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Abstract

Given a set of Datalog rules, facts, and a query, answers to the
query can be inferred bottom-up starting with the facts or top-down
starting with the query. For efficiently answering the query, top-
down evaluation is extended with tabling that stores the results of
the subqueries encountered, and bottom-up evaluation is done on
rules transformed based on demand from the query.

This paper describes precise time and space complexity analysis
for efficiently answering Datalog queries, and precise relationships
between top-down evaluation with tabling and bottom-up evalua-
tion driven by demand. We first present a systematic method for
precisely calculating the worst-case time and space complexities
of top-down evaluation with tabling. We then describe a method
for transforming the rules for efficiently answering queries using
bottom-up evaluation of the transformed rules; the method is akin
to the magic set transformation, but is simpler and produces sim-
pler rules that yield exponentially smaller space in the number of
arguments of predicates. Next, we establish precise relationships
between top-down evaluation with tabling and bottom-up evalu-
ation of rules transformed based on demand. Finally, we support
our analyses and comparisons through experiments on benchmarks
from OpenRuleBench.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—constraint and logic languages;
D.3.4 [Programming Languages]: Processors—Optimization;
F.2.2 [Analysis of Algorithms and Problems Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete
structures; H.2.3 [Information Systems]: Database Management—
Query languages; H.2.4 [Information Systems]: Systems—Query
processing, Rule-based databases

General Terms Languages, Performance

Keywords Complexity analysis, Datalog, demand-driven evalua-
tion, program transformation, optimization, tabling

1. Introduction

Datalog [7] is a logic language used in deductive databases [1], pro-
gram analysis [34], security [12], and many other applications [15,
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17, 26]. Given a set of Datalog rules, facts, and a query, answers
to the query can be inferred using bottom-up evaluation starting
with the facts or top-down evaluation starting with the query. Many
evaluation methods have been studied [2, 6], including [16, 31, 32],
and notably top-down evaluation with tabling [28] that guarantees
termination in polynomial time, and optimal bottom-up evalua-
tion with complexity guarantees [21] after program transformations
such as the magic set transformation [3]; we refer to these evalu-
ation methods as tabled top-down evaluation and demand-driven
bottom-up evaluation, respectively.

Despite extensive research on improving Datalog evaluation
methods, and on optimizing Datalog programs, e.g., [5, 8, 11,
22, 27], the performance of rule engines remains little understood
[18, 19]. In particular, performance differences using different eval-
uation methods are most often drastic, and even using the same
evaluation method, changing the order of hypotheses in rules most
often yields dramatically different performance that is easily ob-
served to be asymptotic. Recent work studied efficient bottom-
up evaluation with precise complexity guarantees [21], but pre-
cise complexities for efficiently answering queries using tabled top-
down evaluation remain unknown. There was significant research
relating various top-down and bottom-up evaluation methods, as
discussed in the related work section, but a large gap remains in
precisely relating tabled top-down and demand-driven bottom-up
evaluations.

This paper describes precise time and space complexity analy-
sis for efficiently answering Datalog queries, and precise relation-
ships between tabled top-down and demand-driven bottom-up eval-
uations. We first present a systematic method for precisely calculat-
ing the worst-case time and space complexities of tabled top-down
evaluation. The calculation is based on possible binding patterns of
arguments of predicates during the evaluation, and expresses the
complexities in terms of parameters that characterize the actual
number of facts used. We then describe demand transformation,
which transforms Datalog rules for efficiently answering queries
using bottom-up evaluation of the transformed rules. The transfor-
mation is akin to the magic set transformation, but is simpler and
produces simpler rules that yield exponentially smaller space in the
number of arguments of predicates.

Additionally, we establish precise relationships between tabled
top-down evaluation and demand-driven bottom-up evaluation, in
terms of precise time and space complexities. We show that the time
complexity of demand-driven bottom-up evaluation is better than or
equal to tabled top-down evaluation, and that for rules that have no
more than two hypotheses and no wildcards, their complexities are
equivalent. Then, we show that the space complexity of tabled top-
down evaluation is better than or equal to demand-driven bottom-
up evaluation, and that if the time complexity of demand-driven
bottom-up evaluation is better than tabled top-down evaluation,
then its space complexity must be worse. We have implemented our
methods and confirmed our analysis results through experiments on
benchmarks from OpenRuleBench [18].



The rest of the paper is organized as follows. Section 2 presents
Datalog and the terminology used in the paper. Section 3 gives the
algorithm for tabled top-down evaluation and describes our method
for precisely calculating the complexities. Section 4 describes de-
mand transformation for demand-driven bottom-up evaluation and
compares the transformation with the magic set transformation.
Section 5 establishes the relationship between tabled top-down and
demand-driven bottom-up evaluations. Section 6 presents results
from experiments. Section 7 discusses related work and concludes.

2. Datalog

Datalog is a language for defining rules, facts, and queries, where
rules can be used with facts to answer queries. A Datalog rule is of
the form:

p(a1, ..., ak) : − p1(a11, ..., a1k1
), ..., ph(ah1, ..., ahkh

).

where h is a finite natural number, each pi (respectively p) is a
predicate of finite number ki (respectively k) arguments, each aij

and ai is either a constant or a variable, and each variable in the
arguments of p must also be in the arguments of some pi.

A predicate with arguments is called an atom. If the right side
of a rule is empty, then the atom on the left must have only constant
arguments, and is called a fact; we indicate a fact with an ending
dot. If the left side of a rule is empty, then each atom on the right
side is called a query; we indicate a query with an ending question
mark. For the rest of the paper, “rule” refers only to the case where
both sides of the rule are not empty, where each atom on the right is
called a hypothesis, and the atom on the left is called the conclusion.

