
TLP 16 (5–6): 916–932, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000405

916

Precise complexity guarantees for pointer
analysis via Datalog with extensions�

K. TUNCAY TEKLE and YANHONG A. LIU

Computer Science Department, Stony Brook University, Stony Brook, NY, USA

(e-mail: tuncay,liu@cs.stonybrook.edu)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

Pointer analysis is a fundamental static program analysis for computing the set of objects that

an expression can refer to. Decades of research has gone into developing methods of varying

precision and efficiency for pointer analysis for programs that use different language features,

but determining precisely how efficient a particular method is has been a challenge in itself.

For programs that use different language features, we consider methods for pointer analysis

using Datalog and extensions to Datalog. When the rules are in Datalog, we present the

calculation of precise time complexities from the rules using a new algorithm for decomposing

rules for obtaining the best complexities. When extensions such as function symbols and

universal quantification are used, we describe algorithms for efficiently implementing the

extensions and the complexities of the algorithms.

KEYWORDS: Datalog, function symbols, universal quantification, computational complexity,

static program analysis, pointer analysis, alias analysis

1 Introduction

Pointer analysis is a static program analysis for computing the set of objects that an

expression can refer to. It is a fundamental analysis used for many applications, e.g.,

debugging (Shapiro and Horwitz 1997), performance analysis (Ghiya et al. 2001),

dataflow analysis (Shapiro and Horwitz 1997), parallelism (Wilson and Lam 1995;

Pearce et al. 2007), common subexpression elimination (Diwan et al. 1998; Ghiya

and Hendren 1998), optimization by incrementalization (Gorbovitski et al. 2010),

and detection of security vulnerabilities (Avots et al. 2005). Consider the following

program fragment in an object-oriented programming language:

void foo() {
Object o1 = new Object();
Object o2;
if (...) o2 = id(o1);
else o2 = new Object();

}
void id(Object o) { return o; }

� This work was supported in part by NSF under grants CCF-1414078, IIS-1447549, CCF-1248184,
CCF-0964196, and ONR under grant N000141512208.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions917

For each variable o1, o2, and o, a pointer analysis may aim to find the set of

objects the variable may point to. We call each such set a may-point-to set. A

may-point-to analysis is sound if each may-point-to set contains all objects that

the variable may point to at runtime. A sound may-point-to analysis is precise if

no may-point-to set contains more objects than the set of objects that the variable

may point to at runtime. Another form of analysis is must-point-to analysis, which

finds the set of objects that each variable must point to. Precise pointer analysis is

undecidable (Landi 1992; Ramalingam 1994). Therefore, pointer analysis methods

approximate the results, providing different tradeoffs between the precision of the

results and the efficiency of the method (Hind and Pioli 2000) while preserving

soundness. Whereas may-point-to analysis is an overapproximation, must-point-to

analysis is an underapproximation.

From the simple program fragment above, it can be seen that the precision-

efficiency tradeoff involves the consideration of control flows, procedures, calling

contexts, objects, and other language features such as arrays; leading to a variety

of analyses. The worst-case time complexities of existing analyses vary from almost

linear (Steensgaard 1996) to doubly exponential (Sagiv et al. 1998). However, such

worst-case complexities are often not a true indication of analysis time; many

researchers provide empirical performance results for their algorithms, and many

papers have been written on which pointer analysis one should use, e.g., (Hind and

Pioli 2000), including one questioning whether we have solved the pointer analysis

problem yet (Hind 2001).

A recent survey (Smaragdakis and Balatsouras 2015) presents existing work

on logical specifications of pointer analysis methods in the declarative language

Datalog and its extensions. Datalog specifications allow expressing the precision

aspects of pointer analyses concisely, while ensuring that the analyses are performed

in polynomial time, because evaluation of rules in Datalog is guaranteed to be

polynomial time. However, just as the worst-case complexities of existing analyses

are not a true indication of analysis time, worst-case polynomial time for evaluation

of Datalog is not sufficient for understanding actual running times.

In this paper, we consider all the different analyses presented in the survey (Smarag-

dakis and Balatsouras 2015) expressed in Datalog and its extensions, and study the

time complexity of each analysis by using and extending a systematic method

for calculating the time complexities for optimal bottom-up evaluation of Datalog

rules (Liu and Stoller 2009). To obtain the best complexity, we give a new algorithm

for rule decomposition. All analyses require handling rules with many hypotheses,

and some require handling extension to Datalog with negation, function symbols,

and universal quantification. In each case, we describe the method for handling the

extensions and calculating the time complexities. Our methods can be readily used

for analyzing other program analyses expressible in Datalog and similar extensions.

2 Language and preliminaries

In this section, we describe Datalog, an optimal method for evaluating a set of

Datalog rules with at most two hypotheses each, and a method for calculating the

time complexity of the evaluation.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


918 K. T. Tekle and Y. A. Liu

Datalog. Datalog is a language for defining rules, facts, and queries, where rules can

be used with facts to answer queries. A Datalog rule is of the form:

p(a1, ..., ak) ← p1(a11, ..., a1k1
), ..., ph(ah1, ..., ahkh ).

where h is a finite natural number, each pi (respectively p) is a predicate of finite

number ki (respectively k) arguments, each aij and ai is either a constant or a

variable, and each variable in the arguments of p must also be in the arguments

of some pi. If h = 0, then each ai must be a constant, in which case p(a1, ..., ak) is

called a fact. For the rest of the paper, “rule” refers only to the case where h � 1,

in which case each pi(ai1, ..., aiki ) is called a hypothesis, and p(a1, ..., ak) is called the

conclusion. For rules with the same hypotheses but different conclusions, we use the

shorthand of writing one rule with the same hypotheses but with comma-separated

conclusions.

