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ABSTRACT
Given a set of Datalog rules, facts, and a query, answers
to the query can be inferred bottom-up starting with the
facts or top-down starting with the query. The dominant
strategies to improve the performance of answering queries
are reusing answers to subqueries for top-down methods, and
transforming rules based on demand from the query, such
as the well-known magic sets transformation, for bottom-
up methods. However, the performance of these strategies
vary drastically, and the most effective method remained
unknown.

This paper describes precise time and space complexity
analysis for efficient implementation of Datalog queries using
subsumptive tabling, a top-down evaluation method with
more reuse of answers than the dominant tabling strategy,
and shows that subsumptive tabling beats bottom-up eval-
uation of rules after magic sets transformation in both time
and space complexities. It also describes subsumptive de-
mand transformation, a novel method for transforming the
rules so that bottom-up evaluation of the transformed rules
mimics subsumptive tabling; we show that the time com-
plexity of bottom-up evaluation after this transformation is
equal to the the time complexity of top-down evaluation
with subsumptive tabling. The paper further describes sub-
sumption optimization, an optimization to increase the use
of subsumption in subsumptive methods, and shows its ap-
plication in the derivation of a well-known demand-driven
pointer analysis algorithm. We support our analyses and
comparisons through experiments with applications in on-
tology queries and program analysis.
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1. INTRODUCTION
Datalog [5] is a logic language for deductive databases [1],

program analysis [30], security [9], networking [17], and many
other applications [14, 10, 24, 26].

Given a set of Datalog rules, facts, and a query, answers to
the query can be inferred using bottom-up evaluation start-
ing with the facts or top-down evaluation starting with the
query. The dominant strategies for efficient evaluations are
top-down evaluation with variant tabling [25] to memoize
and reuse answers to subqueries, and bottom-up evaluation
with the magic set transformation (MST) [3] so that eval-
uation of the transformed rules are driven by demand from
the query.

For a subquery encountered during top-down evaluation
with variant tabling, only answers from identical subqueries
are reused. However, there may exist another subquery
already encountered that subsumes the current subquery,
i.e., whose answers are guaranteed to contain all answers
to the current subquery. Using this, top-down evaluation
can be coupled with a tabling strategy, called subsumptive
tabling [21], that performs more reuse of previously inferred
answers.

The performance of Datalog engines is difficult to under-
stand due to the multitude of factors involved. For example,
the performance of different tabling strategies vary dras-
tically [21], and bottom-up evaluation after MST may be
much slower than the bottom-up evaluation of the original
rules [23]. Choosing the best evaluation method for a given
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set of rules requires precise characterization of the time and
space complexities of each evaluation method.

Despite extensive research on optimization of Datalog rules
[7, 22, 18, 13], given a set of rules and a query, no trans-
formations that yield better time complexity than MST are
known. Demand transformation [27] is similar to MST, with
better space complexity in program size, but the same time
complexity. There exists no transformation such that the
bottom-up evaluation of transformed rules achieves the per-
formance of subsumptive tabling.

This work describes precise time and space complexity
analysis for efficiently answering Datalog queries using sub-
sumptive tabling, and precise relationships between top-
down evaluations with variant and subsumptive tabling, and
their relationship to bottom-up evaluation after MST. We
give complexity analyses for top-down evaluation with sub-
sumptive tabling by determining the binding patterns of
arguments for queries, and the subqueries that are guar-
anteed to reuse answers from subsuming subqueries, and
then extending the analysis for variant tabling [27] to sub-
sumptive tabling. We show that top-down evaluation us-
ing subsumptive tabling is equal to or better than using
variant tabling in both time and space complexities. Using
this result and the relationship between top-down evalua-
tion with variant tabling and bottom-up evaluation after
MST as shown in [27], we show that subsumptive tabling is
equal to or better than MST in both time and space com-
plexities. Then, we characterize a class of Datalog rules for
which subsumptive tabling is guaranteed to be better than
variant tabling in both time and space complexities.

Additionally, we describe a transformation, called sub-
sumptive demand transformation (SDT), such that bottom-
up evaluation of the rules produced by SDT achieves the
performance of subsumptive tabling. We modify bottom-
up evaluation slightly, and couple it with SDT to obtain
subsumptive bottom-up evaluation. We show that the time
and space complexities of subsumptive bottom-up evalua-
tion and subsumptive tabling are equal for rules with no
more than two hypotheses each and no singleton variables;
and that the time complexity of subsumptive bottom-up
evaluation may be better than subsumptive tabling for other
rules. We also show that using SDT is equal to or better than
using MST. We show that for rules for which subsumptive
tabling outperforms variant tabling, SDT outperforms MST.

Building on our analyses, we devise a transformation,
called subsumption optimization, for making sure that a
query that subsumes another in subsumptive tabling is per-
formed first when it is better to do so in time complexity.
Using this method, we show how to systematically derive
Heintze and Tardieu’s demand-driven pointer analysis [11]
from the definition of Andersen’s pointer analysis.

We show experimental results on an illustrative set of Dat-
alog rules, rules for Andersen’s pointer analysis [2], and rules
for ontology queries from OpenRuleBench [15]. We first con-
firm our complexity analyses, and then confirm when sub-
sumptive tabling and SDT are necessary for efficient evalu-
ation of queries.

The rest of the paper is organized as follows. Section 2 de-
fines Datalog, evaluation methods, and terminologies. Sec-
tion 3 presents complexity analysis of subsumptive tabling,
and the relationships with variant tabling and magic sets.
Section 4 describes subsumptive demand transformation,
and its relationship with the other methods. Section 5

presents subsumption optimization and its application to
pointer analysis. Section 6 presents experimental results.
Section 7 discusses related work and concludes.

2. DATALOG AND EVALUATION
METHODS

Datalog is a language for defining rules, facts, and queries,
where rules can be used with facts to answer queries. A
Datalog rule is of the form:

p(a1, ..., ak) : − p1(a11, ..., a1k1), ..., ph(ah1, ..., ahkh).

where h is a finite natural number, each pi (respectively p)
is a predicate of finite number ki (respectively k) arguments,
each aij and ai is either a constant or a variable, and each
variable in the arguments of p must also be in the arguments
of some pi.

A predicate with arguments is called an atom. If the right
side of a rule is empty, then the atom on the left must have
only constant arguments, and is called a fact ; we indicate a
fact with an ending dot. If the left side of a rule is empty,
then each atom on the right side is called a query ; we indicate
a query with an ending question mark. For the rest of the
paper, “rule” refers only to the case where both sides of the
rule are not empty, where each atom on the right is called a
hypothesis, and the atom on the left is called the conclusion.

The meaning of a set of rules, facts, and queries is the set
of facts that are given or can be inferred using the rules and
that match the queries. We will consider the case of one
query, because a set of queries is equivalent to one query by
adding a rule whose hypotheses are the set of queries and
whose conclusion is the one query.

Tabling for top-down evaluation. Top-down evalua-
tion starts with a given query, generates subqueries from
hypotheses of rules whose conclusions match the query, con-
sidering rules in the order given and considering hypothe-
ses from left to right, and generates repeatedly until the
subqueries match given facts. This may lead to repeated
subqueries or, when recursive rules exist, infinite recursion.
To address this problem, tabling memoizes answers to sub-
queries, and reuses them when possible.

Variant tabling [6] is the dominant tabling strategy. It
stores and reuses the answers to variants of previously en-
countered subqueries, where a subquery is a variant of an-
other if they are equal modulo variable renaming.