The meaning of a set of rules, facts, and queries is the set of
facts that are given or can be inferred using the rules and that
match the queries. We will consider the case of one query, because
a set of queries is equivalent to one query by adding a rule whose
hypotheses are the set of queries and whose conclusion is the one
query.

Terminology. An IDB (intensional database) predicate is a pred-
icate defined by rules. An IDB hypothesis is a hypothesis whose
predicates is an IDB predicate.

In examples, we use x, y, and z for variables, and we use c for
constants.

For complexity calculation, we use the following notations.

• #p: the number of facts of predicate p, called the size of p.

• #p.i1,...,in/j1,...,jm: the maximum number of combina-
tions of different values of the i1,...,inth arguments of the facts
of predicate p (given or inferred), given any fixed value for the
j1,...,jmth arguments.

• #p.i: actual number of values of the ith argument of a particu-
lar instance of p.

• dom(p.i): the size of the domain of the ith argument of pred-
icate p, i.e., the number of all possible values of that argument
of p.

Running examples. We use two versions of transitive closure as
running examples. The first is left-recursive, defined using a base-
case rule (B) and a left-recursive rule (L):

path(x,y) :- edge(x,y). (B)
path(x,y) :- path(x,z), edge(z,y). (L)

The second is right-recursive, defined using the same base-case rule
(B), and a right-recursive rule (R):

path(x,y) :- edge(x,z), path(z,y). (R)

We consider two queries, path(c,y)? and path(x,c)? that
find all targets reachable from a constant c, and all sources that

reach a constant c, respectively. We call them target query and
source query, respectively.

3. Complexity analysis for tabled top-down

evaluation

To answer a query, top-down evaluation starts with the query, gen-
erates subqueries from hypotheses of rules whose conclusions
match the query, considering rules in the order given, and con-
sidering hypotheses from left to right, and does so repeatedly until
the subqueries match given facts. This may lead to repeated sub-
queries or infinite recursion when recursive rules exist. To address
this problem, tabling memoizes answers to subqueries, and reuses
them when possible.

We consider top-down evaluation using variant tabling with
depth-first scheduling and without early completion.

• Variant tabling [9] is the dominant tabling strategy. It stores
and reuses the answers to variants of previously encountered
subqueries, where a subquery is a variant of another if they are
equal modulo variable renaming.

• Depth-first scheduling selects the next subqueries to evaluate in
a depth-first manner. The two major scheduling strategies, local
and batched [13], have the same asymptotic time and space
complexities as depth-first scheduling. We describe complexity
analysis using depth-first scheduling, because it is simpler.

• Early completion stops evaluation for a subquery whose argu-
ments are all bound, once the subquery is evaluated to be true.
No early completion means using all relevant rules to infer an-
swers to a subquery even if it is a subquery whose arguments
are all bound and has been evaluated to be true.

We also make the following two assumptions.

• All IDB predicates are tabled. This allows the best possible
asymptotic time complexity; it may use unnecessarily large
space, which is a problem that should be addressed, but is
beyond the scope of this paper.

• All predicates are perfectly indexed, so that it takes constant
time to retrieve a fact of the predicate given fixed values for
some of its arguments. In systems implementing tabled top-
down evaluation, perfect indexing can be manually specified,
such as in XSB [25], or is automatically performed, such as in
YAP [10].

For the rest of the paper, tabled top-down evaluation refers to eval-
uation using variant tabling, with depth-first scheduling, without
early completion, and with the two assumptions above.

Figure 1 gives the algorithm for tabled top-down evaluation.
It recursively calls invoke as described below. Two global maps
are used: Table and Suspension. A map maps a key to a set of
values, where each pair of key and set of values is called an entry.
Table maps each subquery encountered that is not a variant of a
previously encountered subquery to a set of facts inferred for the
subquery. The keys of Suspension are pairs of atoms consisting
of a key k of Table and a hypothesis for which an answer for k can
be used to resume computation. The values for each key are tuples
of arguments to call invoke with when a fact for the hypothesis in
the key is inferred.

In the algorithm, the following functions are used:

• concl(r) and hypos(r): the conclusion and the set of hypotheses
of rule r, respectively.

• unify(a,b): a most general unifier of atoms a and b if it exists, ∅
otherwise.



• subst(a,θ): the atom a after substitution of variables using θ.

• variant(a,b): whether atoms a and b are equal modulo variable
renaming.

• keys(m): keys of map m.

The algorithm starts from the given query, and calls procedure
invoke for each rule whose conclusion matches the given query.
The procedure takes four arguments:

1. a query q,

2. a rule r whose conclusion matches q,

3. an index i of the hypothesis of r to process,

4. a substitution θ from matching q against the conclusion of r,
and matching facts against up to the ith hypothesis of r.

If the number of hypotheses of r is smaller than or equal to i,
the procedure substitutes variables of the ith hypothesis of r using
θ (called hi), and performs the following on hi:

• If hi is not an IDB hypothesis, then find each fact that matches
the hypothesis, and call invoke with i incremented for the next
hypothesis, and with θ extended with the new match.

• If hi is an IDB hypothesis and is a variant of an existing key
of Table, then for each fact in the values for that key, match
the fact against hi, and call invoke with i incremented for
the next hypothesis, and with θ extended with the new match.
Also, record the current arguments of invoke for resuming
computation after a new fact is added to the values of this table
entry.