The meaning of a set of rules and facts is the set of facts that are given or can be

inferred using the rules.

Terminology. An IDB (intensional database) predicate is a predicate defined by rules,

and an EDB (extensional database) predicate is a predicate for which no rules exist,

and only facts are given. An IDB (EDB) hypothesis is a hypothesis whose predicate

is an IDB (EDB) predicate.

For complexity calculation, we use the following notations.

• #p: number of facts of predicate p, called size of p.

• #dom(p.i): size of the domain from which the ith argument of predicate p

takes value.

• #p.i: number of values actually taken by the ith argument of the facts of

predicate p (given or inferred).

• #p.i1,...,in/j1,...,jm: maximum number of combinations of different values

actually taken by the i1,...,inth arguments of the facts of predicate p (given or

inferred), given any fixed value for the j1,...,jmth arguments.

We assume that hash tables, tries or similar data structures are used so that

operations involving a single element of a set take O(1) time.

2.1 Bottom-up evaluation and complexity calculation

Bottom-up evaluation starts with given facts, infers new facts from conclusions of

rules whose hypotheses match existing facts, and does so repeatedly until all facts

are inferred. In this paper, we use the bottom-up evaluation method of (Liu and

Stoller 2009). The time complexity incurred by each rule using this method is bound

by the number of firings of the rule—the number of combinations of facts that

make all hypotheses true. The best complexity is the minimum among all possible

decompositions of the rule into rules with at most two hypotheses. However, the

number of decompositions of a rule is worse than exponential in the number of

hypotheses.

In this subsection, we summarize how to compute the optimal time complexity

incurred by a rule with at most two hypotheses with the method in (Liu and Stoller

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions919

2009). Note that the number of rules and the arities of predicates are considered

constants, not affecting the asymptotic analysis. In the next section, we describe

a heuristic algorithm for decomposing rules so that each rule has at most two

hypotheses and then calculating the optimal complexity for the decomposition.

There are two forms of rules when the rules are limited to two hypotheses. When

a rule has one hypothesis, it is of the form: p(...) ← q(...). The number of times

this rule can fire is the number of facts of q, therefore the time complexity incurred

by this rule is O(#q). In fact, we can omit the complexity of such rules, because (i) if

q is an EDB predicate, then all of its facts need to be read in, therefore O(#q) cost

is already incurred by the reading of the input, (ii) if q is an IDB predicate, then its

size would be bound by the complexity of the rules that infer its facts, and therefore

that complexity would already have been included by the complexity of the rules

inferring its facts.

When a rule has two hypotheses, it is of the form: p(...) ← q(x1,...,xn),

r(y1,...,ym). To calculate the number of firings, we can first think of processing

the facts of q and matching them with facts of the second hypothesis such that

the common variables in the hypotheses take the same value. Therefore, only

the variables of the second hypothesis not in the first can take values for each

fact of q. We use C12 to denote the set of integers j in [1, .., m] such that yj

is a variable common to both hypotheses, then the complexity is bounded by

O(#q×#r.i /∈ C12/j ∈ C12). Analogously, we can think of processing the facts of r and

matching them with facts of the first hypothesis. Defining C21 analogously to be

the set of integers j in [1, .., n] such that xj is a common variable, the complexity

is also bounded by O(#r×#q.i /∈ C21/j ∈ C21). Since both bounds are upper bounds

on the number of firings, then the complexity is bounded by the minimum of

the two: O(min(#q× #r.i /∈ C12/j ∈ C12, #r× #q.i /∈ C21/j ∈ C21)). For example, for the

rule p(x,z) ← q(x,y), r(y,z)., the complexity is O(min(#q× #r.2/1, #r× #q.1/2)).

3 Handling many hypotheses—applied to pointer analyses for

different language features

In general, rules may have many hypotheses. In this section, we describe an algorithm

for decomposing rules so that the resulting set of rules has at most two hypotheses

and achieves the best complexity among all possible decompositions. We then apply

our algorithm coupled with the complexity calculation of bottom-up evaluation to

calculate the complexity of may-point-to analysis for object-oriented languages. The

algorithm applies also to analyses of other advanced language features, including

procedures, arrays, and exceptions as shown in Appendix A of (Tekle and Liu 2016).

3.1 An algorithm for decomposing rules with many hypotheses

Given a set of rules where some rules have more than two hypotheses, each such rule

can be decomposed so that a set of rules with the same meaning is produced where

each rule has two hypotheses. To decompose a rule R, we (1) select two hypotheses

h1 and h2 of R; (2) create a new intermediate rule R′ whose hypotheses are h1 and

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


920 K. T. Tekle and Y. A. Liu

h2, and whose conclusion c is a new, intermediate predicate whose arguments are

the variables occurring in h1 or h2 that are also elsewhere in R; (3) replace h1 and

h2 in R with c; and (4) repeat steps (1)–(3) until R has only two hypotheses.

How two hypotheses are selected at step (1) of each iteration so that the running

time of the resulting set of rules is minimized is analogous to the join-order

optimization problem on relational database queries, which is well studied with

many heuristic algorithms (Selinger et al. 1979; Steinbrunn et al. 1997). However,

most heuristics assume that the sizes of predicates are known in advance, since they

consider sizes of only EDB predicates. We propose a new heuristic algorithm that

is deterministic and well-suited to Datalog applications. Our algorithm is presented

below, where for each substep, we give the rationale.

• If there is any pair of hypotheses such that the variables of one hypothesis is a

subset of the variables of the other, we select any one such pair. This ensures

that the intermediate rule has no added asymptotic complexity.