Subsumptive tabling [21] reuses more answers by consider-
ing previous subqueries that subsume a new query, not only
previous queries that are variants of the new query. A sub-
query q1 subsumes subquery q2 if there is a substitution θ
of variables such that θ(q1) = q2.

Precise complexity analysis for variant tabling has been
studied recently [27]. We describe precise complexity anal-
ysis for subsumptive tabling in Section 3.

Demand-driven transformations for bottom-up eval-
uation. Bottom-up evaluation starts with given facts, in-
fers new facts from conclusions of rules whose hypotheses
match existing facts, and does so repeatedly until all facts
are inferred. In this work, by bottom-up evaluation, we re-
fer to the optimal bottom-up evaluation method of Liu and
Stoller [16] that can be systematically analyzed for time and
space complexities.

Bottom-up evaluation infers all facts that can possibly be
inferred without taking the given query into account, and
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thus may take asymptotically more time than necessary. To
take the query into account, a source-level transformation,
like the well-known magic set transformation (MST) [3], is
performed. Demand transformation [27] is such a transfor-
mation that results in rules with the same time complexity
and better space complexity in program size by improving
the annotations used in MST. It transforms a set of rules
and a query into a new set of rules, such that the set of
facts that can be inferred from the new set of rules contains
only facts that would be inferred during a top-down eval-
uation of the original rules with variant tabling. We call
this transformation variant demand transformation in this
paper.

There exists no transformation analogous to subsumptive
tabling for bottom-up evaluation. We develop the first such
transformation, called subsumptive demand transformation,
in Section 4.

Terminology. We refer to the different evaluation methods
described above as follows:

• v-topdown: Top-down evaluation with variant tabling

• s-topdown: Top-down evaluation with subsumptive
tabling

• v-bottomup: Bottom-up evaluation after variant de-
mand transformation

• s-bottomup: Bottom-up evaluation after subsumptive
demand transformation

The asymptotic time complexities of the above methods
are denoted Tv−topdn, Ts−topdn, Tv−botup, Ts−botup. Simi-
larly, asymptotic space complexities are denoted with S and
the corresponding subscripts. For space complexities, we
do not consider the stack space used by top-down evalua-
tion. Bottom-up evaluation does not use stack space. For
both time and space, the denoted complexities are in data
size. We assume that program size, including the number of
rules, the number of hypotheses in rules, and the number of
arguments of predicates, is constant.

A singleton variable in a Datalog rule is a variable that
occurs in one hypothesis and not in other hypotheses or the
conclusion. Any set of Datalog rules can be transformed
easily into rules that have at most two hypotheses and no
singleton variables. We say that rules in this form are in
minimal form.

An IDB (intensional database) predicate is a predicate de-
fined by rules. An IDB hypothesis is a hypothesis whose
predicate is an IDB predicate.

In examples, we use letters from p to z for variables, c for
constants, and a for either constant or variable arguments
of predicates.

For complexity calculation, we use the following notations.

• #p: the number of facts of predicate p (given or in-
ferred), called the size of p.

• #p.i1,...,in/j1,...,jm: the maximum number of com-
binations of values for the i1,...,inth arguments of the
facts of predicate p, given a fixed combination of values
for the j1,...,jmth arguments.

• #p.i: the actual number of values of the ith argument
of predicate p.

• dom(p.i): the size of the domain of the ith argument
of predicate p, i.e., the number of all possible values of
that argument of p.

Running example. We define a predicate of being related
as a running example. A person x is related to a person y if
x is in an immediate family with y, or if there is a person u
in an immediate family with another person v, u is related
to x, and v is related to y. This relation can be defined in
Datalog using the following two rules:

rel(x,y) :- imm(x,y). (1)

rel(x,y) :- imm(u,v), rel(u,x), rel(v,y). (2)

For example, given these two rules and a query rel(x,y)?,
a subquery rel(c,x)? for some constant c will be gen-
erated from the second hypothesis of the second rule. In
variant tabling, this subquery will be used to generate more
subqueries. In subsumptive tabling, since the given query
subsumes this subquery, the answers to the subquery will be
looked up in the table entry for the given query.

3. COMPLEXITY ANALYSIS OF SUBSUMP-
TIVE TABLING FOR TOP-DOWN EVAL-
UATION

For analyzing the time and space complexities of top-down
evaluation with subsumptive tabling, we make the following
assumptions:

• Depth-first scheduling is used. This selects the next
subqueries to evaluate in a depth-first manner. For
v-topdown, the selection of the scheduling strategy
does not change the complexities, since each distinct
subquery is guaranteed to be processed, regardless of
when. But, for s-topdown, the order of evaluation
of subqueries may change whether a subquery is pro-
cessed or not, since a subsuming one may have been
encountered before in an order, and may not have
been encountered in another. We show complexity
analyses for depth-first scheduling, and then describe
the changes necessary for other dominant scheduling
strategies.

• No early completion is used. This uses all relevant
rules to infer answers to a subquery the first time it is
evaluated, even when it is a subquery whose arguments
are all bound and has been evaluated to be true.

• All IDB predicates are tabled. This allows for the best
asymptotic time complexity.

• All predicates are perfectly indexed. So, it takes con-
stant time to retrieve a fact of a predicate given fixed
values for some of its arguments. Not using perfect
indices would increase asymptotic complexity by the
cost of retrieving facts in the absence of perfect in-
dices. Mainstream implementations of tabling, such
as XSB [6] and YAP [8], support perfect indexing.

In this section, we show the calculation of time and space
complexities for s-topdown, that it is equal to or better than
v-topdown, and that it is equal to or better than MST for
rules in a certain minimal form, and we identify a class of
rules for which s-topdown is guaranteed to outperform v-
topdown and MST.
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3.1 Subsumptive binding annotation and com-
plexity analyses

The time complexity of s-topdown is the sum of the num-
ber of facts that match the hypotheses in the body of each
rule for each subquery that is not looked up in the table.
The space complexity is the number of facts stored in the
table entries. These are impossible to determine statically,
since it is not possible to determine whether a subquery will
be looked up or evaluated.

We give a method for obtaining an upper bound on the
complexities that is as close as possible to the actual com-
plexities. For easier and more precise calculation of the com-
plexities, we first generate a query and rules annotated with
the patterns of argument bindings based on the given query,
but whose evaluation using s-topdown is otherwise the same
as the given query and rules. Then, we calculate the com-
plexity of evaluating the annotated query and rules.

To annotate a set of rules with respect to a query, we
first determine the patterns of argument bindings during
the evaluation of the query, called subsumptive demand pat-
terns, and then generate an annotated rule for each pattern
determined. This method is a generalization of the binding
annotation method shown in [27] that is used for v-topdown.

Subsumptive demand patterns. For each subquery, we
determine whether it is guaranteed to be evaluated during
s-topdown, where a subquery is guaranteed to be evaluated
if it will be evaluated during s-topdown regardless of what
facts are given or inferred. Given a set of rules and a query,
each subquery p(a1,...,ak) encountered during s-topdown
yields an s-demand pattern 〈p, n, r, g, s〉, where the subquery
is the nth hypothesis of rule r, s is a string, called the pat-
tern string, of length k whose ith character is ‘b’ if ai is
bound, and ‘f’ otherwise, and g is a boolean value indicat-
ing whether this subquery is guaranteed to be evaluated.
For an atom p(a1,...,ak) and a pattern string s of length k,
we say that ai is bound by s if the ith character of s is ‘b’.
An s-demand pattern d is said to subsume another s-

demand pattern d2 if d is guaranteed to be evaluated and
any subquery with the pattern d subsumes subqueries with
the pattern d2. Formally, an s-demand pattern 〈p, n, r, g, s〉
subsumes an s-demand pattern 〈p2, n2, r2, g2, s2〉 if g is true,
and either (i) s contains no ‘b’s, or (ii) for each j such that
the jth character of s is ‘b’, the jth character of s2 is ‘b’,
and the hypotheses of r to the left of its nth hypothesis
is a subset of the hypotheses of r2 to the left of its n2th
hypothesis.