• If hi is an IDB hypothesis and is not a variant of an existing
table key, create a table entry whose key is hi, and whose set
of values is the empty set. For each rule r′ whose conclusion
matches hi, call invoke with the arguments hi, r′, 1, and the
substitution from the match. Also, record the current arguments
of invoke for resuming computation after a new fact is added to
the values for the new table entry.

If the number of hypotheses of r is smaller than i, then a fact
is inferred and the substitution θ must contain all variables in q,
because the rules are safe. The fact inferred is q after substitution
using θ. The fact is added to the values for key q if it is not
already in the values, and finally for each tuple of arguments that
can resume computation with a new fact, invoke is called with the
arguments after updating the substitution in the tuple to account for
the inferred fact.

The time complexity is the number of calls to invoke, because
all other operations are constant time in data size. We make the
following observations for counting the number of calls to invoke:
(1) The combination of the first two arguments of invoke are de-
termined by the call to invoke whose index argument is 1, because
other calls copy these two arguments from the enclosing call to in-
voke. (2) The calls to invoke whose index argument is 1 must be for
queries that are not variants of the subqueries in Table, and match
the conclusion of some rule. (3) For each pair of the first two argu-
ments to invoke, rule r and query q that matches the conclusion of
r, the combinations of the last two arguments, index i and substi-
tution θ, are the combinations of facts that match the hypotheses of
r.

The space complexity is the number of facts stored in the table
entries. We do not consider stack space in this paper.

For easier and more precise calculation, we first generate a
query and rules annotated with the patterns of argument bindings
based on the given query, but whose evaluation is otherwise the
same as the given query and rules. Then, we calculate the com-
plexity of evaluating the annotated query and rules. Annotations

Suspension = new map
Table = new map
Table [q ] = ∅
/ / C a l l invoke f o r each r u l e ma tch ing q
f o r r ∈ R | θ =u n i f y ( c o n c l (r ) , q ) 6= ∅ :

invoke (q ,r , 1 ,θ )
re tu rn Table [q ]

procedure invoke (q ,r , i ,θ ) :
/ / I f t h e r e a r e s t i l l h y p o t h e s e s o f r t o p r o c e s s

i f i ≤ |hypos (r ) | :
hi = s u b s t ( t h e i t h h y p o t h e s i s o f r ,θ )
i f hi i s n o t an IDB h y p o t h e s i s :

/ / C a l l invoke f o r each ma tch ing f a c t

f o r fact ∈ F | θ′ =u n i f y (hi ,fact ) 6= ∅ :

invoke (q ,r , i + 1 ,θ ∪ θ′ )
/ / I f hi i s a v a r i a n t o f an e x i s t i n g t a b l e key

e l s e i f ∃k ∈ keys (Table ) | v a r i a n t (hi ,k ) :
/ / Record c u r r e n t a rgumen ts

/ / f o r re s uming invoke l a t e r

Suspension [ 〈k, hi〉 ] ∪ = {〈q ,r ,θ , i〉}
/ / C a l l invoke f o r each f a c t i n v a l u e s f o r key k
f o r fact ∈ Table [k ] :

θ′ = u n i f y (hi ,fact )

invoke (q ,r , i + 1 ,θ ∪ θ′ )
/ / I f a v a r i a n t does n o t e x i s t i n t a b l e keys

e l s e :
Table [hi ] = ∅
/ / Record c u r r e n t a rgumen ts

/ / f o r re s uming invoke l a t e r

Suspension [ 〈hi ,hi〉 ] ∪ = {〈q ,r ,θ , i〉}
/ / C a l l invoke f o r each r match ing new que ry hi

f o r r′ ∈ R | θ′ =u n i f y ( c o n c l (r′ ) , hi ) 6= ∅ :

invoke (hi ,r′ ,1 ,θ′ )
/ / I f no more h y p o t h e s i s i s l e f t t o p r o c e s s

e l s e :
fact = s u b s t (q ,θ )
/ / I f t h e f a c t ha s n o t been i n f e r r e d b e f o r e

i f fact /∈ Table [q ] :
/ / Add t h e f a c t t o t h e t a b l e

Table [q ] ∪ = {fact}
/ / Resume c o m p u t a t i o n s

f o r 〈k, h〉 ∈ keys (Suspension ) | k = q :

f o r 〈q′ ,r′ ,θ′ , i′〉 ∈ Suspension [ 〈q ,h〉 ] :

θ′′ =u n i f y (h ,fact )

invoke (q′ ,r′ , i′ + 1 ,θ′ ∪ θ′′ )
endproc

Figure 1. Tabled top-down evaluation of query q, given a set of
facts F and a set of rules R

make complexity calculation easier by distributing the complexity
to parts of the query and rules that contribute to it in simpler ways.

3.1 Binding annotation

To annotate a set of rules with respect to a query, we first determine
the patterns of argument bindings during the evaluation of the
query, called demand patterns, and then generate an annotated rule
for each pattern determined.

Demand patterns. Given a set of rules and a query, each sub-
query p(a1,...,ak) encountered during tabled top-down evalua-
tion yields a demand pattern 〈p, s〉, where s is a string, called the
pattern string, of length k whose ith character is ‘b’ if ai is bound,



and ‘f’ otherwise. For an atom p(a1,...,ak) and a pattern string s
of length k, we say that ai is bound by s if the ith character of s is
‘b’.

Demand patterns are computed iteratively as follows until no
new demand patterns can be added. The demand pattern of the
given query p(a1,...,ak) is 〈p, s〉, where the ith character of s
is ‘b’ if ai is a constant, and ‘f’ otherwise. For each computed
demand pattern 〈p, s〉, for each rule r that defines p, and for each
IDB hypothesis h of r whose predicate is, say, q, add a demand
pattern 〈q, t〉, where the ith character of t is ‘b’ if the ith argument
of h is a constant, or appears in a hypothesis to the left of h in
r, or is an argument of the conclusion of r bound by s; and ‘f’
otherwise.