• Otherwise, apply the following steps in order, each step applied to the set of

pairs selected so far, starting with the set of all pairs, until a unique pair is

selected:

(a.i) In a rule, a variable is called removable for two hypotheses if the variable

only appears in those two hypotheses and nowhere else. We select all

pairs of hypotheses with the maximum number of removable variables.

(a.ii) If domain size information is available, we multiply the sizes of the

domains of each removable variable for each pair of hypotheses, and

select all pairs with the maximum product. Steps (a.i) and (a.ii) help to

minimize the matching of the different values of the removable variables

with other hypotheses in the rest of the rule.

(b) We select all pairs of hypotheses that contain the maximum number

of shared variables between the hypotheses in the pair. This helps to

minimize the number of facts iterated over during the evaluation of the

intermediate rule to be created.

(c.i) We select all pairs of hypotheses that contain the maximum number of

EDB hypotheses. This helps to best understand the complexity of the

intermediate rule because sizes of EDB predicates are input parameters.

(c.ii) We select all pairs of hypotheses in which the product of the sizes of the

EDB hypotheses in the pair is the minimum. This helps to minimize the

cost of the intermediate rule.

(d) As a last resort, we select the pair of the leftmost two hypotheses.

Next, we show applications of this algorithm coupled with evaluation and complexity

calculation.

3.2 Andersen’s pointer analysis for object-oriented languages and its complexity

Pointer analysis comes in many flavors depending on what it takes into account.

An intraprocedural analysis only considers a single procedure. An interprocedural

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions921

Fig. 1. An intraprocedural may-point-to analysis in Datalog, (R1)–(R4), and

decomposed rules.

analysis considers multiple procedures and interactions among them. A flow-

insensitive analysis does not take control flows into account, whereas a flow-sensitive

analysis does and produces a may-point-to or must-point-to set for each variable at

each program point. A context-sensitive analysis takes calling contexts into account,

and produces a may-point-to or must-point-to set for each variable for each possible

calling context. A context-insensitive analysis does not.

For large programs, it is generally understood that flow-sensitivity and context-

sensitivity are not feasible. The most well-known flow- and context-insensitive pointer

analysis was developed by Andersen (Andersen 1994), and it is considered to offer

a sweet spot between precision and efficiency (Hardekopf and Lin 2007). Andersen

formulates a may-point-to analysis in terms of type theory, and the formulation

corresponds directly to a logical specification in Datalog. This subsection considers

an intraprocedural pointer analysis in Datalog for an object-oriented language

based on Andersen’s analysis as described in (Smaragdakis and Balatsouras 2015).

We show the decomposition of the rules and calculate the precise time complexity.

Predicates and rules for Andersen’s analysis for OO languages. Each statement has a

corresponding fact, shown below. For the first statement, h, called a heap abstraction,

is a new constant created as an abstraction for the set of possible heap objects created

by new when executing the statement, and m, not used in this intraprocedural analysis

but used in later analyses, is the method containing the statement:

v = new Obj() alloc(v,h,m)

v = v2 move(v,v2)

v.f = v2 store(v,f,v2)

v = v2.f load(v,v2,f)

For example, method foo in Section 1 has three facts: alloc(o1,h1,foo),

alloc(o2,h2,foo), and move(o2,o1), where h1 and h2 are fresh constants.

The analysis defines the following two predicates and infers facts of them using

the Datalog rules (R1)–(R4) in Fig. 1; additional explanations can be found

in (Smaragdakis and Balatsouras 2015).

• v pt(v,h): variable v may point to heap abstraction h

• f pt(h1,f,h2): heap abstraction h1 may have its field f pointing to heap

abstraction h2

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


922 K. T. Tekle and Y. A. Liu

Table 1. Complexities for an intraprocedural may-point-to analysis

(R1) O(#alloc)

(R2) O(min(#move× #v pt.2/1, #v pt× #move.1/2))

(R3/1) O(min(#load× #v pt.2/1, #v pt× #load.1,3/2))

(R3/2) O(min(#int1× #f pt.3/1,2, #f pt× #int1.1/2,3))

(R4/1) O(min(#store× #v pt.2/1, #v pt× #store.2,3/1))

(R4/2) O(min(#int2× #v pt.2/1, #v pt× #int2.1,3/2))

Decomposition of rules and complexity analysis. Using our algorithm for rule de-

composition in Section 3.1, we decompose rules (R3) and (R4) as shown in Fig. 1.

For our rule decompositions, we note that in the input programs, there are more

program points than variables, and more variables than heap abstractions. For

(R3), by algorithm step (a.ii), we select the first two hypotheses because v2 is the

removable variable whose domain size is maximum. For (R4), we can select the first

two hypotheses or the first and the third because v and v2 are removable and their

domains are the same, so we select the leftmost two hypotheses that remove v.

We calculate precise complexities for the decomposed rules, and show the results

in Table 1. For the rest of the paper, p is the number of program points, v is the

number of variables, h is the number of heap abstractions (i.e., #alloc), and f is the

number of fields.

The sizes of IDB predicates are bounded by both the complexities of the rules

inferring their facts, and the product of the sizes of the domains of their arguments.

Sizes #int1 and #int2 are bounded by the complexities of (R3/1) and (R4/1)

respectively, because each firing produces at most one new fact; they are also

bounded by O(v × h× f) based on the domains of their arguments. In all cases,

#v pt is bounded by O(v × h), and #f pt is bounded by O(h2 × f). These complexities

can be factored in when calculating the overall complexities.