S-demand patterns are computed iteratively as follows un-
til no new s-demand patterns can be added. The s-demand
pattern of the given query p(a1,...,ak) is 〈p, 1, , true, s〉,
where 1 and indicate that the given query can be regarded
as the first (and only) hypothesis of a non-existing rule, and
the ith character of s is ‘b’ if ai is a constant, and ‘f’ oth-
erwise. For each computed s-demand pattern 〈p, n, r, g, s〉,
for each rule r2 that defines p, and for each jth hypothesis
h of r2 whose predicate is an IDB predicate, say, q, add an
s-demand pattern 〈q, j, r2, g2, s2〉, if this s-demand pattern
is not subsumed by an s-demand pattern already computed,
where g2 is true iff (i) g is true, (ii) j is 1, and (iii) the ith
character of s2 is ‘b’ if the ith argument of h is a constant,
appears in a hypothesis to the left of h in r, or is an argu-
ment of the conclusion of r bound by s; and ‘f’ otherwise.

After s-demand patterns are computed, we take the pro-

jection of the first and last element of each pattern to obtain
a set of predicate-annotation pairs, and use s-demand pat-
terns to refer to only these pairs.

Annotation. For each s-demand pattern 〈p, s〉 computed,
and for each rule r that defines p, we generate an annotated
rule that obeys the pattern string s, where the conclusion
is annotated with s, and each hypothesis is annotated with
the pattern string obtained as described above.

Formally, for each s-demand pattern 〈p, s〉, and each rule
of the form

p(...) :- h1(...),...,hn(...).

we generate the rule

p_s(...) :- h1_s1(...),...,hn_sn(...).

where for each 1 ≤ k ≤ n, the ith character of sk is ‘b’ if the
ith argument of hk is a constant, appears in a hypothesis to
the left of hk, or is an argument of the conclusion bound by
s, and ‘f’ otherwise.

For the given query p(...)?, the annotated query p_s(...)?
is generated, where the ith character of s is ‘b’ if the ith
argument of the given query is a constant; and ‘f’ otherwise.

Example. For the rules in the running example and the
query rel(x,y)?, we show the difference between the anno-
tated rules for v-topdown and s-topdown. For s-topdown,
the computed set of s-demand patterns is {〈rel,‘ff’〉}, since
the given query with both arguments free subsumes all other
subsequent subqueries for rel, and hence the query
rel_ff(x,y)? and the following two annotated rules are
generated.

rel_ff(x,y) :- imm(x,y). (1a)

rel_ff(x,y) :- imm(u,v), rel_bf(u,x), (2a)

rel_bf(v,y).

For v-topdown, since subsumption is not used, the set of
demand patterns would be {〈rel,‘ff’〉, 〈rel,‘bf’〉, 〈rel,‘bb’〉},
and annotation results in the same annotated query, the two
annotated rules above, plus the four annotated rules below:

rel_bf(x,y) :- imm(x,y). (1b)

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), (2b)

rel_bf(v,y).

rel_bb(x,y) :- imm(x,y). (1c)

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), (2c)

rel_bb(v,y).

To the best of our knowledge, subsumptive binding anno-
tation is the first annotation method that considers subsum-
ing queries, and is distinct from previous methods used for
v-topdown [27] and predicate splitting [28].

Other scheduling strategies. For local scheduling,
batched scheduling, or other scheduling strategies, the
method for obtaining the demand patterns need to be modi-
fied. The idea is that for each scheduling strategy, one needs
to determine a heuristic that identifies subqueries guaran-
teed to be evaluated. For example, for local scheduling,
which retrieves all answers from a subquery before contin-
uing to other hypotheses, a subquery is guaranteed to be
evaluated if it is the first hypothesis of a rule whose conclu-
sion is guaranteed to be evaluated. For batched scheduling,
which retrieves one answer from a subquery and then contin-
ues to other hypothesis, only the given query and the first
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hypothesis of the first rule that defines the given query is
guaranteed to be evaluated.

Using these heuristics, the demand pattern identification
method can be modified to obtain the relevant demand pat-
terns, and the same annotation method can be used after-
wards.

Time and space complexity analyses. After subsump-
tive binding annotation, we use the method in [27] on the
annotated rules for computing time and space complexities.

The time complexity is the sum of asymptotic complexi-
ties incurred by all annotated rules. For an annotated rule,
the asymptotic time complexity it incurs is the product of:
(1) local complexity—the number of different values that the
free variables in the rule can take, and (2) number of in-
vocations—the number of different values that the bound
arguments of the conclusion can take.

The local complexity of a rule is the product of complexity
factors incurred by all hypotheses of the rule. Each
hypothesis, say p_s(a1,...,an), of r incurs the com-
plexity factorO(#p.f1,...,fk/b1,...,bl), where fi is the
index of the ith ‘f’ in s, and bi is the index of the ith
‘b’ in s.

The number of invocations of a rule is the sum of all values
possibly taken by its bound arguments in all possible
subqueries. This is calculated by considering the hy-
potheses in all rules that have the same annotation as
the conclusion of the rule being analyzed. For each hy-
pothesis in each rule whose annotation is the same as
the conclusion of the analyzed rule, we determine how
many values the bound arguments take by finding out
which argument of which hypotheses bind those argu-
ments.

For the running example, the local complexity of (2a) is
O(#imm × #rel.2/1 × #rel.2/1), and the number of in-
vocations is O(1) because there are no bound arguments,
based on the annotation of the conclusion being ‘ff’. There-
fore, the time complexity incurred by (2a) is O(#imm ×
(#rel.2/1)2).
The space complexity of s-topdown is bound by the num-

ber of facts stored. This is the sum, over all s-demand pat-
terns, of the product of (i) the number of distinct table en-
tries for an annotation and (ii) the number of facts for each
table entry.

The number of distinct table entries is the number of val-
ues that the bound arguments in the conclusion take
for an annotated predicate. It can be calculated using
the method for calculating the number of invocations
in time complexity, where the annotated predicate be-
ing analyzed for space complexity is considered as the
predicate of the conclusion of the rule being analyzed
in the method for calculating the number of invoca-
tions.

The number of facts for each table entry is the number of
values that the free arguments in the conclusion take
for rules defining that annotated predicate. Each free
argument in the conclusion is bound by one or more
hypotheses, and the number of values it can take is the
minimum of the number of values that argument can
take in the hypotheses it appears in. The number of

facts is calculated as product of the number of values
that each free argument in the conclusion can take.

For the running example, the only s-demand pattern is
〈rel,‘ff’〉, therefore there is O(1) table entries, and the num-
ber of facts for that table entry is O(#rel). Hence, the space
complexity is O(#rel).

3.2 Subsumptive beats variant and magic sets
We show that s-topdown always beats v-topdown, and

therefore beats the magic set transformation (MST) for a
form of Datalog rules, which all Datalog rules can be reduced
to.

The following lemma shows that the check for subsuming
used in s-topdown is more expensive than the check for being
variant in v-topdown.