Annotation. For each demand pattern 〈p, s〉 computed, and for
each rule r that defines p, we generate an annotated rule that obeys
the pattern string s, where the conclusion is annotated with s, and
each hypothesis is annotated with the pattern string obtained as
described above.

Formally, for each demand pattern 〈p, s〉, and each rule of the
form

p(...) :- h
1
(...),...,hn(...).

We generate the rule

p s(...) :- h
1
s1(...),...,hn sn(...).

where for each 1 ≤ k ≤ n, the ith character of sk is ‘b’ if the
ith argument of hk is a constant, or appears in a hypothesis to the
left of hk, or is an argument of the conclusion bound by s, and ‘f’
otherwise.

For the given query p(...)?, the annotated query p s(...)? is
generated, where the ith character of s is ‘b’ if the ith argument of
the given query is a constant; and ‘f’ otherwise.

Example. For rules (B) and (L), and target query path(c,y)?,
the set of demand patterns is {〈path,‘bf’〉}, and annotation results
in the annotated query path bf(c,y)? and two annotated rules:

path_bf(x,y) :- edge_bf(x,y). (B’)
path_bf(x,y) :- path_bf(x,z), edge_bf(z,y). (L’)

For rules (B) and (R), and the same target query, the set of
demand patterns is the same, and annotation results in the same
annotated query, rule (B’), and the following rule:

path_bf(x,y) :- edge_bf(x,z), path_bf(z,y). (R’)

Annotation is the same as predicate splitting [30], except we
annotate all hypotheses, in contrast to only IDB, for ease of com-
plexity analyses.

3.2 Time complexity analysis

For an annotated rule, the asymptotic time complexity it incurs is
the product of: (1) local complexity—the number of different val-
ues that the free variables in the rule can take, and (2) number of
invocations—the number of different values that the bound argu-
ments of the conclusion can take. We give a method to calculate an
upper bound for each factor. Summing the complexities incurred
by all rules gives the overall complexity.

The local complexity of a rule is the product of complexity
factors incurred by all hypotheses of the rule. Each hypothesis, say
p s(a1,...,an), of r incurs the complexity factor
O(#p.f1,...,fk/b1,...,bl), where fi is the index of the ith ‘f’ in
s, and bi is the index of the ith ‘b’ in s.

For example, for rule (L’), the first hypothesis incurs the com-
plexity factor O(#path.2/1), and the second hypothesis incurs the
complexity factor O(#edge.2/1). Therefore, the local complexity
is O(#path.2/1 × #edge.2/1).

For computing the number of invocations of a rule r, three steps
are performed. First, among all hypotheses of all rules and the given
query, find those whose predicate is the same as the predicate of the
conclusion of r. Second, for each one found, say called h, calculate
the number of different values its bound arguments can take. If a
bound argument is a constant, then it can take only that one value.
If a bound argument is a variable, say x, then the minimum of the
following is taken: (1) If x is the ith argument of a hypothesis to the
left of h whose predicate is p, then x may take O(#p.i) different
values. (2) If x appears in the conclusion c, there are two cases: if c
is a variant of h, and the bound arguments of c and h are the same,
then x may take one value; otherwise it may take O(dom(p.i))
values, where p is the predicate of c, and x is the ith argument of
c. The product of the numbers of different values that the bound
arguments can take in h is the total number of invocations of r due
to h. Third, the sum of the products due to all h’s is the number of
invocations to r.

For example, the predicate of the conclusion of rule (R’) ap-
pears in the query, and in the second hypothesis of rule (R’) it-
self. The first argument of the query is constant, so it takes only
one value. The first argument of the second hypothesis is a vari-
able z, which appears as the second argument of the first hypoth-
esis, and thus takes O(#edge.2) different values. Therefore, the
number of invocations of rule (R’) is O(1 + #edge.2), which is
O(#edge.2).

The calculated complexities for rules (B’), (L’), and (R’) are
O(#edge.2/1), O(#path.2/1 × #edge.2/1), and
O(#edge.2/1 × #path.2/1 × #edge.2), respectively. There-
fore, the time complexity of the target query using left-recursion
is O(#path.2/1 × #edge.2/1), and using right recursion is
O(#edge.2/1 × #path.2/1 × #edge.2).

3.3 Space complexity analysis

The asymptotic space complexity of tabled top-down evaluation is
bounded by the space for table entries. Each table entry is keyed
on an annotated predicate and values for the bound arguments.
For an annotated predicate, the space it takes is the product of:
(1) number of table entries created—the number of values that the
bound arguments can take in subqueries of the annotated predicate,
and (2) size of each table entry—the number of different values that
the free arguments can take in the facts inferred for the annotated
predicate. We give a method to calculate an upper bound for each
factor. Summing the space used for all predicates gives the total
space.

The number of table entries created for an annotated predicate p
is calculated as follows. First, among all hypotheses of all rules and
the given query, find those whose predicate is p. Then, for each such
hypothesis, perform the second and third step of the method for
computing the number of invocations in the previous subsection.

For example, for the left-recursive version of transitive closure
and target query path(c,y)?, the number of table entries created
for the predicate path bf is O(1) due to the given query and
rule (L’), since the first hypothesis of (L’) is a variant of its
conclusion. For the right-recursive version and the same query, the
number of table entries created for path bf is O(#edge.2) due to
the query and rule (R’).