Now, we give some insight into the calculated complexities. If we consider the worst

case when all predicates are maximized (i.e., they have facts for all possible combina-

tions of their argument values), the complexity of this analysis would be O(p× h2).

Under various conditions, we can obtain better complexities. For example, if all

variables point to a constant number of heap abstractions, i.e., O(#v pt.2/1)=O(1),

then the complexity would be O(p× h). If, in addition, all fields of variables point

to a constant number of heap abstractions, i.e., O(#f pt.3/1,2)=O(1), then the

complexity would be linear in the program size, O(p).

4 Handling rules with function symbols—applied to context-sensitive

may-point-to analyses

A context-sensitive may-point-to analysis separates may-point-to sets for executions

that map to different contexts, thereby increasing precision. One can consider

different types of contexts such as call sites (Shivers 1991; Sharir and Pnueli 1981),

objects (Milanova et al. 2005), and types (Smaragdakis et al. 2011). A rule-based

model of context-sensitive analysis is presented in (Smaragdakis and Balatsouras

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions923

2015), but the rules contain function symbols, invalidating the polynomial-time

evaluation guarantee for pure Datalog; different restrictions to the function symbols

are provided to ensure polynomial-time evaluation. In this section, we consider the

restriction for the most sophisticated analysis, show how to extend our evaluation

to handle function symbols, and calculate the complexities.

Evaluation of Datalog with bounded-size terms. We extend Datalog so that arguments

of predicates may be terms, where a term is either a constant, a variable, or a function

symbol with arguments that are terms. We denote function symbols with uppercase

letters1, and require that each function symbol F be of fixed arity, so all occurrences

of F take the same number of arguments. If a term is a function symbol F with

arguments, we call it a term of F. The number of constants and function symbols in a

term is called its size. The introduction of function symbols to Datalog rules makes

the language Turing-complete, therefore invalidating complexity and termination

guarantees (Schreye and Decorte 1994). We introduce a sufficient condition for

detection of termination in the presence of function symbols, and discuss the

evaluation and complexity when termination is guaranteed.

We say that a rule is size-bounding for F if the sizes of the terms of F in the

conclusion are guaranteed to be no larger than the size of the term of F with the

maximum size in the hypotheses. If a set of Datalog rules extended with function

symbols is size-bounding for every function symbol, then bottom-up evaluation is

guaranteed to terminate. Note that rules with no function symbols in the conclusion

are size-bounding by definition.

Given a set of size-bounding Datalog rules, we perform bottom-up evaluation and

calculate its complexity exactly as described before. However, the sizes of predicates

and domains of predicate arguments need to be made more precise for calculating

the number of firings, because they can take on terms as values. For a function

symbol F, we define count(F) to be the number of different terms of F that can

appear during evaluation. If a size-bounding rule r has a term of F in the conclusion

distinct from terms of F̧ that appear in its hypotheses, then the contribution of r to

count(F) is bounded by the product of the domains of the variables that appear in

the term of F in the conclusion of r. Therefore, count(F) is bounded by the sum of

such contributions in every rule. The size of the domain of the ith argument of a

predicate p (#dom(p.i)) is bounded by count(F), if there is a rule whose conclusion’s

predicate is p and (i) its ith argument is a term of F, or (ii) there is a hypothesis of

predicate q whose jth argument aj is bounded by count(F) and the ith argument of

the conclusion is aj .

2-call-site sensitive analysis with a 1-call-site sensitive heap. A pointer analysis is

said to be n-call-site sensitive if it tracks the last n method calls leading to the

execution of a statement, with an m-call-site sensitive heap if it tracks the last m

method calls leading to the creation of a heap object. Out of three context-sensitive

analyses in (Smaragdakis and Balatsouras 2015), we consider the most complex

one, a 2-call-site sensitive analysis with a 1-call-site sensitive heap. The following

1 In logic programming, the converse is true; we use this notation to emphasize their presence.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


924 K. T. Tekle and Y. A. Liu

additional kinds of facts are used:

vcall(v,s,p,m) virtual call v.s(...) is at program point p in method m

htype(h,t) heap abstraction h has type t

lookup(t,s,m) method with signature s of type t is m

this(m,t) this variable for method m is t

farg(m,n,a) method m’s nth formal argument is a

aarg(p,n,a) program point p is a call whose nth actual argument is a

fret(m,v) method m’s formal return variable is v

aret(p,v) program point p is a call that assigns to actual return variable v

astore(v1,v2) store into array element as in v1[..] = v2

aload(v1,v2) load from array element as in v1 = v2[..]

etype(t,et) array type t has element type et

stype(t1,t2) type t1 is a subtype of type t2

throw(p,v) program point p throws variable v

catch(t,p,v) for exceptions at program point p with arg type t, assign arg to v

in(p,m) program point p is in method m

The analysis defines the following predicates and infers facts of them using the

rules in Fig. 2.

• v pt(v,c,h,hc): variable v in context c may point to heap abstraction h in

heap context hc

• f pt(h1,hc1,f,h2,hc2): heap abstraction h1 in heap context hc1 may have its

field f pointing to heap abstraction h2 in heap context hc2

• r(m,c): method m is reached in context c

• call(p,c1,m,c2): program point p in context c1 calls method m in context c2

• assign(v1,c1,v2,c2): variable v1 in context c1 is assigned the value of v2 in

context c2

Each rule gives a direct implication based on the meaning of the predicate. For

example, rule (R15) says: if method m is reached in context P(a,b), and variable

v is assigned a new heap abstraction h in method m, then v in context P(a,b)

may point to h in heap context a. Note that a context is a pair represented with

function symbol P since the analysis is 2-call-site sensitive, and that an initial fact

r(main,P(null,null)) can be used to indicate that method main is reached in an

initial context where the last two calls before calling main are null.