Lemma 1. Let q be an IDB subquery of k arguments. The
first time q is encountered in top-down evaluation, the time
complexity of table lookup for q is O(k) in variant tabling,
and O(2k) in subsumptive tabling.

Proof. In variant tabling, the evaluation looks up whether
there is a previous table entry with the same label up to
variable renaming, and create it if not. This lookup can be
trivially done in O(k) time. Table entry creation can also
be done in O(k) time.

In subsumptive tabling, the evaluation needs to look up
for every possible subsuming query, whether there is a table
with that label. If the query has b bound arguments, there
are 2b queries that subsume q, and b is O(k), therefore table
lookup takes O(2k) time. Table entry creation can be done
in O(k) time. Therefore, the total time complexity is O(2k).

However, the difference is asymptotic only in the num-
ber of arguments, which is considered a constant because
it affects only program complexity. This paper considers
only data complexity, which is standard practice for data-
intensive applications.

We show that the time complexity of s-topdown is no
worse than the time complexity of v-topdown. For the the-
orems below, the time and space complexities are compared
for a set of rules and a given query.

Theorem 2 (Subsumptive beats variant in time).
Ts−topdn ≤ Tv−topdn.

Proof. A subquery generated during s-topdown is guaran-
teed to be generated during v-topdown, since they follow the
same algorithm, except that s-topdown may avoid generat-
ing some subqueries. Therefore, the facts inferred during
s-topdown is a subset, not necessarily proper, of the facts
inferred during v-topdown. Table lookup is more costly in
s-topdown as shown in Lemma 1, but it does not affect data
complexity. We obtain Ts−topdn ≤ Tv−topdn.

Using a similar argument, we show that s-topdown uses
no more space than v-topdown asymptotically.

Theorem 3 (Subsumptive beats variant in space).
Ss−topdn ≤ Sv−topdn.

Proof. As described in the last proof, the subqueries gen-
erated during s-topdown is a subset of the subqueries gen-
erated during v-topdown. Therefore, the number of tables
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created during s-topdown is no more than during v-topdown,
and the number of answers stored in tables that exist in both
are equal since they both should compute the same answers.
Therefore, Ss−topdn ≤ Sv−topdn.

We have established that s-topdown is at worst equal to
v-topdown. The following theorem shows that it can in fact
be better in both time and space complexities.

Theorem 4 (Subsumptive properly beats variant). There
exists a set of rules and a query for which
Ts−topdn < Tv−topdn and Ss−topdn < Sv−topdn.

Proof. We prove this theorem using the running example.
Recall that subsumptive binding annotation of the rules for
the query with both arguments free results in rules (1a) and
(2a), whereas annotation for v-topdown results in the same
two rules plus four extra rules.

We have shown that the time complexity incurred by (2a)

is O(#imm×(#rel.2/1)2). However, for v-topdown, consider
annotated rules (2b) and (2c), copied below:

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), rel_bf(v,y).

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), rel_bb(v,y).

The local complexity for (2c) is O(#imm), however, there
are at least O((#imm.2)2) invocations to (2c) due to the
last hypothesis of (2c). Therefore, the time complexity of
v-topdown is at least O(#imm× (#imm.2)2).

Now, notice that values for the second argument of rel

always come from the second argument of imm, therefore
O(#imm.2) may asymptotically be larger than O(#rel.2),
hence O(#rel.2/1), but not vice versa. Therefore,
O(#imm× (#rel.2/1)2) is asymptotically smaller than
O(#imm × (#imm.2)2). Therefore, we have proven our theo-
rem for time complexity.

For space complexity, we have shown that the space com-
plexity of these two rules for s-topdown is O(#rel), which
is optimal since it is only as large as the output. For v-
topdown, there are O((#imm.2)2) table entries created for
rel_bb, which is asymptotically larger than O(#rel) in the
worst case. Therefore, we have proven our theorem for space
complexity as well.

Using Theorems 1-3 and theorems about v-topdown in [27],
we establish that s-topdown beats MST for Datalog rules
in minimal form. First, we recall the following theorem
from [27].

Theorem 5 (Variant vs. MST for minimal form). For rules
in minimal form, Tv−botup = Tv−topdn and
Sv−topdn ≤ Sv−botup.

Combining Theorem 5 with Theorems 2 and 3, we obtain
that for rules in minimal form, s-topdown beats v-bottomup.

Corollary 6 (Subsumptive beats magic sets for minimal
form). For rules in minimal form, Ts−topdn ≤ Tv−botup and
Ss−topdn ≤ Sv−botup.

Finally, we give a class of rules for which the time complex-
ity of s-topdown is better than v-topdown and v-bottomup.
The main property of this class is that there are asymp-
totically more subsumed subqueries than answers to such
subqueries in s-topdown.

Theorem 7 (A class of rules for which subsumptive prop-
erly beats variant). Let P be a set of Datalog rules and a
query. If there is a rule r in P such that (i) during s-topdown
evaluation, r will be used to infer answers for a query q, and
the subqueries generated by a hypothesis in r are properly
subsumed by q, (ii) the pattern string of those subqueries
used for the conclusion of r do not bind any variables of the
first hypothesis of r, (iii) the number of facts that match
those subqueries is asymptotically smaller than the number
of those subqueries. Then, Ts−topdn < Tv−topdn for P .

Proof. We analyze a set of rules and a query that satisfy the
given properties. Let Q be the set of subqueries generated
as described in (i), and q be the subsuming query. r is
guaranteed to match all subqueries in Q, since it matches
q that subsumes them. Therefore, in v-topdown, r would
be used to infer answers to each subquery in Q, but in s-
topdown evaluation, subqueries in Q are discarded since a
subsuming query q has already been generated.

Note that each subquery in Q contains at least one more
bound argument than q, since q properly subsumes sub-
queries in Q. Due to (ii), that bound argument does not
filter any facts of the first hypothesis of r for queries in Q
during v-topdown. Therefore, the complexity of v-topdown
includes the product of the number of subqueries in Q and
the size of the predicate of the first hypothesis of r. The com-
plexity of s-topdown does not include this complexity since
the subqueries in Q are subsumed, and due to q, it includes
(as v-topdown), the product of the answers to subqueries
in Q and the size of the predicate of the first hypothesis.
If (iii) is satisfied, then the latter is asymptotically smaller
than the former. Therefore, Ts−topdn < Tv−topdn for P .

4. SUBSUMPTIVE DEMAND TRANSFOR-
MATION FOR BOTTOM-UP
EVALUATION

We have shown that s-topdown beats v-topdown and the
analogous transformation MST for bottom-up evaluation.
However, there has been no transformation analogous to
subsumptive tabling for bottom-up evaluation. In this sec-
tion, we develop subsumptive demand transformation (SDT)
for which bottom-up evaluation of the resulting rules has no
worse performance than s-topdown, and compare SDT with
subsumptive tabling and MST.