The size of each table entry for each annotated predicate p is
calculated as follows. For each rule r that defines p, we calculate
the number of values that the free variables of the conclusion can
take. Each of these free variables can take O(#q.i) different values
if it is the ith argument of a hypothesis of r whose predicate is
q; if there are multiple such hypotheses, the minimum of these is
taken. The product of the numbers of different values that the free
variables of the conclusion can take in r is the size of each table



entry for facts inferred by r. The sum over all rules gives the final
size of each table entry.

For example, consider the left-recursive version of transitive
closure, and the target query. For the size of each table en-
try of path bf, rule (B’) incurs O(#edge.2) due to the first
hypothesis, and rule (L’) incurs O(#edge.2) due to the sec-
ond hypothesis. Therefore, the total size of each table entry is
O(#edge.2). The number of table entries created for path bf
is O(1) as shown above. Therefore, the total space complex-
ity is O(1 × #edge.2). Using this analysis, the space com-
plexity for the right-recursive version for the target query is
O(#edge.2 × (#edge.2 + #path.2)).

Besides estimating memory usage, space complexity analysis
can also help compare the actual running time for queries that have
the same asymptotic time complexity. Creating a table entry is more
expensive than adding a fact to a table entry in implementations
such as XSB [25]. Therefore, the query that creates fewer table
entries uses a constant factor less memory, and runs a constant
factor faster.

For example, consider the left-recursive and right-recursive ver-
sion of transitive closure. Given a query where both arguments are
bound, the time complexities of both versions are the same. The
left-recursive version contains rule (L’), for which the number of
table entries is analyzed above. However, annotated rules for the
right-recursive version contains the rule (R’’).

path_bb(x,y) :- edge_bf(x,z), path_bb(z,y). (R’’)

The second hypothesis of (R’’) creates O(#edge.2) table entries,
in contrast to O(1) table entries created by (L’). Therefore, we
conclude that the right-recursive version should run a constant
factor slower. The experiments in Section 6 confirm this.

4. Demand-driven bottom-up evaluation

Bottom-up evaluation starts with given facts, infers new facts from
conclusions of rules whose hypotheses match existing facts, and
does so repeatedly until all facts are inferred. We use the bottom-up
evaluation method of [21]. For best time complexity, this method
decomposes any rule that has more than two hypotheses into a set
of rules of two hypotheses; we decompose the hypotheses from
left to right. We call this method left-optimal bottom-up evaluation,
because the time complexity of evaluating a set of rules using
this method is optimal for the fixed left-to-right ordering of the
hypotheses in a rule.

• The time complexity incurred by each rule for this method is
the number of firings of the rule—the number of combinations
of facts that make all hypotheses true.

• The space complexity of this method consists of the space used
by the inferred facts, and the space used by auxiliary maps as
indices for constant time retrieval of relevant facts.

For the rest of the paper, bottom-up evaluation refers to left-optimal
bottom-up evaluation.

Bottom-up evaluation infers all facts that can possibly be in-
ferred without taking the given query into account, and thus may
take asymptotically more time than necessary. To take the query
into account, we perform demand transformation.

• Demand transformation transforms the given set of rules and
query into a new set of rules and a fact, so that bottom-up eval-
uation using the new rules and fact, for any given set of facts,
infers only useful facts for answering the query. It achieves this
by mimicking top-down evaluation of the given query q so that
for predicates in the given rules, only facts that would be in-

ferred during tabled top-down evaluation of q are inferred in a
bottom-up evaluation of the transformed rules.

• We also show that demand transformation can be obtained by
simplifying the output of the well-known magic set transfor-
mation (MST). Annotations in MST are not necessary using
bottom-up evaluation, because the indices corresponding to the
annotations are generated automatically. Therefore, the output
of our transformation is simpler.

For the rest of the paper, demand-driven bottom-up evaluation
refers to performing bottom-up evaluation on the rules generated
by demand transformation.

4.1 Demand transformation

To perform demand transformation, we first compute demand pat-
terns as shown in Section 3.1. Then, for each demand pattern 〈p, s〉,
and for each rule

p(...) :- h1,..., hn.

the following rule is generated

p(...) :- d p s(a1,...,ak), h1,..., hn.

where a1,...,ak are the arguments of the conclusion bound by s.
The new hypothesis is added to ensure that only facts that would
be inferred in tabled top-down evaluation are inferred. Then, a fact
and rules that define the facts of each predicate d p s are generated.
For the given query, p(a1,...,ak)?, the following fact is generated

d p s(ab1,...,abl).

where ab1,...,abl are the constant arguments of the query, and s is
the pattern string of the query. For each rule r generated, c :-
h0,..., hn., and for each hi whose predicate is an IDB predicate
p, the following rule is generated

d p s(a1,...,ak) :- h0,..., hi−1.

where a1,..., ak are the bound arguments of hi, and s is the pattern
string of hi.

For example, for rules (B) and (L), and target query
path(c,y)?, the set of demand patterns is {〈path,‘bf’〉}. De-
mand transformation generates the following fact and rules.

d_path_bf(c). (F)
path(x,y) :- d_path_bf(x), edge(x,y). (Bd)
path(x,y) :- d_path_bf(x), path(x,z), (Ld)

edge(z,y).
d_path_bf(x) :- d_path_bf(x). (D)

Fact (F) corresponds to the given query. Rules (Bd) and (Ld)
correspond to the demand pattern 〈path,‘bf’〉. Rule (D) is for the
second hypothesis of rule (Ld). Bottom-up evaluation using the
generated rules has smaller time complexity, because in the given
rule (L), the variable x could take an arbitrary value, whereas in
rule (Ld), its value is restricted by the new hypothesis, d path bf,
for which only one fact, (F), exists, so x can only be c.