Following the method above, we first show that the rules are size-bounding

for P (the only function symbol). (R16), (R17), (R18), (R20), (R21) are trivially

size-bounding since they have no function symbols in the conclusion. (R15) is size-

bounding since the term of P appearing in the conclusion is identical to the one in

the hypotheses. (R19) is size-bounding since (i) P(a,b) in the conclusion is identical

to an occurrence of P in the hypotheses, and (ii) for P(p,a), p is a program point

(i.e., a constant), and therefore cannot have a larger size than b, and the size of

P(p,a) is no more than P(a,b).

Next, we determine which arguments of which predicates are bounded by count(P).

These are v pt.2 due to (R15) and (R19), r.2 due to (R19), call.2 and call.4 due

to (R19), and assign.2 and assign.4 due to (R20) and (R21) .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions925

Fig. 2. A 2-call-site sensitive analysis with a 1-call-site sensitive heap, and decomposed rules.

Finally, we determine count(P). The only rule whose conclusion contains a term

of P distinct from the terms in its hypotheses is (R19). The variables of this term

of P are p and a. The source of p is the third argument of the first hypothesis,

therefore its domain size is #vcall.3. The source of a is the first argument in the

terms of P in the second and third hypotheses, but this argument of P is, as just

analyzed, only from the third argument of the first hypothesis. Therefore, count(P)

is O((#vcall.3)2).

We decompose the rules with our algorithm as shown in Fig. 2, and the calculated

complexities are shown in Table 2.

5 Handling rules with universal quantification—applied to flow-sensitive

must-point-to analysis

Must-point-to analysis determines the heap abstractions that a pointer variable or

expression must refer to, as opposed to may refer to, in all program executions.

Flow-sensitive analysis determines analysis results specific to each program point, as

opposed to one global result for the program. Therefore, flow-sensitive must-point-to

analysis can give significantly more certain results that complement flow-insensitive

may-point-to alias analysis. This analysis poses two new challenges:

1. The analysis is much more complex, requiring extensions to Datalog with

universal quantification and negation.

2. The analysis algorithm is much more sophisticated, requiring new techniques to

keep the complexity from increasing.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


926 K. T. Tekle and Y. A. Liu

Table 2. Complexities for a 2-call-site sensitive analysis with a 1-call-site

sensitive heap

(R15) O(min(#r× #alloc.1,2/3, #alloc× #r.2/1))

(R16) O(min(#move× #v pt.2,3,4/1, #v pt× #move.1/2))

(R17/1) O(#v pt×#v pt.1,3,4/2)

(R17/2) O(min(#store× #int23.3,4,5,6/1,2, #int23× #store.2/1,3))

(R18/1) O(min(#load× #v pt.2,3,4/1, #v pt× #load.1,3/2))

(R18/2) O(min(#int24× #f pt.4,5/1,2,3, #f pt× #int24.1,3/2,4,5))

(R19/1) O(min(#vcall× #v pt.2,3,4/1, #v pt× #vcall.2,3,4/1))

(R19/2) O(#int25)

(R19/3) O(min(#int26× #lookup.1,3/2, #lookup× #int26.2,3,4,5/1))

(R19/4) O(#int27)

(R19/5) O(min(#int28× #this.2/1, #this× #int28.1,2,3,4,5/6))

(R20/1) O(min(#call× #aarg.2,3/1, #aarg× #call.2,3,4/1))

(R20/2) O(min(#int29× #farg.3/1,2, #farg× #int29.1,3,5/2,4))

(R21/1) O(min(#call× #aret.2/1, #aret× #call.2,3,4/1))

(R21/2) O(min(#int30× #fret.2/1, #fret× #int30.1,3,4/2))

Fig. 3. A flow-sensitive must-point-to analysis in Datalog with universal quantification,

negation, and inequality.

Specification using Datalog rules with universal quantification and negation. The

analysis is specified using seven rules (Smaragdakis and Balatsouras 2015), shown

in Fig. 3 (after the changes noted in the third paragraph below). The last two rules

are the core of the analysis. The first five rules define must pt and a simple case of

f must pt, where alloc, move, load, and store are as in Section 3.2 except with an

additional first argument indicating the program point, and phi is an instruction

for merging the values of two variables. The first five rules are simple Datalog

rules with one, two, or three hypotheses; they can be analyzed using the method in

Sections 2.1 and 3.1, yielding a time complexity of O(p× h2). This section focuses on

the two core rules, which are Datalog extended with universal quantification, simple

negation, as well as inequality. These two rules are the core of the flow-sensitive

analysis because they infer field-must-point-to information for each program point

by combining information from all its predecessor points.

The first core rule says that, just after instruction j, h must point via its field f to

h2 if (1) j is the next instruction of some instruction, (2) h must point via f to h2

just after some instruction, (3) for all instructions i just before j, h must point via f

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions927

to h2 at i, and (4) j is not a store, vcall, or alloc instruction that can change the

must-point-to information.

The second core rule concludes the same if the same conditions hold except that

j is a store instruction into field f of v, and v must point to a heap abstraction h3

that is not h.

Note that, compared to the original two core rules (Smaragdakis and Balatsouras

2015), we added the first two hypotheses in each rule and moved the conditions

about j out of the universal quantification. The two new hypotheses bind the free

variables not bound by the universal quantifications, and are necessary for the rules

to be correct; without them, the universal quantification returns true when no i

satisfies its domain condition next(i,j), which would lead to f must pt to hold for

all values of h, f, and h2 for any j for which no i satisfies next(i,j). The conditions

about j are moved out because they do not depend on the universally quantified

variable i. These also show that the analysis is complex and universal quantification

is challenging.

