN 976”.

926 K.T. Tekle et al.

References

1. Tanenbaum, A.S.: Computer Networks. 3rd edn. Prentice Hall International Edi-
tions, Prentice Hall (1996)

2. Gill, A.: Introduction to the Theory of Finite–State Machines. McGraw–Hill, New
York (1962)

3. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey (1964) 95–110

4. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works 15 (1988) 285–297

5. Kohavi, Z.: Switching and Finite Automata Theory. McGraw–Hill, New York
(1978)

6. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43 (1994) 306–320

7. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19 (1970) 551–558

8. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46 (1997) 93–99

9. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51 (2002) 1111–1117

10. Chen, J., Hierons, R., Ural, H., Yenigun, H.: Eliminating redundant tests in a
checking sequence. In: 17th IFIP International Conference on Testing of Commu-
nicating Systems. Volume 3502 of Lecture Notes in Computer Science., Montreal,
Canada (2005) 146–158

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84 (1996) 1089–1123

12. Miller, R.E., Paul, S.: On the generation of minimal–length conformance tests
for communication protocols. IEEE/ACM Transactions on Networking 1 (1993)
116–129

13. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

14. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.: Approximation algorithms for
the vertex feedback set problem with applications to constraint satisfaction and
bayesian inference. In: Proceedings of Fifth ACM-SIAM Symposium on Discrete
Algorithms. (1994) 344–354

15. Fujito, T.: A note on approximation of the vertex cover and feedback vertex set
problems. Information Processing Letters 59 (1996) 59–63

16. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE
Transactions on Computers (2004) submitted.

	Introduction
	Preliminaries
	An Existing Approach
	Basics
	Checking Sequence Construction

	An Enhancement on the Existing Approach
	Transition Test Exemption
	Improved Checking Sequence Construction
	Application

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