Note that demand transformation does not necessarily reduce
the asymptotic time complexity. Consider rules (B) and (L), and
source query path(x,c)?, instead of target query. The set of de-
mand patterns is {〈path,‘fb’〉, 〈path,‘ff’〉}. Demand transforma-
tion generates the following fact and rules.

d_path_fb(c).
path(x,y) :- d_path_fb(y), edge(x,y).
path(x,y) :- d_path_fb(y),

path(x,z), edge(z,y).
path(x,y) :- d_path_ff(), edge(x,y).
path(x,y) :- d_path_ff(),

path(x,z), edge(z,y).
d_path_ff() :- d_path_fb(y).
d_path_ff() :- d_path_ff().



The time complexity of bottom-up evaluation using the generated
rules is not better than the original rules if the underlying graph
is connected, since no variable is restricted analogous to x in the
previous example. For demand transformation to improve the com-
plexity for target query as it did for source query, the left-recursive
rule needs to be transformed into a right-recursive rule using recur-
sion conversion [29].

4.2 Comparing with magic set transformation

Magic set transformation (MST) has the same goal as demand
transformation. MST has three similar steps: binding annotation,
generating rules and adding hypotheses for reflecting the demand
of computation, and generating a fact for the demand by the query.
A detailed description of the MST algorithm can be found in [30].

The disadvantage of MST, in contrast to demand transforma-
tion, is that it annotates the IDB predicates in the generated rules,
and this may result in exponentially increased space complexity in
program size, as shown below.

Consider the last example in the previous subsection. MST
yields the following fact and rules.

d_path_fb(c).
path_fb(x,y) :- d_path_fb(y), edge(x,y).
path_fb(x,y) :- d_path_fb(y),

path_fb(x,z), edge(z,y).
path_ff(x,y) :- d_path_ff(), edge(x,y).
path_ff(x,y) :- d_path_ff(),

path_ff(x,z), edge(z,y).
d_path_ff() :- d_path_fb(y).
d_path_ff() :- d_path_ff().

The difference is the extra annotations in the annotated path
predicates in the rules generated by MST. These rules may infer
some same facts of path for two differently annotated predicates,
path fb and path ff.

In general, annotating IDB hypotheses with their pattern strings
is not necessary, because using bottom-up evaluation, indices for
matching hypotheses are created automatically. Removing these
annotations yields simpler rules, and reduces space taken by the
same fact duplicated for multiple new predicates generated. The
extra space from keeping the annotations is exponential in the
number of arguments of differently annotated predicates.

Removing annotations of IDB predicates in the generated rules
by MST yields the rules generated by demand transformation.

5. Relating tabled top-down and demand-driven

bottom-up evaluations

5.1 Time complexity comparison

We establish the time complexity relationship between tabled top-
down and demand-driven bottom-up evaluation. First, we show the
relationship in the general case, then identify a subset of Datalog
for which the two evaluations are equivalent, and finally show that
adding early completion may improve tabled top-down evaluation.

Theorem 1 states that demand-driven bottom-up evaluation is
faster than or equal to tabled top-down evaluation in time complex-
ity.

Theorem 1. Let P be a set of Datalog rules and a query. Let P ′ be
the set of rules and fact after demand transformation of P . Let Ttd

be the asymptotic time complexity of tabled top-down evaluation
of P , and Tbu be the asymptotic time complexity of bottom-up
evaluation of P ′. Then, Tbu ≤ Ttd.

Proof. Let Pa be the set of rules and query after annotating P .

Ttd is the sum of the complexities incurred by each rule in Pa.
For each rule r in Pa of the form p(...) :- body., there is a
rule r′ of the form p(...) :- d(...), body. in P ′, where d(...)
is the new demand hypothesis. The complexity incurred by r for
Ttd is i × l, where i is the number of invocations to r, and l is the
local complexity, and l is the product of the sizes of hypotheses.
Since facts of d are obtained from all of the call sites to p with
the same binding pattern as top-down evaluation, #d = i. For Tbu,
the complexity incurred by a rule is the number of times the rule
fires. Therefore, the complexity incurred by r′ has an upper bound
#d×l = i × l.

The only rules in P ′ that do not correspond to a rule in Pa are
the rules that infer facts of the predicates added for demand. The
additional complexity incurred for Tbu by each such rule is already
dominated by a component of the complexity in Ttd, because this
complexity equals the number of invocations for the rule that the
demand hypothesis would be added to, and the number of invoca-
tions is used as a factor in a summand of Ttd.

Hence, Tbu ≤ Ttd.

A rule is said to have no singleton variables, i.e. no wildcards,
if it has only one hypothesis, or if each variable v that appears in a
hypothesis also appears in another hypothesis or the conclusion.

We show that for Datalog rules with no more than two hypothe-
ses, and no singleton variables, the time complexities of tabled
top-down evaluation and demand-driven bottom-up evaluation are
equal.

Lemma 2. In bottom-up evaluation, if all variables in the hypothe-
ses of a rule r are also in the conclusion of r, then the number of
facts inferred using r equals the number of firings of r.

Proof. The number of facts inferred using r cannot be larger than
the number of firings of r, since a fact is inferred only in a firing of
r.

Let f1 and f2 be two different firings of a rule r. There is at least
one variable whose value is different between f1 and f2. Since all
variables in the hypotheses also appear in the conclusion, the facts
inferred from f1 and f2 must be different.

Therefore, the number of facts inferred using r equals the num-
ber of firings of r.