Analysis algorithm for universal quantification and inequality. Despite negation and

inequality in the core rules, the set of f must pt facts that can be inferred still

increases monotonically. Therefore, the set can be computed as a least fixed point as

for Datalog. However, if computed straightforwardly, universal quantification adds

a linear factor after each f must pt fact is added. We show how to compute it, as

well as the negation and inequality, incrementally in O(1) time.

Consider the universal quantification, in both core rules:

(forall i: next(i,j) → f must pt(i,h,f,h2))

To compute it efficiently, we maintain the following four auxiliary invariants:

prev[j] = {i: (i,j) in next} and
prev_count[j] = #prev[j], for j in next.2

prev_pt[j,h,f,h2] = {i: (i,j) in next, (i,h,f,h2) in f must pt} and
prev_pt_count[j,h,f,h2] = #prev_pt[j,h,f,h2], for j in next.2, (h,f,h2)

in f must pt.2,3,4

and replace the universal quantification with the following O(1) time test between

two aggregate count values:

prev_count[j] = prev_pt_count[j,h,f,h2]

Variables prev and prev count for the first two invariants are initialized by iterating

over each element (i,j) of input next, adding i to prev[j] and incrementing

prev count[j], in a total of O(#next) time. The next two invariants are maintained

incrementally at addition of (i,h,f,h2) to f must pt as follows, taking a total of

O(#next.2/1× f must pt) time overall all additions:

for j in next[i]: // use next to get each next node
prev_pt[j,h,f,h2] ∪= {i} // i is new to h,f,h2 because (i,h,f,h2) is new
prev_pt_count[j,h,f,h2] += 1 // increment the corresponding count by 1

The first core rule now becomes Datalog with simple negations as O(1) time tests,

and with the universal quantification as an O(1) time equality test between two

counts. Its total time complexity is O(#next.2× #f must pt.2,3,4).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


928 K. T. Tekle and Y. A. Liu

The second core rule is similar in terms of the universal quantification, but it

does not have simple negations but an inequality. We handle the inequality specially,

replacing the last two hypotheses on the last line with the following, removing the

extra variable h3:

must pt[v] - {h} != {} //use must pt[v] to get heap abstractions that v must point to

There is only one value for v in a store instruction, and the above element

subtraction and test take O(1) time. So the total time complexity of this rule is

again O(#next.2× #f must pt.2,3,4).

Complexity guarantees. Summing all time complexities together, from initialization,

maintaining auxiliary invariants, and using the two resulting rules, yields the total

time complexity

O(#next + #next.2/1× #f must pt + #next.2× #f must pt.2,3,4)

#next is bounded by O(p), the size of the program. f must pt.2,3,4 is bounded

by the domain sizes of its three arguments O(h× f × h). Therefore, the total time

complexity is O(p× h2 × f).

6 Additional pointer analyses and summary of complexity analysis results

Besides the 3 pointer analyses discussed, we also studied the remaining 6 analyses

in (Smaragdakis and Balatsouras 2015), including 3 in Appendix A of (Tekle and

Liu 2016); we do not present the rest in detail because they are simpler and do not

illustrate additional logic rule features for complexity analysis. There are also other

analyses that can be specified using Datalog rules, such as the context-free-language

formulation in (Zheng and Rugina 2008). We believe that the reader can follow our

method to produce a set of rules and analyze their complexities easily.

In addition to the precise complexities that we calculated, here we also present

the worst-case complexities in simpler terms, and provide conditions under which

the complexities are linear or quadratic. Table 3 summarizes, for each analysis, the

features used, maximum number of hypotheses in the rules, worst-case complexities,

and complexities conditioned on constraints on sizes of predicates. We denote an

n-call-site sensitive analysis with an m-call-site sensitive heap, as (n, m)-context. The

conditions used are as follows, where the conditions on all the EDB predicates are

typical for real programs.

(C1): O(#v pt.2/1)=O(1)

(C2): O(#f pt.3/1,2)=O(1)

(C3): O(#lookup.1,3/2)=O(#this.2/1)=O(#call.2/1)=O(#farg.3/1,2)=

O(#fret.2/1)=O(1)

(C4): O(#htype.2/1)=O(#in.2/1)=O(#t pt.2/1)=O(#throw.2/1)=O(1)

(C5): O(#must pt.2/1)=O(1)

(C6): O(#f must pt.2,3,4)=O(h)

(C1) says that each variable may point to a constant number of heap abstractions.

(C2) says that each field of each variable may point to a constant number of heap

abstractions. The rest are similar.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions929

Table 3. Summary of complexities. Recall p, h, and f are number of program points, heap

abstractions, and fields, respectively

Analysis Features #Hypo. Worst-case Conditional

Andersen OO (Sec. 3) Pure Datalog 3 O(p× h2) O(p× h) if (C1),

O(p) if (C1)

and (C2)

Interprocedural (Sec. A.1)2 Pure Datalog 6 O(p2 × h) O(p) if (C1), (C2)

and (C3)

Arrays (Sec. A.2)2 Pure Datalog 7 O(p2 × h) O(p) if (C1), (C2)

and (C3)

Exceptions (Sec. A.3)2 Negation 5 O(p2 × h) O(p) if (C1) and

(C3)