4.1 Subsumptive demand transformation
Subsumptive demand transformation transforms a set of

rules and a query into a new set of rules, such that the set of
facts that can be inferred from the new set of rules contains
only facts that would be inferred during v-topdown of the
original rules. It adds new rules that define needed facts for
each hypothesis in each rule, adds hypotheses to the original
rules to restrict computation to infer only needed facts, and
adds negated hypotheses to the rules that define needed facts
to make use of subsumption. For each s-demand pattern
〈p, s〉, and for each rule

p(...) :- h1,..., hn.

it generates

p(...) :- d_p_s(a1,...,ak), h1,..., hn.

where d_p_s is a new predicate, called demand predicate,
and a1,...,ak are arguments of the conclusion that are bound
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by s. The added hypotheses restrict the rules to infer only
facts necessary. The demand predicates are defined as fol-
lows. For the given query, p(a1,...,ak)?, the following fact
is generated

d_p_s(ab1,...,abl).

where ab1,...,abl are the constant arguments of the query, and
s is the pattern string of the query. For each rule r gener-
ated, c :- h0,..., hn., and for each hi of an IDB predicate
p, the following rule is generated

d_p_s(a1,...,ak) :- h0,..., hi−1,

not d_p_s1(...), ...

where a1,...,ak are the bound arguments of hi, s is the pat-
tern string of hi, and there is a negated hypothesis not

d_p_sj(...) for each pattern string sj that properly sub-
sumes s, over those arguments among a1,...,ak that are bound
by si. A pattern string s1 of length n properly subsumes
a pattern string s2 of length n iff s1 and s2 are different,
and for each i less than n, the ith character of s1 is either
‘f’ or the same as the ith character of s2. The negated
hypotheses ensure that no demand has been inferred that
would correspond to a subsuming query in s-topdown.

For the rules in the running example, and the query
rel(c,y)?, the s-demand patterns are 〈rel,‘bf’〉 and
〈rel,‘bb’〉, and subsumptive demand transformation results
in the following rules:

rel(x,y) :- d_rel_bf(x), imm(x,y). (1bf)

rel(x,y) :- d_rel_bf(x), imm(u,v),

rel(u,x), rel(v,y). (2bf)

rel(x,y) :- d_rel_bb(x,y), imm(x,y). (1bb)

rel(x,y) :- d_rel_bb(x,y), imm(u,v), (2bb)

rel(u,x), rel(v,y).

d_rel_bf(c). (Q)

d_rel_bb(u,x) :- d_rel_bf(x), imm(u,v), (2bf.3)

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

d_rel_bf(v) :- d_rel_bf(x), imm(u,v), (2bf.4)

rel(u,x),

not d_rel_ff.

d_rel_bb(u,x) :- d_rel_bb(x,y), imm(u,v). (2bb.3)

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

d_rel_bb(u,x) :- d_rel_bb(x,y), imm(u,v), (2bb.4)

rel(u,x).

not d_rel_bf(u),

not d_rel_fb(x),

not d_rel_ff.

where each rule (Ns) is generated from rule (N) for the pat-
tern string s, the fact (Q) is generated from the given query,
and each rule (Ns.M) captures the demand due to the Mth
hypothesis of rule (Ns).

Finally, each resulting rule is split into rules of two hy-
potheses from left to right. This transformation coupled
with the bottom-up evaluation provides an implementation
method with the same time complexity as and better space
complexity than v-bottomup.

This transformation follows the same method as variant
demand transformation, except that it uses subsumptive de-
mand patterns and inserts the negated hypotheses for sub-
sumption of demand facts.

Handling negation. SDT introduces negated hypotheses
to rules, and negation in Datalog may be interpreted un-
der several different semantics. To match the behavior of
subsumptive tabling, we use inflationary semantics [12] for
negation in bottom-up evaluation. It is a temporal seman-
tics. It checks whether a fact exists at the time when the
negation is encountered. In other words, when there exists
a substitution of variables in the rule such that all non-
negated hypotheses of the rule are facts, then the negated
hypotheses under that substitution are checked whether any
of them has currently been inferred as a fact. If none has
been inferred as a fact, the rule is used to infer the con-
clusion under the substitution as a fact. We call bottom-up
evaluation extended with inflationary semantics inflationary
bottom-up evaluation.

During inflationary bottom-up evaluation, a fact may be
considered false at one point, and true at a later point. We
show that the implementation of the rules obtained by SDT
with inflationary semantics infers the same facts of the given
predicates as the rules obtained by variant demand transfor-
mation, therefore SDT preserves correctness.

Theorem 8. Let P be a set of Datalog rules and a query,
Pv be the rules obtained by variant demand transformation
from P , and Ps be the rules obtained by subsumptive demand
transformation from P . Then, for each predicate p in P ,
the bottom-up evaluation of Pv and inflationary bottom-up
evaluation of Ps infer the same facts of p.

Proof. The rules that define given predicates are the same
in Pv and Ps; only rules that define demand predicates from
SDT have additional negated hypotheses. Suppose a fact d
of a demand predicate is inferred in bottom-up evaluation
of Pv and not in the bottom-up evaluation of Ps, and that
d is used to infer a fact f of a given predicate. Then, for
the rule used to infer d in Pv, during bottom-up evaluation
of Ps, all positive hypotheses were satisfied, but at least
one of the negated hypothesis was not satisfied due to a
fact d′. By definition of the rule, d′ is a demand fact that
corresponds to a query subsuming the query corresponding
to d, therefore there exists a rule that infers f using d′.
Hence, the evaluation of Pv does not infer more facts for
given predicates than the evaluation of Ps.

For the other direction, since the evaluation is monotonic,
the evaluation of Ps cannot infer more facts than the evalu-
ation of Pv.

Scheduling in bottom-up. We have shown that the or-
der of subqueries are important for s-topdown as discussed
in Section 3. Analogously, the order of demand facts inferred
and considered is important in s-bottomup. In inflationary
bottom-up evaluation, facts are processed in an undefined
order. We modify that by considering facts for the demand
predicates first, and in the order they are inferred. If no
demand facts are left, then we consider facts for given pred-
icates. We call this evaluation method demand-first infla-
tionary bottom-up evaluation.

By considering demand facts first and in order, demand-
first inflationary bottom-up evaluation mimics s-topdown.
The only difference that remains is the retrieval order of
facts of given predicates. We have not defined such an order
for s-topdown either, and in practice, different systems may
opt for different orders. From now on, we assume that a
particular retrieval order is used for facts of given predicates,
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and the same order is used during demand-first inflationary
bottom-up evaluation.

For P being a set of rules and a query, we call the demand-
first inflationary bottom-up evaluation of the rules resulting
from SDT of P , s-bottomup of P .

4.2 Relationship to subsumptive tabling and
MST

By using the analogy in the inferred demand facts and
encountered subqueries, we first show that s-bottomup beats
s-topdown in time complexity.

Theorem 9 (S-bottomup beats s-topdown in time).
Ts−botup ≤ Ts−topdn.

Proof. Let P be a set of rules and a query. Let Pa be the
set of rules and query after subsumptive binding annotation
of P , and Ps be the set of rules obtained by SDT of P .
For a rule r in Pa of the form p(...) :- body., the com-

plexity incurred by r for Ts−topdn is i × l, where i is the
number of invocations of r, and l is the local complexity,
which is the product of the sizes of hypotheses.

For each such rule r, there is a rule r′ in Ps of the form
p(...) :- d(...), body, negated_hypos., where d(...) is
the new demand hypothesis. In s-bottomup, facts of d in
r′ are obtained from all queries of p, in s-topdown, whose
s-demand pattern is captured by d. S-bottomup ceases to
infer new facts for d in the same asymptotic time as it would
take for s-topdown to reach a subquery subsuming the query
corresponding to the demand of d, since the scheduling for s-
bottomup is analogous to s-topdown. Therefore, #d = i. For
Ts−botup, the complexity incurred by a rule is the number of
times the rule fires. Therefore, the complexity incurred by r′

has an upper bound #d×l = i× l. Note that the negated hy-
potheses do not incur additional time complexity since they
require constant-time lookups in the set of facts inferred.