Theorem 3. Let P be a set of Datalog rules and a query, such
that the rules have no singleton variables, and there are no more
than two hypotheses per rule. Let P ′ be the set of rules and fact
after demand transformation of P . Let Ttd be the asymptotic time
complexity of tabled top-down evaluation of P , and Tbu be the
asymptotic time complexity of bottom-up evaluation of P ′. Then,
Tbu = Ttd.

Proof. Let Pa be the set of rules after annotating the rules in P .
Each rule r in Pa is of one of two forms:

(i) r has one hypothesis, so has the form c :- h. In P ′, there
is a rule r′ corresponding to r, and is of the form c :- d, h.,
where d is the new demand hypothesis. The complexity incurred
by r′ to Tbu and by r to Ttd are both dominated by the size of the
predicate of h, since h contains all variables in d.

(ii) r has two hypotheses, so has the form c :- h1, h2. In P ′,
there is a rule r′ corresponding to r, and is of the form c :- d,
h1, h2., where d is the demand hypothesis added. As before, the
complexity incurred by r to Ttd, denoted Ttd(r), equals the prod-
uct of the sizes of the predicates d, h1, and h2. However, bottom-up
computation can decompose the rules to possibly improve perfor-
mance. In this case, it would obtain the following two rules:
new :- d, h1. and c :- new, h2. The complexity of the first
rule is less than Ttd(r). Since there are no singleton variables, the
variables of d and h1 must appear in new. Then, by Lemma 2, the



size of the predicate of new equals the running time of the rule that
generates it, and hence the complexity incurred by the second rule
obtained from r′ equals Ttd(r).

Therefore, for each complexity summand incurred by rules in
Pa for Ttd, there is a rule in P ′ that incurs the same complexity
summand for Tbu. Combining this with Theorem 1, which states
that Tbu ≤ Ttd, we obtain Tbu = Ttd.

Early completion is an optimization for tabled top-down eval-
uation. It stops backtracking for queries with all arguments bound
immediately after they are proven to be true. Theorem 4 states that
adding early completion to tabled top-down evaluation may make
it asymptotically faster than demand-driven bottom-up evaluation.

Theorem 4. The time complexity of tabled top-down evaluation
with early completion can be smaller than demand-driven bottom-
up evaluation.

Proof. With early completion, tabled top-down evaluation stops
backtracking when it proves that a subquery with all arguments
bound is true, whereas bottom-up evaluation always exhausts all
possible ways of proving facts. Therefore, with early completion,
the time complexity of tabled top-down evaluation can be smaller
than demand-driven bottom-up evaluation.

5.2 Space complexity comparison

We establish the space complexity relationship between tabled top-
down and demand-driven bottom-up evaluation. We first show the
relationship in the general case. We then show that if demand-
driven bottom-up evaluation has better complexity, then its space
complexity must be worse.

Theorem 6 states that tabled top-down evaluation does not use
asymptotically more space than demand-driven bottom-up eval-
uation. We prove it by showing the components of space used
for demand-driven bottom-up evaluation and their correspondence
with the space usage in tabled top-down evaluation.

Lemma 5. Let P be a set of Datalog rules and a query. Let P ′

be the set of rules and fact after demand transformation of P . For
each predicate p in P , let BU(p) be the set of facts of p inferred
using bottom-up evaluation of P ′, and let TD(p) be the set of
facts of p inferred during tabled top-down evaluation of P . Then,
BU(p) = TD(p).

Proof. We showed in Theorem 1 that the bound argument values of
subqueries for which each rule will be invoked in tabled top-down
computation is a fact for the demand hypothesis added in bottom-
up computation. Therefore, for each predicate p, the same facts will
be inferred by each rule that defines p using either method. Hence,
BU(p) = TD(p).

Theorem 6. Let P be a set of Datalog rules and a query. Let P ′ be
the set of rules and fact after demand transformation of P . Let Std

be the asymptotic space complexity of tabled top-down evaluation
of P , and Sbu be the asymptotic space complexity of bottom-up
evaluation of P ′. Then, Std ≤ Sbu.

Proof. Sbu consists of the sums of each of the following items:
(i) the number of facts of each predicate defined by rules, (ii) the
number of facts of each demand predicate, (iii) the number of facts
of each predicate defined for decomposing rules into rules with
at most two hypotheses, and (iv) the size of the auxiliary maps
maintained for fact retrieval. Std consists only of the sum of the
sizes of table entries for each predicate defined by rules.

For a predicate p, by Lemma 5, the set of facts of p inferred
by either evaluation method is the same. Each fact of p is stored
only once in the bottom-up method, but they can be stored in 2k

auxiliary maps, where k is the number of arguments of p. For tabled
top-down evaluation, each fact of p may be stored in at most 2k

tables, where the number of table entries correspond exactly to the
auxiliary maps. Therefore, Std ≤ Sbu.

Theorem 7 states that improvement in time complexity for
demand-driven bottom-up evaluation is only possible by using
more space. We prove it by using the fact that such improvement is
only possible by using more space in decomposed rules.

Theorem 7. Let P be a set of Datalog rules and a query. Let P ′

be the set of rules and fact after demand transformation of P . Let
Ttd and Std be the asymptotic time and space complexity of tabled
top-down evaluation of P , and Tbu and Sbu be the asymptotic
time and space complexity of bottom-up evaluation of P ′. Then,
if Tbu < Ttd, then Std < Sbu.

Proof. If Tbu < Ttd, then in the bottom-up evaluation of P , there
is a rule which is decomposed into multiple rules for bottom-up
evaluation. This implies that the third component of Sbu shown in
Theorem 6 is nonzero. Since Std only consists of the first and fourth
item of Sbu, Std < Sbu.