Reflection Pure Datalog 9 O(p3 × h) O(p× h) obtain-

able3

(0,1)-context Function

symbols

6 O(p3 × h2) –

(1,1)-context Function

symbols

6 O(p4 × h2) –

(2,1)-context (Sec. 4) Function

symbols

6 O(p5 × h2) –

Flow must (Sec. 5) Univ. quant.,

negation,

inequality

8 O(p× h2 × f) O(p× h) if (C5)

and (C6)

Complexities of pointer analysis with constraints on the sizes of program parame-

ters have been studied. One can obtain the complexities achieved in such studies using

our method, and substituting the relevant complexity parameters in our analysis with

the constraints. In (Sridharan and Fink 2009), the authors present an algorithm for

Andersen’s analysis, which runs in O((v+h)2) time for k-sparse programs, where v is

the number of variables and h is the number of heap abstractions. The definition of

k-sparse programs has two constraints: For our rules in Figure 1, the first constraint

implies O(#store.2,3/1) = O(#load.1,3/2) = O(1), and the second constraint implies

that #move+#int1+#int2 � O(v+h). Substituting these constraints in our complexity

analysis in Table 1, we obtain O((v + h) × (#v pt.2/1 + #f pt.3/1,2)), which is in

the worst case O((v + h)× h). Thus, we obtain a better and more precise complexity

than (Sridharan and Fink 2009).

For Andersen OO analysis, interprocedural analysis, and (0,1)-context-sensitive

analysis, the worst-case complexities when parametrized by only program size, n,

are known—an upper bound of O(n3) for the first two (Andersen 1994) and O(n5)

for the third (Wilson and Lam 1995). However, to our knowledge, we present

more precise complexities for these analyses for the first time, and for the other

analyses, we present complexities for the first time. Our complexity results are

improvements since they are tighter than known worst-case complexities, and when

2 In Appendix A of (Tekle and Liu 2016).
3 The conditions to obtain this complexity involve EDB predicates not discussed in this paper.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


930 K. T. Tekle and Y. A. Liu

our fine-grained analyses are used, the running time of the analyses can be better

understood.

7 Related work and conclusion

We discuss related work on Datalog evaluation, applications of rules to pointer

analysis, precise complexities for pointer analyses, and directions for future work.

Evaluation of Datalog has been studied for a long time (Ceri et al. 1990). Optimal

bottom-up evaluation of Datalog rules with complexity guarantees is first given

in (Liu and Stoller 2009), but no algorithm is given for decomposing rules except

for trying all decompositions. We build on this method for evaluating Datalog rules

and calculating complexities, but extend it to handle rules with many hypotheses

and other Datalog extensions. Our new algorithm and method are able to obtain

new or more precise complexities compared with the best previous complexities, as

discussed in Section 6.

Formulation of various static program analyses as rules has been studied. In

particular, Andersen’s pointer analysis (Andersen 1994) was formulated as deductive

rules in (Heintze and Tardieu 2001), and given as logic rules in (Saha and

Ramakrishnan 2005). Andersen’s analysis with many flavors was given in a recent

survey (Smaragdakis and Balatsouras 2015), on which we base our study. The fact

that the time complexity of Andersen’s analysis is worst-case cubic has been known

since the original introduction. (Sridharan and Fink 2009) notes that the typical

behavior is different from the worst case and proves that under certain conditions the

analysis is quadratic. We give the precise time complexities for Andersen’s analysis for

an object-oriented language, and show also precise conditions, additional to existing

literature, under which the complexities are linear or quadratic directly as results of

our complexity analyses. We also obtain precise complexities for pointer analyses

for additional language features, and provide methods for handling extensions to

Datalog such as function symbols when such extensions are necessary to implement

the analyses.

Must-point-to analyses are more complex, and rules modeling the analyses involve

universal quantification and inequality beyond pure Datalog. (Hind et al. 1999)

gives an O(n5) algorithm for a must-alias analysis (closely related to must-point-to

analyses); using methods that are also employed in optimal bottom-up evaluation

of Datalog, (Goyal 2005) improves this complexity to O(n3). In this paper, we show

how to handle must-point-to analysis expressed using rules extended with universal

quantification and a special inequality, and provide precise complexity analyses for

our efficient implementation. Transforming quantifications into aggregate queries

such as counts has been used in other applications, e.g., distributed algorithms (Liu

et al. 2012), but how to handle inequality in general is a subject for future

study.

Future directions include analyzing and optimizing the space complexity of pointer

analyses, especially to remove unnecessary intermediate predicates introduced for

rules with many hypotheses, and optimization of demand-driven pointer analysis

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


Precise complexity guarantees for pointer analysis via Datalog with extensions931

via queries, e.g., by using the methods of (Tekle and Liu 2010) and (Tekle and Liu

2011).

References

Andersen, L. O. 1994. Program analysis and specialization for the c programming language.

Ph.D. thesis, DIKU, University of Copenhagen, Copenhagen, Denmark.

Avots, D., Dalton, M., Livshits, V. B. and Lam, M. S. 2005. Improving software security

with a C pointer analysis. In Prof. of the 27th Intl. Conf. on Software Engineering,

332–341.

Ceri, S., Gottlob, G. and Tanca, L. 1990. Logic Programming and Databases. Springer.

Diwan, A., McKinley, K. S. and Moss, J. E. B. 1998. Type-based alias analysis. In Proc. of

the ACM SIGPLAN Conf. on Programming Language Design and Implementation, 106–117.

Ghiya, R. and Hendren, L. J. 1998. Putting pointer analysis to work. In Proc. of the 25th

ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, 121–133.

Ghiya, R., Lavery, D. M. and Sehr, D. C. 2001. On the importance of points-to analysis

and other memory disambiguation methods for C programs. In Proc. of the 2001 ACM

SIGPLAN Conf. on Programming Language Design and Implementation, 47–58.