The only rules in Ps that do not correspond to a rule in
Pa are the rules that infer facts of the demand predicates.
The additional complexity incurred for Ts−botup by each such
rule is already dominated by a component of the complexity
in Ts−topdn, because this complexity equals the number of
invocations for the rule that the demand hypothesis would
be added to, and the number of invocations is used as a
factor in a summand of Ts−topdn.
Hence, Ts−botup ≤ Ts−topdn.

For space complexity, the result is the opposite.

Theorem 10 (S-topdown beats s-bottomup in space).
Ss−topdn ≤ Ss−botup.

Proof. S-topdown and s-bottomup infer the same set of facts
for IDB predicates in the given rules. Ss−topdn consists of the
space used by these facts in the tables. Ss−botup also contains
the size of predicates introduced when the rules are split
to contain at most two hypotheses. Therefore, Ss−topdn ≤
Ss−botup.

We show that s-bottomup and s-topdown have the same
time complexity for rules in minimal form. This is as in
the case between v-topdown and v-bottomup [27]. For this
purpose, we reuse the lemma from [27] below.

Lemma 11. In bottom-up evaluation, if all variables in the
hypotheses of a rule r are also in the conclusion of r, then

the number of facts inferred using r equals the number of
firings of r.

Theorem 12 (S-bottomup equals s-topdown for minimal
form). For rules in minimal form, Ts−botup = Ts−topdn.

Proof. Let P be a set of rules and a query. Let Pa be the set
of rules and query after subsumptive binding annotation of
P , and Ps be the set of rules obtained by SDT of P . Each
rule r in Pa is of one of two forms:

(i) r has one hypothesis, and so has the form c :- h. In
Ps, there is a rule r′ corresponding to r, and is of the form
c :- d, h., where d is the new demand hypothesis. The
complexity incurred by r′ to Ts−botup and by r to Ts−topdn

are both dominated by the size of the predicate of h, since
h contains all variables in d.

(ii) r has two hypotheses, and so has the form c :- h1,

h2. In Ps, there is a rule r′ corresponding to r, and is
of the form c :- d, h1, h2., where d is the demand hy-
pothesis added. As before, the complexity incurred by r
to Ts−topdn, denoted Ts−topdn(r), equals the product of the
sizes of the predicates d, h1, and h2, and the number of facts
of d and the number of invocations to the rule is the same
as argued in Theorem 9. However, bottom-up computation
can decompose the rules to possibly improve performance.
In this case, it would obtain the following two rules: new :-

d, h1. and c :- new, h2. The complexity of the first rule
is less than Ts−topdn(r). The variables of d must appear in
new, because they appear in c, and the variables of h1 must
appear in new because there are no singleton variables in the
rule. Then, by the lemma above, the size of the predicate of
new equals the running time of the rule that generates it, and
hence the complexity incurred by the second rule obtained
from r′ equals Ts−topdn(r).
Therefore, for each complexity summand incurred by rules

in Pa for Ts−topdn, there is a rule in Ps that incurs the
same complexity summand for Ts−botup. Combining this
with Theorem 9, which states that Ts−botup ≤ Ts−topdn, we
obtain Ts−botup = Ts−topdn.

To compare s-bottomup and v-bottomup, note that The-
orem 8 implies that s-bottomup beats v-bottomup in space
complexity, because both infer the same facts for the given
predicates per Theorem 8 and s-bottomup may infer fewer
facts for demand predicates.

For time complexity, s-bottomup beats v-bottomup due
to Theorem 12 and Corollary 6, and is asymptotically faster
for the class of rules and queries described in Theorem 7
due to the aforementioned results. Therefore, we obtain the
following corollary.

Corollary 13. Ts−botup ≤ Tv−botup and
Ss−botup ≤ Sv−botup.

For the rules described in Theorem 7, Ts−botup < Tv−botup

and Ss−botup < Sv−botup.

5. SUBSUMPTION OPTIMIZATION
We have shown that s-topdown beats v-topdown, and

s-bottomup beats v-bottomup. However, there are cases
when the subsumptive methods are not effective because
subqueries that subsume others appear later during evalu-
ation, and the complexity may have been reduced if they
had appeared earlier. In this section, we show a transforma-
tion method to ensure that subqueries that subsume others
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for s-topdown and s-bottomup are processed first. We first
show the effectiveness of the method for s-topdown, and
then show that it works for s-bottomup as well. We call this
transformation subsumption optimization.
The method first identifies demand patterns that should

be subsumed, and then transforms the rules so that any
subquery with such a demand pattern is subsumed during
s-topdown.

(i) Identification of demand patterns to subsume.
For a set s of demand patterns of a predicate determined for
the given rules and query, the method generates all sets of
subsuming demand patterns, and generates annotated rules
for each such set. Then, for each set of the resulting rules,
we compare the time complexity of the resulting annotated
rules with the original annotated rules. If it can be proven
that the asymptotic time complexity of the resulting rules
due to a set s2 of subsuming demand patterns is lower than
the original annotated rules, then we say that the demand
patterns in s should be subsumed by the demand patterns
in s2.
For rules (1) and (2) in the running example, and the

query rel(c,y)?, the demand patterns are 〈rel,‘bf’〉 and
〈rel,‘bb’〉. The rules obtained by subsumptive binding an-
notation are:

rel_bf(x,y) :- imm(x,y).

rel_bf(x,y) :- imm(u,v), rel_bb(u,x), rel_bf(v,y).

rel_bb(x,y) :- imm(x,y).

rel_bb(x,y) :- imm(u,v), rel_bb(u,x), rel_bb(v,y).

It would be asymptotically better in time complexity if the
calls to rel_bb were subsumed by previously encountered
rel_bf subqueries. The intuition is that if the outdegree of
the rel relation is not constant, then asymptotically many
more queries to rel_bb may be made than the ones that
would be relevant due to the last rule. Therefore, the call
with pattern 〈rel,‘bb’〉 should be subsumed by the call with
pattern 〈rel,‘bf’〉.
(ii) Transformation. For each s-demand pattern 〈p, s〉 for
calls that should be subsumed by calls with pattern 〈p, s2〉,
for each hypothesis p(a1,...,an) whose pattern string is s
in a rule, we generate the following rule:
q(ab1,...,abk) :- p(a1,...,an).

where q is a fresh predicate name, and ab1,...,abk are those ar-
guments among a1,...,an that are bound by s2. Then, before
this hypothesis in r, we insert q(ab1,...,abk) as a hypoth-
esis. After this transformation, a subquery that subsumes
the subquery by the original ith hypothesis p(a1,...,an)

will be guaranteed to be made first during s-topdown, so all
subqueries with the demand pattern 〈p, s〉 will be avoided.

For the second rule in the running example, the second
hypothesis is the only hypothesis whose pattern string ‘bb’
should be avoided. Thus, this rule is transformed into the
following two rules.

new(u) :- rel(u,x).

rel_bf(x,y) :- imm(u,v), new(u), rel(u,x), rel(v,y).

We prove that subsumption optimization preserves the
semantics of the original set of rules.

Theorem 14. Let P be a set of Datalog rules and a query.
For each given predicate of P , s-topdown of P and s-topdown
of the rules resulting from subsumption optimization infer
the same facts.

Proof. The rules after subsumption optimization are more
restricted due to added hypotheses, so s-topdown of those
rules cannot infer more facts than s-topdown of P . However,
they cannot infer fewer either, since the added hypotheses
are defined by rules whose hypothesis subsume existing hy-
potheses, therefore they cannot be false while all other hy-
potheses are true. Hence, s-topdown of P and s-topdown
of the rules after subsumption optimization infer the same
facts for given predicates.