6. Experiments

We support our complexity analyses and comparisons by exper-
iments. For tabled top-down evaluation, we use XSB [33]. For
bottom-up evaluation, we use the implementation method of [21]
to generate Python code from the rules.

We examined all benchmarks in OpenRuleBench [18]. All
benchmark rules can be classified as pure joins (no recursion),
transitive closure, and same generation (whether two nodes are in
the same generation in trees). We show experimental results for
three benchmarks, one for each class.

We instantiate the complexity parameters in predicted complex-
ities with their values computed from the data. We use space units
to mean number of unique table inserts for tabled top-down, and
the number of facts inferred plus the number of elements in auxil-
iary maps for demand-driven bottom-up evaluation. We use returns
to mean the number of total facts returned from rules for tabled
top-down evaluation, and firings to mean the number of firings for
demand-driven bottom-up evaluation.

In all three benchmarks, the predicates have two arguments.
For experiments, we fix #p and #p.1/2 for each input predicate
p to generate a set of data such that the size of each predicate
is maximal, i.e., the worst-case behavior is exhibited. Then, we
increase #p and #p.1/2 to generate the next set of data, and repeat.

For pure joins, we show results for the benchmark Join1, which
contains 4 rules that join 5 predicates, with a query with all argu-
ments free. Figure 2 shows that returns for tabled top-down evalu-
ation and firings for demand-driven bottom-up evaluation are lin-
ear in predicated time units. It also shows that the space units for
both is linear in predicted space units. These confirm our analyses.
The time difference between tabled top-down and demand-driven
bottom-up evaluations arise from the rules that infer demand. The
space difference between them arise from demand predicates and
auxiliary maps.

For transitive closure, we analyze the time complexity, and by
using the space complexity analysis for tabled top-down evalua-
tion, give a comparison of actual running times when the asymp-
totic time complexity is the same. We showed in Section 3 that the
left- and right-recursive versions of transitive closure have the same
asymptotic time and space complexities for a query with both argu-
ments bound, but the right-recursive version creates asymptotically
more table entries. Therefore, the right-recursive version will run
slower by a constant factor, and use a constant factor more space.
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Figure 2. Returns for tabled top-down evaluation, firings for bottom-up evaluation, and space units for both, for benchmark Join1. The
difference between returns and firings has been multiplied by 1000 for illustration.
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Figure 3. Running time and memory usage of transitive closure in XSB for a query with both arguments bound.
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Figure 4. Returns for tabled top-down evaluation, firings for bottom-up evaluation, and space units for both, for the same generation
benchmark.

Figure 3 confirms that their complexities are the same, since the
actual time and space are linear in the predictions. It also confirms
that the right-recursive version uses a constant factor more time and
space.

The same generation benchmark contains a rule with three hy-
potheses: sg(x,y) :- par(x,z1), sg(z1,z2), par(y,z2).
We use the query sg(c,y)?, and show the time and space tradeoff.
Bottom-up evaluation eliminates variable z1 after decomposing the
rules into rules with two hypotheses, and has better time complexity
than tabled top-down evaluation. Therefore, tabled top-down eval-
uation has better space complexity. Figure 4 confirms our analysis:
the returns of tabled top-down evaluation increases faster asymptot-
ically, and the space units of tabled top-down evaluation increases
slower asymptotically.

7. Related work and conclusion

Datalog has been extensively studied [1, 7]. Tabled top-down eval-
uation was introduced in [28], and an implementation of it is de-
scribed in [9]. Optimal bottom-up evaluation, on which our left-
optimal bottom-up evaluation is based, is described in [21].

For tabled top-down evaluation of Datalog, the only known
bound on the time complexity is O(kv), where k is the number
of constants in the input data, and v is the maximum number of
variables in a rule [33], and there is no complexity analysis stud-
ied for space. Our method calculates worst-case time complexity
much more precisely, and is the first to calculate worst-case space
complexity and calculates it precisely.

For bottom-up evaluation, time and space complexities have
been analyzed before, using prefix-firing by Ganzinger et al. [14]



and optimal bottom-up evaluation by Liu et al. [21]. Bottom-up
evaluation was used to mimic top-down evaluation after program
transformations, mostly notably magic set transformation [3]. Our
demand transformation is simpler and produces simpler rules that
have the same time and space in terms of data complexity and
exponentially smaller space in terms of program complexity.

The relationship between top-down and bottom-up evaluation
has been studied [24]. Ullman [30] shows that bottom-up evaluation
after magic set transformation has better than or equal time com-
plexity with a breadth-first top-down strategy called QRGT without
tabling. Ramakrishnan et al. [23] describe magic set transforma-
tion with tail recursion optimization that is better than or equal to
than top-down evaluation with tail recursion optimization. Bry [4]
shows that top-down evaluation with variant tabling and bottom-up
evaluation after magic set transformation can be implemented in a
unified framework, and that they infer the same facts for the given
predicates, but does not study time and space complexities. Our
work is the first to establish precise relationships between tabled
top-down evaluation and demand-driven bottom-up evaluation in
terms of precise time and space complexities.

Additionally, we have implemented our method and confirmed
our analysis results through experiments on well-studied bench-
marks.

The complexity results can be used for optimizations by com-
paring the complexity formulas of different rules with the same se-
mantics. However, comparison of complexity formulas may be dif-
ficult in general, in which case estimations of size parameters [20]
can be used to help. Future work includes study of powerful meth-
ods for automatically simplifying complexity formulas, for estimat-
ing values of size parameters, and for using our method for opti-
mizations.
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