Gorbovitski, M., Liu, Y. A., Stoller, S. D., Rothamel, T. and Tekle, T. 2010. Alias analysis

for optimization of dynamic languages. In Proceedings of the 6th Symposium on Dynamic

Languages. ACM Press, 27–42.

Goyal, D. 2005. Transformational derivation of an improved alias analysis algorithm. Higher-

Order and Symbolic Computation 18, 1–2, 15–49.

Hardekopf, B. and Lin, C. 2007. The ant and the grasshopper: Fast and accurate pointer

analysis for millions of lines of code. In Proc. of the ACM SIGPLAN 2007 Conf. on

Programming Language Design and Implementation, 290–299.

Heintze, N. and Tardieu, O. 2001. Ultra-fast aliasing analysis using CLA: A million lines of

C code in a second. In Proc. of the 2001 ACM SIGPLAN Conf. on Programming Language

Design and Implementation, 254–263.

Hind, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Proc. of the

2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and

Engineering, 54–61.

Hind, M., Burke, M. G., Carini, P. R. and Choi, J. 1999. Interprocedural pointer alias

analysis. ACM Trans. Program. Lang. Syst. 21, 4, 848–894.

Hind, M. and Pioli, A. 2000. Which pointer analysis should I use? In Proc. of the 2000 ACM

SIGSOFT Intl. Symp. on Software Testing and Analysis, 113–123.

Landi, W. 1992. Undecidability of static analysis. ACM Letters on Programming Languages

and Systems 1, 4, 323–337.

Liu, Y. A. and Stoller, S. D. 2009. From Datalog rules to efficient programs with time and

space guarantees. ACM Trans. Program. Lang. Syst. 31, 6 (Aug.), 21:1–21:38.

Liu, Y. A., Stoller, S. D., Lin, B. and Gorbovitski, M. 2012. From clarity to efficiency

for distributed algorithms. In Proc. of the 27th ACM SIGPLAN Conf. on Object-Oriented

Programming, Systems, Languages and Applications, 395–410.

Milanova, A., Rountev, A. and Ryder, B. G. 2005. Parameterized object sensitivity for

points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1, 1–41.

Pearce, D. J., Kelly, P. H. J. and Hankin, C. 2007. Efficient field-sensitive pointer analysis

of C. ACM Trans. Program. Lang. Syst. 30, 1.

Ramalingam, G. 1994. The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16, 5,

1467–1471.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core


932 K. T. Tekle and Y. A. Liu

Sagiv, S., Reps, T. W. and Wilhelm, R. 1998. Solving shape-analysis problems in languages

with destructive updating. ACM Trans. Program. Lang. Syst. 20, 1, 1–50.

Saha, D. and Ramakrishnan, C. R. 2005. Incremental and demand-driven points-to analysis

using logic programming. In Proc. of the 7th Intl. ACM SIGPLAN Conf. on Principles and

Practice of Declarative Programming, 117–128.

Schreye, D. D. and Decorte, S. 1994. Termination of logic programs: The never-ending

story. The Journal of Logic Programming 19/20, 199–260.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G. 1979.

Access path selection in a relational database management system. In Proc. of the 1979

ACM SIGMOD Intl. Conf. on Management of Data, 23–34.

Shapiro, M. and Horwitz, S. 1997. The effects of the precision of pointer analysis. In Proc.

of the 4th Intl. Symp. on Static Analysis, 16–34.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In

Program Flow Analysis: Theory and Applications. Prentice-Hall, Chapter 7, 189–233.

Shivers, O. G. 1991. Control-flow analysis of higher-order languages of taming lambda. Ph.D.

thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Smaragdakis, Y. and Balatsouras, G. 2015. Pointer analysis. Foundations and Trends in

Programming Languages 2, 1, 1–69.

Smaragdakis, Y., Bravenboer, M. and Lhoták, O. 2011. Pick your contexts well:

Understanding object-sensitivity. In Proc. of the 38th Symp. on Principles of Programming

Languages, 17–30.

Sridharan, M. and Fink, S. J. 2009. The complexity of Andersen’s analysis in practice. In

Proc. of the 16th Intl. Symp. on Static Analysis, 205–221.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In Conf. Record of the 23rd

ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, 32–41.

Steinbrunn, M., Moerkotte, G. and Kemper, A. 1997. Heuristic and randomized

optimization for the join ordering problem. The VLDB Journal 6, 3, 191–208.

Tekle, K. T. and Liu, Y. A. 2010. Precise complexity analysis for efficient Datalog queries.

In Proc. of the 12th Intl. ACM SIGPLAN Conf. on Principles and Practice of Declarative

Programming, 35–44.

Tekle, K. T. and Liu, Y. A. 2011. More efficient Datalog queries: Subsumptive tabling

beats magic sets. In Proc. of the 2011 ACM SIGMOD Intl. Conf. on Management of Data,

661–672.

Tekle, K. T. and Liu, Y. A. 2016. Precise Complexity Guarantees for Pointer Analysis via

Datalog with Extensions. ArXiv e-prints .

Wilson, R. P. and Lam, M. S. 1995. Efficient context-sensitive pointer analysis for C

programs. In Proc. of the ACM SIGPLAN’95 Conf. on Programming Language Design and

Implementation, 1–12.

Zheng, X. and Rugina, R. 2008. Demand-driven alias analysis for C. In Proc. of the 35th

ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, 197–208.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068416000405
Downloaded from http:/www.cambridge.org/core. IP address: 80.82.78.170, on 28 Dec 2016 at 18:27:24, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068416000405
http:/www.cambridge.org/core