We show that this transformation achieves the same effect
for s-bottomup, by showing that the introduced hypotheses
and rules ensure that demand facts cannot be inferred for
demand patterns that the optimization determines to sub-
sume.

Theorem 15. Let P be a set of Datalog rules and a query.
The s-bottomup of P after subsumption optimization does
not infer any fact for the demand predicates that correspond
to the demand patterns that the optimization determines to
subsume.

Proof. For any hypothesis h with a demand pattern that the
optimization determines to subsume, the transformation in-
troduces a new hypothesis to its left. For that hypothesis
to be true, the demand fact that corresponds to a subsum-
ing demand pattern must be inferred by construction of the
transformation. Thus, when all of the hypotheses to the left
of h is true, a demand fact corresponding to a demand pat-
tern subsuming the demand pattern for h must have been
inferred. Therefore, no fact can be inferred for demand pred-
icates of demand patterns that the optimization determines
to subsume.

Application to demand-driven pointer analysis. We
show that by applying subsumption optimization to the spec-
ification of Andersen’s pointer analysis for C [2], we auto-
matically derive Heintze and Tardieu’s algorithm for demand-
driven pointer analysis [11], and our complexity analysis can
be used to obtain precise time and space complexities.

Given a C program, statements in a program relevant to
pointer analysis can be reduced to four kinds, which can be
represented directly as Datalog facts:

• p = &q is represented by bare_addr(p,q).

• p = q is represented by bare_bare(p,q).

• p = *q is represented by bare_star(p,q).

• *p = q is represented by star_bare(p,q).

Andersen’s pointer analysis can be specified directly using
four Datalog rules, where pt(p,q) denotes p points to q:

pt(p,q) :- bare_addr(p,q). (A1)

pt(p,q) :- bare_bare(p,r), pt(r,q). (A2)

pt(p,q) :- bare_star(p,s), pt(s,r), pt(r,q). (A3)

pt(p,q) :- star_bare(r,s), pt(r,p), pt(s,q). (A4)

Given a query pt(c,q)?, the s-demand patterns are 〈pt,‘bf’〉
and 〈pt,‘bb’〉. Subsumptive binding annotation yields:
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pt_bf(p,q) :- bare_addr_bf(p,q).

pt_bf(p,q) :- bare_bare_bf(p,r), pt_bf(r,q).

pt_bf(p,q) :- bare_star_bf(p,s), pt_bf(s,r),

pt_bf(r,q).

pt_bf(p,q) :- star_bare_ff(r,s), pt_bb(r,p),

pt_bf(s,q).

pt_bb(p,q) :- bare_addr_bb(p,q).

pt_bb(p,q) :- bare_bare_bf(p,r), pt_bb(r,q).

pt_bb(p,q) :- bare_star_bf(p,s), pt_bf(s,r),

pt_bb(r,q).

pt_bb(p,q) :- star_bare_ff(r,s), pt_bb(r,p),

pt_bb(s,q).

Our complexity analysis can be used to show that asymp-
totically more queries to pt_bb may be made than the ones
that would be relevant due to the last two rules generated.
The number of calls to pt_bb may be as many as v2 where
v is the number of variables in the C program. However,
the pt relation may not be as dense as O(v2). Due to
this fact, the complexity of the last rule defining pt_bb is
O(#star_bare_ff×v2). This is greater than the complexity
of the last rule defining pt_bf, which is O(#star_bare_ff×
#pt.2/1 × v). Therefore, 〈pt,‘bb’〉 should be subsumed by
〈pt,‘bf’〉 so that the last four rules are not generated. Sub-
sumption optimization results in the rules (A1), (A2), (A3),
and the following two rules due to (A4):

new(r) :- pt(r,p).

pt(p,q) :- star_bare(r,s), new(r), pt(r,p), pt(s,q).

S-bottomup of the resulting rules corresponds precisely
to Heintze and Tardieu’s algorithm, and performing precise
complexity analysis gives the explanation for when and why
the algorithm is efficient.

6. EXPERIMENTS
We support our complexity analyses and comparisons by

experiments. For s-topdown and v-topdown, we use XSB [6].
For v-bottomup and s-bottomup, we use the implementation
method of [16] modified with the described extensions when
necessary to generate Python code from the rules.

We instantiate the complexity parameters in predicted
complexities with their values computed from the data. We
use space units to mean the number of unique table inserts
for v- and s-topdown, and the number of facts inferred plus
the number of elements in auxiliary maps [16] for v- and s-
bottomup. We use returns to mean the number of facts re-
turned from rule invocations for tabled top-down evaluation,
and firings to mean the number of firings for demand-driven
bottom-up evaluation.

In our benchmarks, predicates have two arguments. For
experiments, we first fix #p and #p.1/2 for each input pred-
icate p, and generate a set of data such that the size of each
predicate is maximal, i.e., the worst-case behavior is exhib-
ited. Then, we increase #p and #p.1/2 to generate the next
set of data, and repeat.

We first show experimental results for the running exam-
ple and the demand-driven pointer analysis problem.

For a query with both arguments free for the running ex-
ample, we confirm the asymptotic time and space complex-
ities analyzed. The left plot in Figure 1 for the running ex-
ample shows that s-topdown and s-bottomup are asymptot-
ically faster than v-topdown and v-bottomup, respectively,

as predicated by Theorems 2 and 4, and by Corollary 13,
respectively. It also shows that s-bottomup is asymptoti-
cally faster than s-topdown, due to splitting of rules into
two hypotheses each, as predicated by Theorem 9.

The right plot in Figure 1 for the running example shows
that the space usage of v- and s-topdown is much smaller
than v-bottomup and s-bottomup, respectively. This is be-
cause s-bottomup infers facts for demand predicates and the
predicates introduced for splitting rules, and maintains aux-
iliary maps. Demand predicates are avoided in top-down
evaluation by backtracking, which uses stack space that this
paper does not consider. Predicates introduced for splitting
rules allow s-bottomup to be faster than s-topdown as shown
in Theorem 9. Auxiliary maps are avoided in s-topdown by
separate indexing mechanisms (such as tries in XSB), whose
space is not counted separately in this paper. The plot also
shows that the space usage of s-topdown and s-bottomup is
smaller than v-topdown and v-bottomup, respectively, due
to fewer facts being inferred, as shown in Theorems 3 and
4, and in Corollary 13, respectively

For demand-driven pointer analysis, and a query with the
first argument bound, we apply subsumption optimization
to the rules and confirm the asymptotic improvement in time
complexity against s-bottomup, and show the difference in
space usage. Figure 2 for demand-driven pointer analysis
confirms that subsumption optimization improves time com-
plexity and reduces space usage.

We also performed experiments on a well-known bench-
mark in semantic web [15] that has 961 rules and 654 facts;
and we also performed the pointer analysis on real data from
a C program with 2430 facts. Both queries run out of mem-
ory in XSB when v-topdown is used on a machine with 4 GB
of RAM, but when s-topdown is used, the ontology query
runs in 12 seconds, and the pointer analysis runs in under
0.1 seconds.

Finally, to compare our results with existing SQL database
implementations, we converted the rules of the running ex-
ample into SQL queries and performed experiments on
MSSQL, one of the few SQL databases that support re-
cursion. The running example timed out (more than 10
minutes) on all of our data points except for the smallest
two. The variant and subsumptive demand transformations
cannot be used on SQL databases because no mainstream
SQL database implementation supports mutual recursion,
and demand transformations result in mutually recursive
rules.

7. RELATED WORK AND CONCLUSION
Datalog has been extensively studied [5, 1]. Variant

tabling was introduced in the 1980s [25], and has been widely
studied. It has been implemented in top-down evaluation
engines such as XSB [6] and YAP [8]. Subsumptive tabling
was introduced ten years later [21], but has not been studied
widely, and has only been implemented in XSB.

The time and space complexity of variant tabling for Dat-
alog was given an imprecise upper bound in [29], and a
method for precise calculation of the time and space com-
plexities of variant tabling for Datalog is given in [27]. There
is no prior work on complexity analysis of subsumptive
tabling to the best of our knowledge. Our work builds on [27]
to present the first method for precise calculation of worst-
case time and space complexities of subsumptive tabling,
and establishes that it beats variant tabling.
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Figure 1: Firings/returns and space units for v-topdown, v-bottomup, s-topdown, and s-bottomup for the
running example.
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Figure 2: Firings/returns and space units for s-bottomup with and without subsumption optimization (SO)
for the pointer analysis benchmark.

For bottom-up evaluation, transformations for demand-
driven evaluation have been studied, including the
well-known magic-set transformation (MST) [3] and the re-
cent demand transformation [27] that our work extends. It
has been shown that both of these transformations are equiv-
alent to variant tabling both operationally [4] and in terms of
complexities [27]. We show that subsumptive tabling beats
MST, and then give the first transformation, subsumptive
demand transformation, so that bottom-up evaluation of re-
sulting rules is similar to subsumptive tabling. We show that
the complexity of the resulting rules from this new transfor-
mation beats subsumptive tabling and MST in time com-
plexity.

The relationship between top-down and bottom-up evalu-
ation has been studied in a variety of contexts with different
flavors of rules [20, 28, 19, 4]. Our work is the first to estab-
lish precise relationships between variant and subsumptive
tabling, and MST and the new subsumptive demand trans-
formation.

By characterizing improvement using complexity analy-
sis, we also introduce a new transformation, subsumption
optimization, to reuse as many facts as possible. We have
shown that our methods can be used to systematically derive
a well-known demand-driven pointer analysis algorithm [11].

Additionally, we have implemented our method and con-
firmed our analysis results through experiments on well-
studied benchmarks.

8. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] L. O. Andersen. Program analysis and specialization
for the C programming language. Technical report,
DIKU, Department of Computer Science, University
of Copenhagen, 1994.

[3] C. Beeri and R. Ramakrishnan. On the power of
magic. J. Logic Programming, 10(1/2/3&4):255–299,
1991.

[4] F. Bry. Query evaluation in deductive databases:
Bottom-up and top-down reconciled. Data Knowledge
Engineering, 5:289–312, 1990.

[5] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases. Springer, 1990.

[6] W. Chen and D. S. Warren. Tabled evaluation with
delaying for general logic programs. J. ACM,
43(1):20–74, 1996.

[7] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and
M. Y. Vardi. Decidable optimization problems for
database logic programs (preliminary report). In Proc.
of the 20th Annual ACM Symp. on Theory of
Computing, pages 477–490, 1988.

[8] A. F. da Silva and V. S. Costa. The design of the YAP
compiler: An optimizing compiler for logic
programming languages. J. of Universal Computer
Science, 12(7):764–787, 2006.

[9] J. DeTreville. Binder, a logic-based security language.

671



In Proc. of the 2002 IEEE Symp. on Security and
Privacy (S&P), pages 105–113, 2002.

[10] E. Hajiyev, M. Verbaere, and O. de Moor. CodeQuest:
Scalable source code queries with Datalog. In Proc. of
the 20th European Conf. on Object-Oriented
Programming (ECOOP), pages 2–27, 2006.

[11] N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In Proc. of the 2001 ACM SIGPLAN Conf.
on Programming Language Design and
Implementation (PLDI), pages 24–34, 2001.

[12] P. G. Kolaitis and C. H. Papadimitriou. Why not
negation by fixpoint? J. Comput. Syst. Sci.,
43(1):125–144, 1991.

[13] A. Y. Levy and Y. Sagiv. Semantic query optimization
in Datalog programs. In Proc. of the 14th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems (PODS), pages 163–173, 1995.

[14] N. Li and J. C. Mitchell. Datalog with constraints: A
foundation for trust management languages. In Proc.
of the 5th Intl. Symp. on Practical Aspects of
Declarative Languages (PADL), pages 58–73, 2003.

[15] S. Liang, P. Fodor, H. Wan, and M. Kifer.
OpenRuleBench: An analysis of the performance of
rule engines. In Proc. of the 18th Intl. Conf. on World
Wide Web (WWW), pages 601–610, 2009.

[16] Y. A. Liu and S. D. Stoller. From Datalog rules to
efficient programs with time and space guarantees.
ACM Trans. Programming Languages and Systems,
31(6):21:1–21:38, August 2009.

[17] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Communications of the ACM, 52(11):87–95, 2009.

[18] R. Ramakrishnan. Magic templates: A spellbinding
approach to logic programs. In Proc. of the 5th Intl.
Conf. and Symp. on Logic Programming, pages
140–159, 1988.

[19] R. Ramakrishnan and S. Sudarshan. Top-down versus
bottom-up revisited. In Proc. of of the 1991 Intl.
Symp. on Logic Programming (ISLP), pages 321–336,
1991.

[20] R. Ramakrishnan and J. D. Ullman. A survey of
deductive database systems. J. Logic Programming,
23(2):125–149, 1995.

[21] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan.
A thread in time saves tabling time. In Proc. of the
1996 Joint Intl. Conf. and Symp. on Logic
Programming, pages 112–126, 1996.

[22] Y. Sagiv. Optimizing Datalog programs. In
Foundations of Deductive Databases and Logic
Programming, pages 659–698. Morgan Kaufmann,
1988.

[23] D. Sereni, P. Avgustinov, and O. de Moor. Adding
magic to an optimising Datalog compiler. In Proc. of
the ACM SIGMOD Intl. Conf. on Management of
Data (SIGMOD), pages 553–566, 2008.

[24] W. Shen, A. Doan, J. F. Naughton, and
R. Ramakrishnan. Declarative information extraction
using Datalog with embedded extraction predicates.
In Proc. of the 33rd Intl. Conf. on Very Large Data
Bases (VLDB), pages 1033–1044, 2007.

[25] H. Tamaki and T. Sato. OLD resolution with
tabulation. In Proc. of the 3rd Intl. Conf. on Logic
Programming (ICLP), pages 84–98, 1986.

[26] K. T. Tekle, M. Gorbovitski, and Y. A. Liu. Graph
queries through Datalog optimizations. In Proc. of the
12th Intl. ACM SIGPLAN Conf. on Principles and
Practice of Declarative Programming (PPDP), pages
25–34, 2010.

[27] K. T. Tekle and Y. A. Liu. Precise complexity analysis
for efficient Datalog queries. In Proc. of the 12th Intl.
ACM SIGPLAN Conf. on Principles and Practice of
Declarative Programming (PPDP), pages 35–44, 2010.

[28] J. D. Ullman. Bottom-up beats top-down for Datalog.
In Proc. of the 8th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems (PODS),
pages 140–149, 1989.

[29] D. S. Warren. Programming in tabled Prolog.
Available at
http://www.cs.sunysb.edu/˜warren/xsbbook/, 1999.

[30] J. Whaley, D. Avots, M. Carbin, and M. S. Lam.
Using Datalog with binary decision diagrams for
program analysis. In Proc. of the 3rd Asian Symp. on
Programming Languages and Systems (APLAS), pages
97–118, 2005.

672



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




